| 1 | // | 
|---|
| 2 | // Cforall Version 1.0.0 Copyright (C) 2022 University of Waterloo | 
|---|
| 3 | // | 
|---|
| 4 | // The contents of this file are covered under the licence agreement in the | 
|---|
| 5 | // file "LICENCE" distributed with Cforall. | 
|---|
| 6 | // | 
|---|
| 7 | // cluster.cfa -- file that includes helpers for subsystem that need cluster wide support | 
|---|
| 8 | // | 
|---|
| 9 | // Author           : Thierry Delisle | 
|---|
| 10 | // Created On       : Fri Mar 11 12:39:24 2022 | 
|---|
| 11 | // Last Modified By : | 
|---|
| 12 | // Last Modified On : | 
|---|
| 13 | // Update Count     : | 
|---|
| 14 | // | 
|---|
| 15 |  | 
|---|
| 16 | #define __cforall_thread__ | 
|---|
| 17 | #define _GNU_SOURCE | 
|---|
| 18 |  | 
|---|
| 19 | #include "bits/defs.hfa" | 
|---|
| 20 | #include "device/cpu.hfa" | 
|---|
| 21 | #include "kernel/cluster.hfa" | 
|---|
| 22 | #include "kernel/private.hfa" | 
|---|
| 23 |  | 
|---|
| 24 | #include "stdlib.hfa" | 
|---|
| 25 | #include "limits.hfa" | 
|---|
| 26 | #include "math.hfa" | 
|---|
| 27 |  | 
|---|
| 28 | #include "ready_subqueue.hfa" | 
|---|
| 29 | #include "io/types.hfa" | 
|---|
| 30 |  | 
|---|
| 31 | #include <errno.h> | 
|---|
| 32 | #include <unistd.h> | 
|---|
| 33 |  | 
|---|
| 34 | extern "C" { | 
|---|
| 35 | #include <sys/syscall.h>  // __NR_xxx | 
|---|
| 36 | } | 
|---|
| 37 |  | 
|---|
| 38 | // No overriden function, no environment variable, no define | 
|---|
| 39 | // fall back to a magic number | 
|---|
| 40 | #ifndef __CFA_MAX_PROCESSORS__ | 
|---|
| 41 | #define __CFA_MAX_PROCESSORS__ 1024 | 
|---|
| 42 | #endif | 
|---|
| 43 |  | 
|---|
| 44 | #if !defined(__CFA_NO_STATISTICS__) | 
|---|
| 45 | #define __STATS(...) __VA_ARGS__ | 
|---|
| 46 | #else | 
|---|
| 47 | #define __STATS(...) | 
|---|
| 48 | #endif | 
|---|
| 49 |  | 
|---|
| 50 | // returns the maximum number of processors the RWLock support | 
|---|
| 51 | __attribute__((weak)) unsigned __max_processors() libcfa_public { | 
|---|
| 52 | const char * max_cores_s = getenv("CFA_MAX_PROCESSORS"); | 
|---|
| 53 | if(!max_cores_s) { | 
|---|
| 54 | __cfadbg_print_nolock(ready_queue, "No CFA_MAX_PROCESSORS in ENV\n"); | 
|---|
| 55 | return __CFA_MAX_PROCESSORS__; | 
|---|
| 56 | } | 
|---|
| 57 |  | 
|---|
| 58 | char * endptr = 0p; | 
|---|
| 59 | long int max_cores_l = strtol(max_cores_s, &endptr, 10); | 
|---|
| 60 | if(max_cores_l < 1 || max_cores_l > 65535) { | 
|---|
| 61 | __cfadbg_print_nolock(ready_queue, "CFA_MAX_PROCESSORS out of range : %ld\n", max_cores_l); | 
|---|
| 62 | return __CFA_MAX_PROCESSORS__; | 
|---|
| 63 | } | 
|---|
| 64 | if('\0' != *endptr) { | 
|---|
| 65 | __cfadbg_print_nolock(ready_queue, "CFA_MAX_PROCESSORS not a decimal number : %s\n", max_cores_s); | 
|---|
| 66 | return __CFA_MAX_PROCESSORS__; | 
|---|
| 67 | } | 
|---|
| 68 |  | 
|---|
| 69 | return max_cores_l; | 
|---|
| 70 | } | 
|---|
| 71 |  | 
|---|
| 72 | #if   defined(CFA_HAVE_LINUX_LIBRSEQ) | 
|---|
| 73 | // No forward declaration needed | 
|---|
| 74 | #define __kernel_rseq_register rseq_register_current_thread | 
|---|
| 75 | #define __kernel_rseq_unregister rseq_unregister_current_thread | 
|---|
| 76 | #elif defined(CFA_HAVE_LINUX_RSEQ_H) | 
|---|
| 77 | static void __kernel_raw_rseq_register  (void); | 
|---|
| 78 | static void __kernel_raw_rseq_unregister(void); | 
|---|
