source: libcfa/src/concurrency/kernel/startup.cfa@ fde0a58

ADT ast-experimental enum forall-pointer-decay pthread-emulation qualifiedEnum
Last change on this file since fde0a58 was 7cf3b1d, checked in by Thierry Delisle <tdelisle@…>, 4 years ago

Added level of indirection to idle sleeps which helps statistics.

  • Property mode set to 100644
File size: 25.1 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2020 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// kernel/startup.cfa --
8//
9// Author : Thierry Delisle
10// Created On : Thu Jul 30 15:12:54 2020
11// Last Modified By :
12// Last Modified On :
13// Update Count :
14//
15
16#define __cforall_thread__
17#define _GNU_SOURCE
18
19// C Includes
20#include <errno.h> // errno
21#include <signal.h>
22#include <string.h> // strerror
23#include <unistd.h> // sysconf
24
25extern "C" {
26 #include <limits.h> // PTHREAD_STACK_MIN
27 #include <unistd.h> // syscall
28 #include <sys/eventfd.h> // eventfd
29 #include <sys/mman.h> // mprotect
30 #include <sys/resource.h> // getrlimit
31}
32
33// CFA Includes
34#include "kernel_private.hfa"
35#include "startup.hfa" // STARTUP_PRIORITY_XXX
36#include "limits.hfa"
37#include "math.hfa"
38
39#define CFA_PROCESSOR_USE_MMAP 0
40
41//-----------------------------------------------------------------------------
42// Some assembly required
43#if defined( __i386 )
44 #define CtxGet( ctx ) __asm__ volatile ( \
45 "movl %%esp,%0\n" \
46 "movl %%ebp,%1\n" \
47 : "=rm" (ctx.SP), \
48 "=rm" (ctx.FP) \
49 )
50#elif defined( __x86_64 )
51 #define CtxGet( ctx ) __asm__ volatile ( \
52 "movq %%rsp,%0\n" \
53 "movq %%rbp,%1\n" \
54 : "=rm" (ctx.SP), \
55 "=rm" (ctx.FP) \
56 )
57#elif defined( __aarch64__ )
58 #define CtxGet( ctx ) __asm__ volatile ( \
59 "mov %0, sp\n" \
60 "mov %1, fp\n" \
61 : "=rm" (ctx.SP), \
62 "=rm" (ctx.FP) \
63 )
64#else
65 #error unknown hardware architecture
66#endif
67
68//-----------------------------------------------------------------------------
69// Start and stop routine for the kernel, declared first to make sure they run first
70static void __kernel_startup (void) __attribute__(( constructor( STARTUP_PRIORITY_KERNEL ) ));
71static void __kernel_shutdown(void) __attribute__(( destructor ( STARTUP_PRIORITY_KERNEL ) ));
72
73//-----------------------------------------------------------------------------
74// Static Forward Declarations
75struct current_stack_info_t;
76
77static void * __invoke_processor(void * arg);
78static void __kernel_first_resume( processor * this );
79static void __kernel_last_resume ( processor * this );
80static void init(processor & this, const char name[], cluster & _cltr, thread$ * initT);
81static void deinit(processor & this);
82static void doregister( struct cluster & cltr );
83static void unregister( struct cluster & cltr );
84static void register_tls( processor * this );
85static void unregister_tls( processor * this );
86static void ?{}( coroutine$ & this, current_stack_info_t * info);
87static void ?{}( thread$ & this, current_stack_info_t * info);
88static void ?{}(processorCtx_t & this) {}
89static void ?{}(processorCtx_t & this, processor * proc, current_stack_info_t * info);
90
91#if defined(__CFA_WITH_VERIFY__)
92 static bool verify_fwd_bck_rng(void);
