| 1 | //
 | 
|---|
| 2 | // Cforall Version 1.0.0 Copyright (C) 2022 University of Waterloo
 | 
|---|
| 3 | //
 | 
|---|
| 4 | // The contents of this file are covered under the licence agreement in the
 | 
|---|
| 5 | // file "LICENCE" distributed with Cforall.
 | 
|---|
| 6 | //
 | 
|---|
| 7 | // cluster.cfa -- file that includes helpers for subsystem that need cluster wide support
 | 
|---|
| 8 | //
 | 
|---|
| 9 | // Author           : Thierry Delisle
 | 
|---|
| 10 | // Created On       : Fri Mar 11 12:39:24 2022
 | 
|---|
| 11 | // Last Modified By :
 | 
|---|
| 12 | // Last Modified On :
 | 
|---|
| 13 | // Update Count     :
 | 
|---|
| 14 | //
 | 
|---|
| 15 | 
 | 
|---|
| 16 | #define __cforall_thread__
 | 
|---|
| 17 | 
 | 
|---|
| 18 | #include "bits/defs.hfa"
 | 
|---|
| 19 | #include "device/cpu.hfa"
 | 
|---|
| 20 | #include "kernel/cluster.hfa"
 | 
|---|
| 21 | #include "kernel/private.hfa"
 | 
|---|
| 22 | 
 | 
|---|
| 23 | #include "stdlib.hfa"
 | 
|---|
| 24 | #include "limits.hfa"
 | 
|---|
| 25 | #include "math.hfa"
 | 
|---|
| 26 | 
 | 
|---|
| 27 | #include "ready_subqueue.hfa"
 | 
|---|
| 28 | #include "io/types.hfa"
 | 
|---|
| 29 | 
 | 
|---|
| 30 | #include <errno.h>
 | 
|---|
| 31 | #include <unistd.h>
 | 
|---|
| 32 | 
 | 
|---|
| 33 | extern "C" {
 | 
|---|
| 34 |         #include <sys/syscall.h>  // __NR_xxx
 | 
|---|
| 35 | }
 | 
|---|
| 36 | 
 | 
|---|
| 37 | // No overriden function, no environment variable, no define
 | 
|---|
| 38 | // fall back to a magic number
 | 
|---|
| 39 | #ifndef __CFA_MAX_PROCESSORS__
 | 
|---|
| 40 |         #define __CFA_MAX_PROCESSORS__ 1024
 | 
|---|
| 41 | #endif
 | 
|---|
| 42 | 
 | 
|---|
| 43 | #if !defined(__CFA_NO_STATISTICS__)
 | 
|---|
| 44 |         #define __STATS(...) __VA_ARGS__
 | 
|---|
| 45 | #else
 | 
|---|
| 46 |         #define __STATS(...)
 | 
|---|
| 47 | #endif
 | 
|---|
| 48 | 
 | 
|---|
| 49 | // returns the maximum number of processors the RWLock support
 | 
|---|
| 50 | __attribute__((weak)) unsigned __max_processors() libcfa_public {
 | 
|---|
| 51 |         const char * max_cores_s = getenv("CFA_MAX_PROCESSORS");
 | 
|---|
| 52 |         if(!max_cores_s) {
 | 
|---|
| 53 |                 __cfadbg_print_nolock(ready_queue, "No CFA_MAX_PROCESSORS in ENV\n");
 | 
|---|
| 54 |                 return __CFA_MAX_PROCESSORS__;
 | 
|---|
| 55 |         }
 | 
|---|
| 56 | 
 | 
|---|
| 57 |         char * endptr = 0p;
 | 
|---|
| 58 |         long int max_cores_l = strtol(max_cores_s, &endptr, 10);
 | 
|---|
| 59 |         if(max_cores_l < 1 || max_cores_l > 65535) {
 | 
|---|
| 60 |                 __cfadbg_print_nolock(ready_queue, "CFA_MAX_PROCESSORS out of range : %ld\n", max_cores_l);
 | 
|---|
| 61 |                 return __CFA_MAX_PROCESSORS__;
 | 
|---|
| 62 |         }
 | 
|---|
| 63 |         if('\0' != *endptr) {
 | 
|---|
| 64 |                 __cfadbg_print_nolock(ready_queue, "CFA_MAX_PROCESSORS not a decimal number : %s\n", max_cores_s);
 | 
|---|
| 65 |                 return __CFA_MAX_PROCESSORS__;
 | 
|---|
| 66 |         }
 | 
|---|
| 67 | 
 | 
|---|
| 68 |         return max_cores_l;
 | 
|---|
| 69 | }
 | 
|---|
| 70 | 
 | 
|---|
| 71 | //=======================================================================
 | 
|---|
| 72 | // Cluster wide reader-writer lock
 | 
|---|
| 73 | //=======================================================================
 | 
|---|
| 74 | void  ?{}(__scheduler_RWLock_t & this) {
 | 
|---|
| 75 |         this.lock.max   = __max_processors();
 | 
|---|
| 76 |         this.lock.alloc = 0;
 | 
|---|
| 77 |         this.lock.ready = 0;
 | 
|---|
| 78 |         this.lock.data  = alloc(this.lock.max);
 | 
|---|
| 79 |         this.lock.write_lock  = false;
 | 
|---|
| 80 | 
 | 
|---|
| 81 |         /*paranoid*/ verify(__atomic_is_lock_free(sizeof(this.lock.alloc), &this.lock.alloc));
 | 
|---|
| 82 |         /*paranoid*/ verify(__atomic_is_lock_free(sizeof(this.lock.ready), &this.lock.ready));