| 79 |  | 
|---|
| 80 | #define __kernel_rseq_register __kernel_raw_rseq_register | 
|---|
| 81 | #define __kernel_rseq_unregister __kernel_raw_rseq_unregister | 
|---|
| 82 | #else | 
|---|
| 83 | // No forward declaration needed | 
|---|
| 84 | // No initialization needed | 
|---|
| 85 | static inline void noop(void) {} | 
|---|
| 86 |  | 
|---|
| 87 | #define __kernel_rseq_register noop | 
|---|
| 88 | #define __kernel_rseq_unregister noop | 
|---|
| 89 | #endif | 
|---|
| 90 |  | 
|---|
| 91 | //======================================================================= | 
|---|
| 92 | // Cluster wide reader-writer lock | 
|---|
| 93 | //======================================================================= | 
|---|
| 94 | void  ?{}(__scheduler_RWLock_t & this) { | 
|---|
| 95 | this.max   = __max_processors(); | 
|---|
| 96 | this.alloc = 0; | 
|---|
| 97 | this.ready = 0; | 
|---|
| 98 | this.data  = alloc(this.max); | 
|---|
| 99 | this.write_lock  = false; | 
|---|
| 100 |  | 
|---|
| 101 | /*paranoid*/ verify(__atomic_is_lock_free(sizeof(this.alloc), &this.alloc)); | 
|---|
| 102 | /*paranoid*/ verify(__atomic_is_lock_free(sizeof(this.ready), &this.ready)); | 
|---|
| 103 |  | 
|---|
| 104 | } | 
|---|
| 105 | void ^?{}(__scheduler_RWLock_t & this) { | 
|---|
| 106 | free(this.data); | 
|---|
| 107 | } | 
|---|
| 108 |  | 
|---|
| 109 |  | 
|---|
| 110 | //======================================================================= | 
|---|
| 111 | // Lock-Free registering/unregistering of threads | 
|---|
| 112 | unsigned register_proc_id( void ) with(*__scheduler_lock) { | 
|---|
| 113 | __kernel_rseq_register(); | 
|---|
| 114 |  | 
|---|
| 115 | bool * handle = (bool *)&kernelTLS().sched_lock; | 
|---|
| 116 |  | 
|---|
| 117 | // Step - 1 : check if there is already space in the data | 
|---|
| 118 | uint_fast32_t s = ready; | 
|---|
| 119 |  | 
|---|
| 120 | // Check among all the ready | 
|---|
| 121 | for(uint_fast32_t i = 0; i < s; i++) { | 
|---|
| 122 | bool * volatile * cell = (bool * volatile *)&data[i]; // Cforall is bugged and the double volatiles causes problems | 
|---|
| 123 | /* paranoid */ verify( handle != *cell ); | 
|---|
| 124 |  | 
|---|
| 125 | bool * null = 0p; // Re-write every loop since compare thrashes it | 
|---|
| 126 | if( __atomic_load_n(cell, (int)__ATOMIC_RELAXED) == null | 
|---|
| 127 | && __atomic_compare_exchange_n( cell, &null, handle, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST)) { | 
|---|
| 128 | /* paranoid */ verify(i < ready); | 
|---|
| 129 | /* paranoid */ verify( (kernelTLS().sched_id = i, true) ); | 
|---|
| 130 | return i; | 
|---|
| 131 | } | 
|---|
| 132 | } | 
|---|
| 133 |  | 
|---|
| 134 | if(max <= alloc) abort("Trying to create more than %ud processors", __scheduler_lock->max); | 
|---|
| 135 |  | 
|---|
| 136 | // Step - 2 : F&A to get a new spot in the array. | 
|---|
| 137 | uint_fast32_t n = __atomic_fetch_add(&alloc, 1, __ATOMIC_SEQ_CST); | 
|---|
| 138 | if(max <= n) abort("Trying to create more than %ud processors", __scheduler_lock->max); | 
|---|
| 139 |  | 
|---|
| 140 | // Step - 3 : Mark space as used and then publish it. | 
|---|
| 141 | data[n] = handle; | 
|---|
| 142 | while() { | 
|---|
| 143 | unsigned copy = n; | 
|---|
| 144 | if( __atomic_load_n(&ready, __ATOMIC_RELAXED) == n | 
|---|