93#endif
94
95//-----------------------------------------------------------------------------
96// Forward Declarations for other modules
97extern void __kernel_alarm_startup(void);
98extern void __kernel_alarm_shutdown(void);
99
100//-----------------------------------------------------------------------------
101// Other Forward Declarations
102extern void __wake_proc(processor *);
103extern int cfa_main_returned; // from interpose.cfa
104extern uint32_t __global_random_seed;
105
106//-----------------------------------------------------------------------------
107// Kernel storage
108KERNEL_STORAGE(cluster, mainCluster);
109KERNEL_STORAGE(processor, mainProcessor);
110KERNEL_STORAGE(thread$, mainThread);
111KERNEL_STORAGE(__stack_t, mainThreadCtx);
112KERNEL_STORAGE(__scheduler_RWLock_t, __scheduler_lock);
113#if !defined(__CFA_NO_STATISTICS__)
114KERNEL_STORAGE(__stats_t, mainProcStats);
115#endif
116
117cluster * mainCluster;
118processor * mainProcessor;
119thread$ * mainThread;
120__scheduler_RWLock_t * __scheduler_lock;
121
122extern "C" {
123 struct { __dllist_t(cluster) list; __spinlock_t lock; } __cfa_dbg_global_clusters;
124}
125
126extern size_t __page_size;
127extern int __map_prot;
128
129//-----------------------------------------------------------------------------
130// Global state
131thread_local struct KernelThreadData __cfaabi_tls __attribute__ ((tls_model ( "initial-exec" ))) @= {
132 NULL, // cannot use 0p
133 NULL,
134 false,
135 { 1, false, false },
136 0,
137 { 0, 0 },
138 NULL,
139 #ifdef __CFA_WITH_VERIFY__
140 false,
141 0,
142 #endif
143};
144
145#if defined(CFA_HAVE_LINUX_LIBRSEQ)
146 // No data needed
147#elif defined(CFA_HAVE_LINUX_RSEQ_H)
148 extern "Cforall" {
149 __attribute__((aligned(128))) thread_local volatile struct rseq __cfaabi_rseq @= {
150 .cpu_id : RSEQ_CPU_ID_UNINITIALIZED,
151 };
152 }
153#else
154 // No data needed
155#endif
156
157//-----------------------------------------------------------------------------
158// Struct to steal stack
159struct current_stack_info_t {
160 __stack_t * storage; // pointer to stack object
161 void * base; // base of stack
162 void * limit; // stack grows towards stack limit
163 void * context; // address of cfa_context_t
164};
165
166void ?{}( current_stack_info_t & this ) {
167 __stack_context_t ctx;
168 CtxGet( ctx );
169 this.base = ctx.FP;
170
171 rlimit r;
172 getrlimit( RLIMIT_STACK, &r);
173 size_t size = r.rlim_cur;
174
175 this.limit = (void *)(((intptr_t)this.base) - size);
176 this.context = &storage_mainThreadCtx;
177}
178
179
180//=============================================================================================
181// Kernel Setup logic
182//=============================================================================================
183//-----------------------------------------------------------------------------
184// Kernel boot procedures
185static void __kernel_startup(void) {
186 /* paranoid */ verify( ! __preemption_enabled() );
187 __cfadbg_print_safe(runtime_core, "Kernel : Starting\n");
188
189 __cfa_dbg_global_clusters.list{ __get };
190 __cfa_dbg_global_clusters.lock{};
191
192 /* paranoid */ verify( verify_fwd_bck_rng() );
193
194 // Initialize the global scheduler lock