| 145 | && __atomic_compare_exchange_n(&ready, ©, n + 1, true, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST)) | 
|---|
| 146 | break; | 
|---|
| 147 | Pause(); | 
|---|
| 148 | } | 
|---|
| 149 |  | 
|---|
| 150 | // Return new spot. | 
|---|
| 151 | /* paranoid */ verify(n < ready); | 
|---|
| 152 | /* paranoid */ verify( (kernelTLS().sched_id = n, true) ); | 
|---|
| 153 | return n; | 
|---|
| 154 | } | 
|---|
| 155 |  | 
|---|
| 156 | void unregister_proc_id( unsigned id ) with(*__scheduler_lock) { | 
|---|
| 157 | /* paranoid */ verify(id < ready); | 
|---|
| 158 | /* paranoid */ verify(id == kernelTLS().sched_id); | 
|---|
| 159 | /* paranoid */ verify(data[id] == &kernelTLS().sched_lock); | 
|---|
| 160 |  | 
|---|
| 161 | bool * volatile * cell = (bool * volatile *)&data[id]; // Cforall is bugged and the double volatiles causes problems | 
|---|
| 162 |  | 
|---|
| 163 | __atomic_store_n(cell, 0p, __ATOMIC_RELEASE); | 
|---|
| 164 |  | 
|---|
| 165 | __kernel_rseq_unregister(); | 
|---|
| 166 | } | 
|---|
| 167 |  | 
|---|
| 168 | //----------------------------------------------------------------------- | 
|---|
| 169 | // Writer side : acquire when changing the ready queue, e.g. adding more | 
|---|
| 170 | //  queues or removing them. | 
|---|
| 171 | uint_fast32_t ready_mutate_lock( void ) with(*__scheduler_lock) { | 
|---|
| 172 | /* paranoid */ verify( ! __preemption_enabled() ); | 
|---|
| 173 |  | 
|---|
| 174 | // Step 1 : lock global lock | 
|---|
| 175 | // It is needed to avoid processors that register mid Critical-Section | 
|---|
| 176 | //   to simply lock their own lock and enter. | 
|---|
| 177 | __atomic_acquire( &write_lock ); | 
|---|
| 178 |  | 
|---|
| 179 | // Make sure we won't deadlock ourself | 
|---|
| 180 | // Checking before acquiring the writer lock isn't safe | 
|---|
| 181 | // because someone else could have locked us. | 
|---|
| 182 | /* paranoid */ verify( ! kernelTLS().sched_lock ); | 
|---|
| 183 |  | 
|---|
| 184 | // Step 2 : lock per-proc lock | 
|---|
| 185 | // Processors that are currently being registered aren't counted | 
|---|
| 186 | //   but can't be in read_lock or in the critical section. | 
|---|
| 187 | // All other processors are counted | 
|---|
| 188 | uint_fast32_t s = ready; | 
|---|
| 189 | for(uint_fast32_t i = 0; i < s; i++) { | 
|---|
| 190 | volatile bool * llock = data[i]; | 
|---|
| 191 | if(llock) __atomic_acquire( llock ); | 
|---|
| 192 | } | 
|---|
| 193 |  | 
|---|
| 194 | /* paranoid */ verify( ! __preemption_enabled() ); | 
|---|
| 195 | return s; | 
|---|
| 196 | } | 
|---|
| 197 |  | 
|---|
| 198 | void ready_mutate_unlock( uint_fast32_t last_s ) with(*__scheduler_lock) { | 
|---|
| 199 | /* paranoid */ verify( ! __preemption_enabled() ); | 
|---|
| 200 |  | 
|---|
| 201 | // Step 1 : release local locks | 
|---|
| 202 | // This must be done while the global lock is held to avoid | 
|---|
| 203 | //   threads that where created mid critical section | 
|---|
| 204 | //   to race to lock their local locks and have the writer | 
|---|
| 205 | //   immidiately unlock them | 
|---|
| 206 | // Alternative solution : return s in write_lock and pass it to write_unlock | 
|---|
| 207 | for(uint_fast32_t i = 0; i < last_s; i++) { | 
|---|
| 208 | volatile bool * llock = data[i]; | 
|---|
| 209 | if(llock) __atomic_store_n(llock, (bool)false, __ATOMIC_RELEASE); | 
|---|
| 210 | } | 
|---|
| 211 |  | 
|---|
| 212 | // Step 2 : release global lock | 
|---|
| 213 | /*paranoid*/ assert(true == write_lock); | 
|---|
| 214 | __atomic_store_n(&write_lock, (bool)false, __ATOMIC_RELEASE); | 
|---|
| 215 |  | 
|---|
| 216 | /* paranoid */ verify( ! __preemption_enabled() ); | 
|---|
| 217 | } | 
|---|
| 218 |  | 
|---|
| 219 | //======================================================================= | 
|---|
| 220 | // Cluster growth | 
|---|
| 221 | static const unsigned __readyq_single_shard = 2; | 
|---|
| 222 |  | 
|---|
| 223 | //----------------------------------------------------------------------- | 
|---|
| 224 | // Check that all the intrusive queues in the data structure are still consistent | 
|---|
| 225 | static void check_readyQ( cluster * cltr ) with (cltr->sched) { | 
|---|
| 226 | #if defined(__CFA_WITH_VERIFY__) | 
|---|
| 227 | { | 
|---|
| 228 | const unsigned lanes_count = readyQ.count; | 
|---|
| 229 | for( idx ; lanes_count ) { | 
|---|
| 230 | __intrusive_lane_t & sl = readyQ.data[idx]; | 
|---|
| 231 | assert(!readyQ.data[idx].lock); | 
|---|
| 232 |  | 
|---|
| 233 | if(is_empty(sl)) { | 
|---|
| 234 | assert( sl.anchor.next == 0p ); | 
|---|
| 235 | assert( sl.anchor.ts   == MAX ); | 
|---|
| 236 | assert( mock_head(sl)  == sl.prev ); | 
|---|
| 237 | } else { | 
|---|
| 238 | assert( sl.anchor.next != 0p ); | 
|---|
| 239 | assert( sl.anchor.ts   != MAX ); | 
|---|
| 240 | assert( mock_head(sl)  != sl.prev ); | 
|---|
| 241 | } | 
|---|
| 242 | } | 
|---|
| 243 | } | 
|---|
| 244 | #endif | 
|---|
| 245 | } | 
|---|
| 246 |  | 
|---|
| 247 | // Call this function of the intrusive list was moved using memcpy | 
|---|
| 248 | // fixes the list so that the pointers back to anchors aren't left dangling | 
|---|
| 249 | static inline void fix(__intrusive_lane_t & ll) { | 
|---|
| 250 | if(is_empty(ll)) { | 
|---|
| 251 | verify(ll.anchor.next == 0p); | 
|---|
| 252 | ll.prev = mock_head(ll); | 
|---|
| 253 | } | 
|---|
| 254 | } | 
|---|
| 255 |  | 
|---|
| 256 | static void assign_list(unsigned & valrq, unsigned & valio, dlist(processor) & list, unsigned count) { | 
|---|
| 257 | processor * it = &list`first; | 
|---|
| 258 | for(unsigned i = 0; i < count; i++) { | 
|---|
| 259 | /* paranoid */ verifyf( it, "Unexpected null iterator, at index %u of %u\n", i, count); | 
|---|
| 260 | it->rdq.id = valrq; | 
|---|
| 261 | it->rdq.target = UINT_MAX; | 
|---|
| 262 | valrq += __shard_factor.readyq; | 
|---|
| 263 | #if defined(CFA_HAVE_LINUX_IO_URING_H) | 
|---|
| 264 | it->io.ctx->cq.id = valio; | 
|---|
| 265 | it->io.target = UINT_MAX; | 
|---|
| 266 | valio += __shard_factor.io; | 
|---|
| 267 | #endif | 
|---|
| 268 | it = &(*it)`next; | 
|---|
| 269 | } | 
|---|
| 270 | } | 
|---|
| 271 |  | 
|---|
| 272 | static void reassign_cltr_id(struct cluster * cltr) { | 
|---|
| 273 | unsigned prefrq = 0; | 
|---|
| 274 | unsigned prefio = 0; | 
|---|
| 275 | assign_list(prefrq, prefio, cltr->procs.actives, cltr->procs.total - cltr->procs.idle); | 
|---|
| 276 | assign_list(prefrq, prefio, cltr->procs.idles  , cltr->procs.idle ); | 
|---|
| 277 | } | 
|---|
| 278 |  | 
|---|
| 279 | #if defined(CFA_HAVE_LINUX_IO_URING_H) | 
|---|
| 280 | static void assign_io($io_context ** data, size_t count, dlist(processor) & list) { | 
|---|
| 281 | processor * it = &list`first; | 
|---|
| 282 | while(it) { | 
|---|