195 __scheduler_lock = (__scheduler_RWLock_t*)&storage___scheduler_lock;
196 (*__scheduler_lock){};
197
198 // Initialize the main cluster
199 mainCluster = (cluster *)&storage_mainCluster;
200 (*mainCluster){"Main Cluster", 0};
201
202 __cfadbg_print_safe(runtime_core, "Kernel : Main cluster ready\n");
203
204 // Construct the processor context of the main processor
205 void ?{}(processorCtx_t & this, processor * proc) {
206 (this.__cor){ "Processor" };
207 this.__cor.starter = 0p;
208 this.proc = proc;
209 }
210
211 void ?{}(processor & this) with( this ) {
212 ( this.terminated ){};
213 ( this.runner ){};
214 init( this, "Main Processor", *mainCluster, 0p );
215 kernel_thread = pthread_self();
216
217 runner{ &this };
218 __cfadbg_print_safe(runtime_core, "Kernel : constructed main processor context %p\n", &runner);
219 }
220
221 // Initialize the main processor and the main processor ctx
222 // (the coroutine that contains the processing control flow)
223 mainProcessor = (processor *)&storage_mainProcessor;
224 (*mainProcessor){};
225
226 register_tls( mainProcessor );
227
228 // Start by initializing the main thread
229 // SKULLDUGGERY: the mainThread steals the process main thread
230 // which will then be scheduled by the mainProcessor normally
231 mainThread = (thread$ *)&storage_mainThread;
232 current_stack_info_t info;
233 info.storage = (__stack_t*)&storage_mainThreadCtx;
234 (*mainThread){ &info };
235
236 __cfadbg_print_safe(runtime_core, "Kernel : Main thread ready\n");
237
238 //initialize the global state variables
239 __cfaabi_tls.this_processor = mainProcessor;
240 __cfaabi_tls.this_thread = mainThread;
241
242 #if !defined( __CFA_NO_STATISTICS__ )
243 __cfaabi_tls.this_stats = (__stats_t *)& storage_mainProcStats;
244 __init_stats( __cfaabi_tls.this_stats );
245 #endif
246 mainProcessor->local_data = &__cfaabi_tls;
247
248 // Enable preemption
249 __kernel_alarm_startup();
250
251 // Add the main thread to the ready queue
252 // once resume is called on mainProcessor->runner the mainThread needs to be scheduled like any normal thread
253 schedule_thread$(mainThread, UNPARK_LOCAL);
254
255 // SKULLDUGGERY: Force a context switch to the main processor to set the main thread's context to the current UNIX
256 // context. Hence, the main thread does not begin through __cfactx_invoke_thread, like all other threads. The trick here is that
257 // mainThread is on the ready queue when this call is made.
258 __kernel_first_resume( __cfaabi_tls.this_processor );
259
260
261 // THE SYSTEM IS NOW COMPLETELY RUNNING
262
263 __cfadbg_print_safe(runtime_core, "Kernel : Started\n--------------------------------------------------\n\n");
264
265 /* paranoid */ verify( ! __preemption_enabled() );
266 enable_interrupts();
267 /* paranoid */ verify( __preemption_enabled() );
268
269}
270
271static void __kernel_shutdown(void) {
272 if(!cfa_main_returned) return;
273 /* paranoid */ verify( __preemption_enabled() );
274 disable_interrupts();
275 /* paranoid */ verify( ! __preemption_enabled() );
276
277 __cfadbg_print_safe(runtime_core, "\n--------------------------------------------------\nKernel : Shutting down\n");
278
279 // SKULLDUGGERY: Notify the mainProcessor it needs to terminates.