| 283 | /* paranoid */ verifyf( it, "Unexpected null iterator\n"); | 
|---|
| 284 | /* paranoid */ verifyf( it->io.ctx->cq.id < count, "Processor %p has id %u above count %zu\n", it, it->rdq.id, count); | 
|---|
| 285 | data[it->io.ctx->cq.id] = it->io.ctx; | 
|---|
| 286 | it = &(*it)`next; | 
|---|
| 287 | } | 
|---|
| 288 | } | 
|---|
| 289 |  | 
|---|
| 290 | static void reassign_cltr_io(struct cluster * cltr) { | 
|---|
| 291 | assign_io(cltr->sched.io.data, cltr->sched.io.count, cltr->procs.actives); | 
|---|
| 292 | assign_io(cltr->sched.io.data, cltr->sched.io.count, cltr->procs.idles  ); | 
|---|
| 293 | } | 
|---|
| 294 | #else | 
|---|
| 295 | static void reassign_cltr_io(struct cluster *) {} | 
|---|
| 296 | #endif | 
|---|
| 297 |  | 
|---|
| 298 | static void fix_times( __timestamp_t * volatile & tscs, unsigned count ) { | 
|---|
| 299 | tscs = alloc(count, tscs`realloc); | 
|---|
| 300 | for(i; count) { | 
|---|
| 301 | tscs[i].tv = rdtscl(); | 
|---|
| 302 | tscs[i].ma = 0; | 
|---|
| 303 | } | 
|---|
| 304 | } | 
|---|
| 305 |  | 
|---|
| 306 | // Grow the ready queue | 
|---|
| 307 | void ready_queue_grow(struct cluster * cltr) { | 
|---|
| 308 | int target = cltr->procs.total; | 
|---|
| 309 |  | 
|---|
| 310 | /* paranoid */ verify( ready_mutate_islocked() ); | 
|---|
| 311 | __cfadbg_print_safe(ready_queue, "Kernel : Growing ready queue\n"); | 
|---|
| 312 |  | 
|---|
| 313 | // Make sure that everything is consistent | 
|---|
| 314 | /* paranoid */ check_readyQ( cltr ); | 
|---|
| 315 |  | 
|---|
| 316 |  | 
|---|
| 317 | // Find new count | 
|---|
| 318 | // Make sure we always have atleast 1 list | 
|---|
| 319 | size_t ocount = cltr->sched.readyQ.count; | 
|---|
| 320 | size_t ncount = max(target * __shard_factor.readyq, __readyq_single_shard); | 
|---|
| 321 |  | 
|---|
| 322 | // Do we have to do anything? | 
|---|
| 323 | if( ocount != ncount ) { | 
|---|
| 324 |  | 
|---|
| 325 | // grow the ready queue | 
|---|
| 326 | with( cltr->sched ) { | 
|---|
| 327 |  | 
|---|
| 328 | // Allocate new array (uses realloc and memcpies the data) | 
|---|
| 329 | readyQ.data = alloc( ncount, readyQ.data`realloc ); | 
|---|
| 330 |  | 
|---|
| 331 | // Fix the moved data | 
|---|
| 332 | for( idx; ocount ) { | 
|---|
| 333 | fix(readyQ.data[idx]); | 
|---|
| 334 | } | 
|---|
| 335 |  | 
|---|
| 336 | // Construct new data | 
|---|
| 337 | for( idx; ocount ~ ncount) { | 
|---|
| 338 | (readyQ.data[idx]){}; | 
|---|
| 339 | } | 
|---|
| 340 |  | 
|---|
| 341 | // Update original count | 
|---|
| 342 | readyQ.count = ncount; | 
|---|
| 343 | } | 
|---|
| 344 |  | 
|---|
| 345 |  | 
|---|
| 346 | fix_times(cltr->sched.readyQ.tscs, cltr->sched.readyQ.count); | 
|---|
| 347 | } | 
|---|
| 348 |  | 
|---|
| 349 | // Fix the io times | 
|---|
| 350 | cltr->sched.io.count = target * __shard_factor.io; | 
|---|
| 351 | fix_times(cltr->sched.io.tscs, cltr->sched.io.count); | 
|---|
| 352 |  | 
|---|
| 353 | // realloc the caches | 
|---|
| 354 | cltr->sched.caches = alloc( target, cltr->sched.caches`realloc ); | 
|---|
| 355 |  | 
|---|
| 356 | // reassign the clusters. | 
|---|
| 357 | reassign_cltr_id(cltr); | 
|---|
| 358 |  | 
|---|
| 359 | cltr->sched.io.data = alloc( cltr->sched.io.count, cltr->sched.io.data`realloc ); | 
|---|
| 360 | reassign_cltr_io(cltr); | 
|---|
| 361 |  | 
|---|
| 362 | // Make sure that everything is consistent | 
|---|
| 363 | /* paranoid */ check_readyQ( cltr ); | 
|---|
| 364 | /* paranoid */ verify( (target == 0) == (cltr->sched.caches == 0p) ); | 
|---|
| 365 |  | 
|---|
| 366 | __cfadbg_print_safe(ready_queue, "Kernel : Growing ready queue done\n"); | 
|---|
| 367 |  | 
|---|
| 368 | /* paranoid */ verify( ready_mutate_islocked() ); | 
|---|
| 369 | } | 
|---|
| 370 |  | 
|---|
| 371 | // Shrink the ready queue | 
|---|
| 372 | void ready_queue_shrink(struct cluster * cltr) { | 
|---|
| 373 | /* paranoid */ verify( ready_mutate_islocked() ); | 
|---|
| 374 | __cfadbg_print_safe(ready_queue, "Kernel : Shrinking ready queue\n"); | 
|---|
| 375 |  | 
|---|
| 376 | // Make sure that everything is consistent | 
|---|
| 377 | /* paranoid */ check_readyQ( cltr ); | 
|---|
| 378 |  | 
|---|
| 379 | int target = cltr->procs.total; | 
|---|
| 380 |  | 
|---|
| 381 | with( cltr->sched ) { | 
|---|
| 382 | // Remember old count | 
|---|
| 383 | size_t ocount = readyQ.count; | 
|---|
| 384 |  | 
|---|
| 385 | // Find new count | 
|---|
| 386 | // Make sure we always have atleast 1 list | 
|---|
| 387 | size_t ncount = max(target * __shard_factor.readyq, __readyq_single_shard); | 
|---|
| 388 | /* paranoid */ verifyf( ocount >= ncount, "Error in shrinking size calculation, %zu >= %zu", ocount, ncount ); | 
|---|
| 389 | /* paranoid */ verifyf( ncount == target * __shard_factor.readyq || ncount == __readyq_single_shard, | 
|---|
| 390 | /* paranoid */          "Error in shrinking size calculation, expected %u or %u, got %zu", target * __shard_factor.readyq, __readyq_single_shard, ncount ); | 
|---|
| 391 |  | 
|---|
| 392 | readyQ.count = ncount; | 
|---|
| 393 |  | 
|---|
| 394 | // for printing count the number of displaced threads | 
|---|
| 395 | #if defined(__CFA_DEBUG_PRINT__) || defined(__CFA_DEBUG_PRINT_READY_QUEUE__) | 
|---|
| 396 | __attribute__((unused)) size_t displaced = 0; | 
|---|
| 397 | #endif | 
|---|
| 398 |  | 
|---|
| 399 | // redistribute old data | 
|---|
| 400 | for( idx; ncount ~ ocount) { | 
|---|
| 401 | // Lock is not strictly needed but makes checking invariants much easier | 
|---|
| 402 | __attribute__((unused)) bool locked = __atomic_try_acquire(&readyQ.data[idx].lock); | 
|---|
| 403 | verify(locked); | 
|---|
| 404 |  | 
|---|
| 405 | // As long as we can pop from this lane to push the threads somewhere else in the queue | 
|---|
| 406 | while(!is_empty(readyQ.data[idx])) { | 
|---|
| 407 | struct thread$ * thrd; | 
|---|
| 408 | unsigned long long _; | 
|---|
| 409 | [thrd, _] = pop(readyQ.data[idx]); | 
|---|
| 410 |  | 
|---|
| 411 | push(cltr, thrd, true); | 
|---|
| 412 |  | 
|---|
| 413 | // for printing count the number of displaced threads | 
|---|
| 414 | #if defined(__CFA_DEBUG_PRINT__) || defined(__CFA_DEBUG_PRINT_READY_QUEUE__) | 
|---|
| 415 | displaced++; | 
|---|
| 416 | #endif | 
|---|
| 417 | } | 
|---|
| 418 |  | 
|---|
| 419 | // Unlock the lane | 
|---|
| 420 | __atomic_unlock(&readyQ.data[idx].lock); | 
|---|
| 421 |  | 
|---|
| 422 | // TODO print the queue statistics here | 
|---|
| 423 |  | 
|---|
| 424 | ^(readyQ.data[idx]){}; | 
|---|
| 425 | } | 
|---|
| 426 |  | 
|---|
| 427 | __cfadbg_print_safe(ready_queue, "Kernel : Shrinking ready queue displaced %zu threads\n", displaced); | 
|---|
| 428 |  | 
|---|
| 429 | // Allocate new array (uses realloc and memcpies the data) | 
|---|