280 // When its coroutine terminates, it return control to the mainThread
281 // which is currently here
282 /* paranoid */ verify( !__atomic_load_n(&mainProcessor->do_terminate, __ATOMIC_ACQUIRE) );
283 __atomic_store_n(&mainProcessor->do_terminate, true, __ATOMIC_RELEASE);
284 __wake_proc( mainProcessor );
285 __kernel_last_resume( __cfaabi_tls.this_processor );
286 mainThread->self_cor.state = Halted;
287
288 // THE SYSTEM IS NOW COMPLETELY STOPPED
289
290 // Disable preemption
291 __kernel_alarm_shutdown();
292
293 #if !defined( __CFA_NO_STATISTICS__ )
294 __stats_t * st = (__stats_t *)& storage_mainProcStats;
295 __tally_stats(mainCluster->stats, st);
296 if( 0 != mainProcessor->print_stats ) {
297 __print_stats( st, mainProcessor->print_stats, "Processor ", mainProcessor->name, (void*)mainProcessor );
298 }
299 #if defined(CFA_STATS_ARRAY)
300 __flush_stat( st, "Processor", mainProcessor );
301 #endif
302 #endif
303
304 mainProcessor->local_data = 0p;
305
306 unregister_tls( mainProcessor );
307
308 // Destroy the main processor and its context in reverse order of construction
309 // These were manually constructed so we need manually destroy them
310 void ^?{}(processor & this) with( this ){
311 deinit( this );
312
313 /* paranoid */ verify( this.do_terminate == true );
314 __cfaabi_dbg_print_safe("Kernel : destroyed main processor context %p\n", &runner);
315 }
316
317 ^(*mainProcessor){};
318
319 // Final step, destroy the main thread since it is no longer needed
320
321 // Since we provided a stack to this taxk it will not destroy anything
322 /* paranoid */ verify(mainThread->self_cor.stack.storage == (__stack_t*)(((uintptr_t)&storage_mainThreadCtx)| 0x1));
323 ^(*mainThread){};
324
325 ^(*mainCluster){};
326
327 ^(*__scheduler_lock){};
328
329 ^(__cfa_dbg_global_clusters.list){};
330 ^(__cfa_dbg_global_clusters.lock){};
331
332 __cfadbg_print_safe(runtime_core, "Kernel : Shutdown complete\n");
333}
334
335//=============================================================================================
336// Kernel Initial Scheduling logic
337//=============================================================================================
338
339// Context invoker for processors
340// This is the entry point for processors (kernel threads) *except* for the main processor
341// It effectively constructs a coroutine by stealing the pthread stack
342static void * __invoke_processor(void * arg) {
343 #if !defined( __CFA_NO_STATISTICS__ )
344 __stats_t local_stats;
345 __init_stats( &local_stats );
346 __cfaabi_tls.this_stats = &local_stats;
347 #endif
348
349 processor * proc = (processor *) arg;
350 __cfaabi_tls.this_processor = proc;
351 __cfaabi_tls.this_thread = 0p;
352 __cfaabi_tls.preemption_state.[enabled, disable_count] = [false, 1];
353 proc->local_data = &__cfaabi_tls;
354
355 register_tls( proc );
356
357 // SKULLDUGGERY: We want to create a context for the processor coroutine
358 // which is needed for the 2-step context switch. However, there is no reason
359 // to waste the perfectly valid stack create by pthread.
360 current_stack_info_t info;
361 __stack_t ctx;
362 info.storage = &ctx;
363 (proc->runner){ proc, &info };
364
365 __cfaabi_dbg_print_safe("Coroutine : created stack %p\n", get_coroutine(proc->runner)->stack.storage);
366
367 //Set global state
368 __cfaabi_tls.this_thread = 0p;
369
370 //We now have a proper context from which to schedule threads
371 __cfadbg_print_safe(runtime_core, "Kernel : core %p created (%p, %p)\n", proc, &proc->runner, &ctx);
372
373 // SKULLDUGGERY: Since the coroutine doesn't have its own stack, we can't
374 // resume it to start it like it normally would, it will just context switch
375 // back to here. Instead directly call the main since we already are on the
376 // appropriate stack.