| 430 | readyQ.data = alloc( ncount, readyQ.data`realloc ); | 
|---|
| 431 |  | 
|---|
| 432 | // Fix the moved data | 
|---|
| 433 | for( idx; ncount ) { | 
|---|
| 434 | fix(readyQ.data[idx]); | 
|---|
| 435 | } | 
|---|
| 436 |  | 
|---|
| 437 | fix_times(readyQ.tscs, ncount); | 
|---|
| 438 | } | 
|---|
| 439 | cltr->sched.caches = alloc( target, cltr->sched.caches`realloc ); | 
|---|
| 440 |  | 
|---|
| 441 | // Fix the io times | 
|---|
| 442 | cltr->sched.io.count = target * __shard_factor.io; | 
|---|
| 443 | fix_times(cltr->sched.io.tscs, cltr->sched.io.count); | 
|---|
| 444 |  | 
|---|
| 445 | reassign_cltr_id(cltr); | 
|---|
| 446 |  | 
|---|
| 447 | cltr->sched.io.data = alloc( cltr->sched.io.count, cltr->sched.io.data`realloc ); | 
|---|
| 448 | reassign_cltr_io(cltr); | 
|---|
| 449 |  | 
|---|
| 450 | // Make sure that everything is consistent | 
|---|
| 451 | /* paranoid */ verify( (target == 0) == (cltr->sched.caches == 0p) ); | 
|---|
| 452 | /* paranoid */ check_readyQ( cltr ); | 
|---|
| 453 |  | 
|---|
| 454 | __cfadbg_print_safe(ready_queue, "Kernel : Shrinking ready queue done\n"); | 
|---|
| 455 | /* paranoid */ verify( ready_mutate_islocked() ); | 
|---|
| 456 | } | 
|---|
| 457 |  | 
|---|
| 458 | void ready_queue_close(struct cluster * cltr) { | 
|---|
| 459 | free( cltr->sched.readyQ.data ); | 
|---|
| 460 | free( cltr->sched.readyQ.tscs ); | 
|---|
| 461 | cltr->sched.readyQ.data = 0p; | 
|---|
| 462 | cltr->sched.readyQ.tscs = 0p; | 
|---|
| 463 | cltr->sched.readyQ.count = 0; | 
|---|
| 464 |  | 
|---|
| 465 | free( cltr->sched.io.tscs ); | 
|---|
| 466 | free( cltr->sched.caches ); | 
|---|
| 467 | } | 
|---|
| 468 |  | 
|---|
| 469 | // Ctor | 
|---|
| 470 | void ?{}( __intrusive_lane_t & this ) { | 
|---|
| 471 | this.lock = false; | 
|---|
| 472 | this.prev = mock_head(this); | 
|---|
| 473 | this.anchor.next = 0p; | 
|---|
| 474 | this.anchor.ts   = MAX; | 
|---|
| 475 | #if !defined(__CFA_NO_STATISTICS__) | 
|---|
| 476 | this.cnt  = 0; | 
|---|
| 477 | #endif | 
|---|
| 478 |  | 
|---|
| 479 | // We add a boat-load of assertions here because the anchor code is very fragile | 
|---|
| 480 | /* paranoid */ _Static_assert( offsetof( thread$, link ) == offsetof(__intrusive_lane_t, anchor) ); | 
|---|
| 481 | /* paranoid */ verify( offsetof( thread$, link ) == offsetof(__intrusive_lane_t, anchor) ); | 
|---|
| 482 | /* paranoid */ verify( ((uintptr_t)( mock_head(this) ) + offsetof( thread$, link )) == (uintptr_t)(&this.anchor) ); | 
|---|
| 483 | /* paranoid */ verify( &mock_head(this)->link.next == &this.anchor.next ); | 
|---|
| 484 | /* paranoid */ verify( &mock_head(this)->link.ts   == &this.anchor.ts   ); | 
|---|
| 485 | /* paranoid */ verify( mock_head(this)->link.next == 0p ); | 
|---|
| 486 | /* paranoid */ verify( mock_head(this)->link.ts   == MAX ); | 
|---|
| 487 | /* paranoid */ verify( mock_head(this) == this.prev ); | 
|---|
| 488 | /* paranoid */ verify( __alignof__(__intrusive_lane_t) == 128 ); | 
|---|
| 489 | /* paranoid */ verify( __alignof__(this) == 128 ); | 
|---|
| 490 | /* paranoid */ verifyf( ((intptr_t)(&this) % 128) == 0, "Expected address to be aligned %p %% 128 == %zd", &this, ((intptr_t)(&this) % 128) ); | 
|---|
| 491 | } | 
|---|
| 492 |  | 
|---|
| 493 | // Dtor is trivial | 
|---|
| 494 | void ^?{}( __intrusive_lane_t & this ) { | 
|---|
| 495 | // Make sure the list is empty | 
|---|
| 496 | /* paranoid */ verify( this.anchor.next == 0p ); | 
|---|
| 497 | /* paranoid */ verify( this.anchor.ts   == MAX ); | 
|---|
| 498 | /* paranoid */ verify( mock_head(this)  == this.prev ); | 
|---|
| 499 | } | 
|---|
| 500 |  | 
|---|
| 501 | #if   defined(CFA_HAVE_LINUX_LIBRSEQ) | 
|---|
| 502 | // No definition needed | 
|---|
| 503 | #elif defined(CFA_HAVE_LINUX_RSEQ_H) | 
|---|
| 504 |  | 
|---|
| 505 | #if defined( __x86_64 ) || defined( __i386 ) | 
|---|
| 506 | #define RSEQ_SIG        0x53053053 | 
|---|
| 507 | #elif defined( __ARM_ARCH ) | 
|---|
| 508 | #ifdef __ARMEB__ | 
|---|
| 509 | #define RSEQ_SIG    0xf3def5e7      /* udf    #24035    ; 0x5de3 (ARMv6+) */ | 
|---|
| 510 | #else | 
|---|
| 511 | #define RSEQ_SIG    0xe7f5def3      /* udf    #24035    ; 0x5de3 */ | 
|---|
| 512 | #endif | 
|---|
| 513 | #endif | 
|---|
| 514 |  | 
|---|
| 515 | extern void __disable_interrupts_hard(); | 
|---|
| 516 | extern void __enable_interrupts_hard(); | 
|---|
| 517 |  | 
|---|
| 518 | static void __kernel_raw_rseq_register  (void) { | 
|---|
| 519 | /* paranoid */ verify( __cfaabi_rseq.cpu_id == RSEQ_CPU_ID_UNINITIALIZED ); | 
|---|
| 520 |  | 
|---|
| 521 | // int ret = syscall(__NR_rseq, &__cfaabi_rseq, sizeof(struct rseq), 0, (sigset_t *)0p, _NSIG / 8); | 
|---|
| 522 | int ret = syscall(__NR_rseq, &__cfaabi_rseq, sizeof(struct rseq), 0, RSEQ_SIG); | 
|---|
| 523 | if(ret != 0) { | 
|---|
| 524 | int e = errno; | 
|---|
| 525 | switch(e) { | 
|---|
| 526 | case EINVAL: abort("KERNEL ERROR: rseq register invalid argument"); | 
|---|
| 527 | case ENOSYS: abort("KERNEL ERROR: rseq register no supported"); | 
|---|
| 528 | case EFAULT: abort("KERNEL ERROR: rseq register with invalid argument"); | 
|---|
| 529 | case EBUSY : abort("KERNEL ERROR: rseq register already registered"); | 
|---|
| 530 | case EPERM : abort("KERNEL ERROR: rseq register sig  argument  on unregistration does not match the signature received on registration"); | 
|---|
| 531 | default: abort("KERNEL ERROR: rseq register unexpected return %d", e); | 
|---|
| 532 | } | 
|---|
| 533 | } | 
|---|
| 534 | } | 
|---|
| 535 |  | 
|---|
| 536 | static void __kernel_raw_rseq_unregister(void) { | 
|---|
| 537 | /* paranoid */ verify( __cfaabi_rseq.cpu_id >= 0 ); | 
|---|
| 538 |  | 
|---|
| 539 | // int ret = syscall(__NR_rseq, &__cfaabi_rseq, sizeof(struct rseq), RSEQ_FLAG_UNREGISTER, (sigset_t *)0p, _NSIG / 8); | 
|---|
| 540 | int ret = syscall(__NR_rseq, &__cfaabi_rseq, sizeof(struct rseq), RSEQ_FLAG_UNREGISTER, RSEQ_SIG); | 
|---|
| 541 | if(ret != 0) { | 
|---|
| 542 | int e = errno; | 
|---|
| 543 | switch(e) { | 
|---|
| 544 | case EINVAL: abort("KERNEL ERROR: rseq unregister invalid argument"); | 
|---|
| 545 | case ENOSYS: abort("KERNEL ERROR: rseq unregister no supported"); | 
|---|
| 546 | case EFAULT: abort("KERNEL ERROR: rseq unregister with invalid argument"); | 
|---|
| 547 | case EBUSY : abort("KERNEL ERROR: rseq unregister already registered"); | 
|---|
| 548 | case EPERM : abort("KERNEL ERROR: rseq unregister sig  argument  on unregistration does not match the signature received on registration"); | 
|---|
| 549 | default: abort("KERNEL ERROR: rseq unregisteunexpected return %d", e); | 
|---|
| 550 | } | 
|---|
| 551 | } | 
|---|
| 552 | } | 
|---|
| 553 | #else | 
|---|
| 554 | // No definition needed | 
|---|
| 555 | #endif | 
|---|