377 get_coroutine(proc->runner)->state = Active;
378 main( proc->runner );
379 get_coroutine(proc->runner)->state = Halted;
380
381 // Main routine of the core returned, the core is now fully terminated
382 __cfadbg_print_safe(runtime_core, "Kernel : core %p main ended (%p)\n", proc, &proc->runner);
383
384 #if !defined(__CFA_NO_STATISTICS__)
385 __tally_stats(proc->cltr->stats, &local_stats);
386 if( 0 != proc->print_stats ) {
387 __print_stats( &local_stats, proc->print_stats, "Processor ", proc->name, (void*)proc );
388 }
389 #if defined(CFA_STATS_ARRAY)
390 __flush_stat( &local_stats, "Processor", proc );
391 #endif
392 #endif
393
394 proc->local_data = 0p;
395
396 unregister_tls( proc );
397
398 return 0p;
399}
400
401static void __kernel_first_resume( processor * this ) {
402 thread$ * src = mainThread;
403 coroutine$ * dst = get_coroutine(this->runner);
404
405 /* paranoid */ verify( ! __preemption_enabled() );
406
407 __cfaabi_tls.this_thread->curr_cor = dst;
408 __stack_prepare( &dst->stack, DEFAULT_STACK_SIZE );
409 __cfactx_start(main, dst, this->runner, __cfactx_invoke_coroutine);
410
411 /* paranoid */ verify( ! __preemption_enabled() );
412
413 dst->last = &src->self_cor;
414 dst->starter = dst->starter ? dst->starter : &src->self_cor;
415
416 // make sure the current state is still correct
417 /* paranoid */ verify(src->state == Ready);
418 src->corctx_flag = true;
419
420 // context switch to specified coroutine
421 verify( dst->context.SP );
422 __cfactx_switch( &src->context, &dst->context );
423 // when __cfactx_switch returns we are back in the src coroutine
424
425 mainThread->curr_cor = &mainThread->self_cor;
426
427 // make sure the current state has been update
428 /* paranoid */ verify(src->state == Active);
429
430 /* paranoid */ verify( ! __preemption_enabled() );
431}
432
433// KERNEL_ONLY
434static void __kernel_last_resume( processor * this ) {
435 coroutine$ * src = &mainThread->self_cor;
436 coroutine$ * dst = get_coroutine(this->runner);
437
438 /* paranoid */ verify( ! __preemption_enabled() );
439 /* paranoid */ verify( dst->starter == src );
440 /* paranoid */ verify( dst->context.SP );
441
442 // SKULLDUGGERY in debug the processors check that the
443 // stack is still within the limit of the stack limits after running a thread.
444 // that check doesn't make sense if we context switch to the processor using the
445 // coroutine semantics. Since this is a special case, use the current context
446 // info to populate these fields.
447 __cfaabi_dbg_debug_do(
448 __stack_context_t ctx;
449 CtxGet( ctx );
450 mainThread->context.SP = ctx.SP;
451 mainThread->context.FP = ctx.FP;
452 )
453
454 // context switch to the processor
455 __cfactx_switch( &src->context, &dst->context );
456}
457
458
459//=============================================================================================
460// Kernel Object Constructors logic
461//=============================================================================================
462//-----------------------------------------------------------------------------
463// Main thread construction
464static void ?{}( coroutine$ & this, current_stack_info_t * info) with( this ) {
465 stack.storage = info->storage;
466 with(*stack.storage) {
467 limit = info->limit;
468 base = info->base;
469 }
470 __attribute__((may_alias)) intptr_t * istorage = (intptr_t*) &stack.storage;
471 *istorage |= 0x1;
472 name = "Main Thread";
473 state = Start;
474 starter = 0p;
475 last = 0p;
476 cancellation = 0p;
477}
478
479static void ?{}( thread$ & this, current_stack_info_t * info) with( this ) {
480 ticket = TICKET_RUNNING;
481 state = Start;
482 self_cor{ info };
483 curr_cor = &self_cor;
484 curr_cluster = mainCluster;
485 self_mon.owner = &this;
486 self_mon.recursion = 1;
487 self_mon_p = &self_mon;
488 link.next = 0p;
489 link.ts = -1llu;
490 preferred = ready_queue_new_preferred();
491 last_proc = 0p;
492 random_state = __global_random_seed;
493 #if defined( __CFA_WITH_VERIFY__ )
494 canary = 0x0D15EA5E0D15EA5Ep;
495 #endif
496
497 node.next = 0p;
498 node.prev = 0p;
499 doregister(curr_cluster, this);
500
501 monitors{ &self_mon_p, 1, (fptr_t)0 };
502}
503
504//-----------------------------------------------------------------------------
505// Processor
506// Construct the processor context of non-main processors
507static void ?{}(processorCtx_t & this, processor * proc, current_stack_info_t * info) {
508 (this.__cor){ info };
509 this.proc = proc;
510}
511
512static void init(processor & this, const char name[], cluster & _cltr, thread$ * initT) with( this ) {
513 this.name = name;
514 this.cltr = &_cltr;
515 this.rdq.its = 0;
516 this.rdq.itr = 0;
517 this.rdq.id = MAX;
518 this.rdq.target = MAX;
519 this.rdq.last = MAX;
520 this.rdq.cpu = 0;
521 // this.rdq.cutoff = 0ull;
522 do_terminate = false;
523 preemption_alarm = 0p;
524 pending_preemption = false;
525
526 this.io.ctx = 0p;
527 this.io.pending = false;
528 this.io.dirty = false;
529
530 this.init.thrd = initT;
531
532 this.local_data = 0p;
533
534 this.idle_fd = eventfd(0, 0);
535 if (idle_fd < 0) {
536 abort("KERNEL ERROR: PROCESSOR EVENTFD - %s\n", strerror(errno));
537 }
538
539 this.idle_wctx.fd = 0;
540
541 // I'm assuming these two are reserved for standard input and output
542 // so I'm using them as sentinels with idle_wctx.
543 /* paranoid */ verify( this.idle_fd != 0 );
544 /* paranoid */ verify( this.idle_fd != 1 );
545
546 #if !defined(__CFA_NO_STATISTICS__)
547 print_stats = 0;
548 print_halts = false;
549 #endif
550
551 __cfadbg_print_safe(runtime_core, "Kernel : core %p created\n", &this);
552}
553
554// Not a ctor, it just preps the destruction but should not destroy members
555static void deinit(processor & this) {
556 close(this.idle_fd);
557}
558
559void ?{}(processor & this, const char name[], cluster & _cltr, thread$ * initT) {
560 ( this.terminated ){};
561 ( this.runner ){};
562
563 disable_interrupts();
564 init( this, name, _cltr, initT );
565 enable_interrupts();
566
567 __cfadbg_print_safe(runtime_core, "Kernel : Starting core %p\n", &this);
568
569 this.stack = __create_pthread( &this.kernel_thread, __invoke_processor, (void *)&this );
570}
571
572void ?{}(processor & this, const char name[], cluster & _cltr) {
573 (this){name, _cltr, 0p};
574}
575
576extern size_t __page_size;
577void ^?{}(processor & this) with( this ){
578 /* paranoid */ verify( !__atomic_load_n(&do_terminate, __ATOMIC_ACQUIRE) );
579 __cfadbg_print_safe(runtime_core, "Kernel : core %p signaling termination\n", &this);
580
581 __atomic_store_n(&do_terminate, true, __ATOMIC_RELAXED);
582 __disable_interrupts_checked();
583 __wake_proc( &this );
584 __enable_interrupts_checked();
585
586 wait( terminated );
587 /* paranoid */ verify( active_processor() != &this);
588
589 __destroy_pthread( kernel_thread, this.stack, 0p );
590
591 disable_interrupts();
592 deinit( this );
593 enable_interrupts();
594}
595
596//-----------------------------------------------------------------------------
597// Cluster
598static void ?{}(__cluster_proc_list & this) {
599 this.fdw = 0p;
600 this.idle = 0;
601 this.total = 0;
602}
603
604void ?{}(cluster & this, const char name[], Duration preemption_rate, unsigned num_io, const io_context_params & io_params) with( this ) {
605 this.name = name;
606 this.preemption_rate = preemption_rate;
607 ready_queue{};
608
609 #if !defined(__CFA_NO_STATISTICS__)
610 print_stats = 0;
611 stats = alloc();
612 __init_stats( stats );
613 #endif
614
615 threads{ __get };
616
617 io.arbiter = create();
618 io.params = io_params;
619
620 doregister(this);
621
622 // Lock the RWlock so no-one pushes/pops while we are changing the queue
623 disable_interrupts();
624 uint_fast32_t last_size = ready_mutate_lock();
625
626 // Adjust the ready queue size
627 ready_queue_grow( &this );
628
629 // Unlock the RWlock
630 ready_mutate_unlock( last_size );
631 enable_interrupts( false ); // Don't poll, could be in main cluster
632}
633
634void ^?{}(cluster & this) {
635 destroy(this.io.arbiter);
636
637 // Lock the RWlock so no-one pushes/pops while we are changing the queue
638 disable_interrupts();
639 uint_fast32_t last_size = ready_mutate_lock();
640
641 // Adjust the ready queue size
642 ready_queue_shrink( &this );
643
644 // Unlock the RWlock
645 ready_mutate_unlock( last_size );
646 enable_interrupts( false ); // Don't poll, could be in main cluster
647
648 #if !defined(__CFA_NO_STATISTICS__)
649 if( 0 != this.print_stats ) {
650 __print_stats( this.stats, this.print_stats, "Cluster", this.name, (void*)&this );
651 }
652 #if defined(CFA_STATS_ARRAY)
653 __flush_stat( this.stats, "Cluster", &this );
654 #endif
655 free( this.stats );
656 #endif
657
658 unregister(this);
659}
660
661//=============================================================================================
662// Miscellaneous Initialization
663//=============================================================================================
664//-----------------------------------------------------------------------------
665// Global Queues
666static void doregister( cluster & cltr ) {
667 lock ( __cfa_dbg_global_clusters.lock __cfaabi_dbg_ctx2);
668 push_front( __cfa_dbg_global_clusters.list, cltr );
669 unlock ( __cfa_dbg_global_clusters.lock );
670}
671
672static void unregister( cluster & cltr ) {
673 lock ( __cfa_dbg_global_clusters.lock __cfaabi_dbg_ctx2);
674 remove( __cfa_dbg_global_clusters.list, cltr );
675 unlock( __cfa_dbg_global_clusters.lock );
676}
677
678void doregister( cluster * cltr, thread$ & thrd ) {
679 lock (cltr->thread_list_lock __cfaabi_dbg_ctx2);
680 cltr->nthreads += 1;
681 push_front(cltr->threads, thrd);
682 unlock (cltr->thread_list_lock);
683}
684
685void unregister( cluster * cltr, thread$ & thrd ) {
686 lock (cltr->thread_list_lock __cfaabi_dbg_ctx2);
687 remove(cltr->threads, thrd );
688 cltr->nthreads -= 1;
689 unlock(cltr->thread_list_lock);
690}
691
692static void register_tls( processor * this ) {
693 // Register and Lock the RWlock so no-one pushes/pops while we are changing the queue
694 uint_fast32_t last_size;
695 [this->unique_id, last_size] = ready_mutate_register();
696
697 this->rdq.cpu = __kernel_getcpu();
698
699 this->cltr->procs.total += 1u;
700 insert_last(this->cltr->procs.actives, *this);
701
702 // Adjust the ready queue size
703 ready_queue_grow( this->cltr );
704
705 // Unlock the RWlock
706 ready_mutate_unlock( last_size );
707}
708
709
710static void unregister_tls( processor * this ) {
711 // Lock the RWlock so no-one pushes/pops while we are changing the queue
712 uint_fast32_t last_size = ready_mutate_lock();
713 this->cltr->procs.total -= 1u;
714 remove(*this);
715
716 // clear the cluster so nothing gets pushed to local queues
717 cluster * cltr = this->cltr;
718 this->cltr = 0p;
719
720 // Adjust the ready queue size
721 ready_queue_shrink( cltr );
722
723 // Unlock the RWlock and unregister: we don't need the read_lock any more
724 ready_mutate_unregister( this->unique_id, last_size );
725}
726
727static void check( int ret, const char func[] ) {
728 if ( ret ) { // pthread routines return errno values
729 abort( "%s : internal error, error(%d) %s.", func, ret, strerror( ret ) );
730 } // if
731} // Abort
732
733void * __create_pthread( pthread_t * pthread, void * (*start)(void *), void * arg ) {
734 pthread_attr_t attr;
735
736 check( pthread_attr_init( &attr ), "pthread_attr_init" ); // initialize attribute
737
738 size_t stacksize = DEFAULT_STACK_SIZE;
739
740 void * stack;
741 #if CFA_PROCESSOR_USE_MMAP
742 stacksize = ceiling( stacksize, __page_size ) + __page_size;
743 stack = mmap(0p, stacksize, __map_prot, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
744 if(stack == ((void*)-1)) {
745 abort( "pthread stack creation : internal error, mmap failure, error(%d) %s.", errno, strerror( errno ) );
746 }
747 if ( mprotect( stack, __page_size, PROT_NONE ) == -1 ) {
748 abort( "pthread stack creation : internal error, mprotect failure, error(%d) %s.", errno, strerror( errno ) );
749 } // if
750 #else
751 __cfaabi_dbg_debug_do(
752 stack = memalign( __page_size, stacksize + __page_size );
753 // pthread has no mechanism to create the guard page in user supplied stack.
754 if ( mprotect( stack, __page_size, PROT_NONE ) == -1 ) {
755 abort( "mprotect : internal error, mprotect failure, error(%d) %s.", errno, strerror( errno ) );
756 } // if
757 );
758 __cfaabi_dbg_no_debug_do(
759 stack = malloc( stacksize );
760 );
761 #endif
762
763 check( pthread_attr_setstack( &attr, stack, stacksize ), "pthread_attr_setstack" );
764 check( pthread_create( pthread, &attr, start, arg ), "pthread_create" );
765 return stack;
766}
767
768void __destroy_pthread( pthread_t pthread, void * stack, void ** retval ) {
769 int err = pthread_join( pthread, retval );
770 if( err != 0 ) abort("KERNEL ERROR: joining pthread %p caused error %s\n", (void*)pthread, strerror(err));
771
772 #if CFA_PROCESSOR_USE_MMAP
773 pthread_attr_t attr;
774
775 check( pthread_attr_init( &attr ), "pthread_attr_init" ); // initialize attribute
776
777 size_t stacksize;
778 // default stack size, normally defined by shell limit
779 check( pthread_attr_getstacksize( &attr, &stacksize ), "pthread_attr_getstacksize" );
780 assert( stacksize >= PTHREAD_STACK_MIN );
781 stacksize += __page_size;
782
783 if(munmap(stack, stacksize) == -1) {
784 abort( "pthread stack destruction : internal error, munmap failure, error(%d) %s.", errno, strerror( errno ) );
785 }
786 #else
787 __cfaabi_dbg_debug_do(
788 // pthread has no mechanism to create the guard page in user supplied stack.
789 if ( mprotect( stack, __page_size, __map_prot ) == -1 ) {
790 abort( "mprotect : internal error, mprotect failure, error(%d) %s.", errno, strerror( errno ) );
791 } // if
792 );
793 free( stack );
794 #endif
795}
796
797#if defined(__CFA_WITH_VERIFY__)
798static bool verify_fwd_bck_rng(void) {
799 __cfaabi_tls.ready_rng.fwd_seed = 25214903917_l64u * (rdtscl() ^ (uintptr_t)&verify_fwd_bck_rng);
800
801 unsigned values[10];
802 for(i; 10) {
803 values[i] = __tls_rand_fwd();
804 }
805
806 __tls_rand_advance_bck();
807
808 for ( i; 9 -~= 0 ) {
809 if(values[i] != __tls_rand_bck()) {
810 return false;
811 }
812 }
813
814 return true;
815}
816#endif
Note: See TracBrowser for help on using the repository browser.