 | 
|---|
| 83 | 
 | 
|---|
| 84 | }
 | 
|---|
| 85 | void ^?{}(__scheduler_RWLock_t & this) {
 | 
|---|
| 86 |         free(this.lock.data);
 | 
|---|
| 87 | }
 | 
|---|
| 88 | 
 | 
|---|
| 89 | 
 | 
|---|
| 90 | //=======================================================================
 | 
|---|
| 91 | // Lock-Free registering/unregistering of threads
 | 
|---|
| 92 | unsigned register_proc_id( void ) with(__scheduler_lock.lock) {
 | 
|---|
| 93 |         bool * handle = (bool *)&kernelTLS().sched_lock;
 | 
|---|
| 94 | 
 | 
|---|
| 95 |         // Step - 1 : check if there is already space in the data
 | 
|---|
| 96 |         uint_fast32_t s = ready;
 | 
|---|
| 97 | 
 | 
|---|
| 98 |         // Check among all the ready
 | 
|---|
| 99 |         for(uint_fast32_t i = 0; i < s; i++) {
 | 
|---|
| 100 |                 bool * volatile * cell = (bool * volatile *)&data[i]; // Cforall is bugged and the double volatiles causes problems
 | 
|---|
| 101 |                 /* paranoid */ verify( handle != *cell );
 | 
|---|
| 102 | 
 | 
|---|
| 103 |                 bool * null = 0p; // Re-write every loop since compare thrashes it
 | 
|---|
| 104 |                 if( __atomic_load_n(cell, (int)__ATOMIC_RELAXED) == null
 | 
|---|
| 105 |                         && __atomic_compare_exchange_n( cell, &null, handle, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST)) {
 | 
|---|
| 106 |                         /* paranoid */ verify(i < ready);
 | 
|---|
| 107 |                         /* paranoid */ verify( (kernelTLS().sched_id = i, true) );
 | 
|---|
| 108 |                         return i;
 | 
|---|
| 109 |                 }
 | 
|---|
| 110 |         }
 | 
|---|
| 111 | 
 | 
|---|
| 112 |         if(max <= alloc) abort("Trying to create more than %ud processors", __scheduler_lock.lock.max);
 | 
|---|
| 113 | 
 | 
|---|
| 114 |         // Step - 2 : F&A to get a new spot in the array.
 | 
|---|
| 115 |         uint_fast32_t n = __atomic_fetch_add(&alloc, 1, __ATOMIC_SEQ_CST);
 | 
|---|
| 116 |         if(max <= n) abort("Trying to create more than %ud processors", __scheduler_lock.lock.max);
 | 
|---|
| 117 | 
 | 
|---|
| 118 |         // Step - 3 : Mark space as used and then publish it.
 | 
|---|
| 119 |         data[n] = handle;
 | 
|---|
| 120 |         while() {
 | 
|---|
| 121 |                 unsigned copy = n;
 | 
|---|
| 122 |                 if( __atomic_load_n(&ready, __ATOMIC_RELAXED) == n
 | 
|---|
| 123 |                         && __atomic_compare_exchange_n(&ready, ©, n + 1, true, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST))
 | 
|---|
| 124 |                         break;
 | 
|---|
| 125 |                 Pause();
 | 
|---|
| 126 |         }
 | 
|---|
| 127 | 
 | 
|---|
| 128 |         // Return new spot.
 | 
|---|
| 129 |         /* paranoid */ verify(n < ready);
 | 
|---|
| 130 |         /* paranoid */ verify( (kernelTLS().sched_id = n, true) );
 | 
|---|
| 131 |         return n;
 | 
|---|
| 132 | }
 | 
|---|
| 133 | 
 | 
|---|
| 134 | void unregister_proc_id( unsigned id ) with(__scheduler_lock.lock) {
 | 
|---|
| 135 |         /* paranoid */ verify(id < ready);
 | 
|---|
| 136 |         /* paranoid */ verify(id == kernelTLS().sched_id);
 | 
|---|
| 137 |         /* paranoid */ verify(data[id] == &kernelTLS().sched_lock);
 | 
|---|
| 138 | 
 | 
|---|
| 139 |         bool * volatile * cell = (bool * volatile *)&data[id]; // Cforall is bugged and the double volatiles causes problems
 | 
|---|
| 140 | 
 | 
|---|
| 141 |         __atomic_store_n(cell, 0p, __ATOMIC_RELEASE);
 | 
|---|
| 142 | }
 | 
|---|
| 143 | 
 | 
|---|
| 144 | //-----------------------------------------------------------------------
 | 
|---|
| 145 | // Writer side : acquire when changing the ready queue, e.g. adding more
 | 
|---|
| 146 | //  queues or removing them.
 | 
|---|
| 147 | uint_fast32_t ready_mutate_lock( void ) with(__scheduler_lock.lock) {
 | 
|---|
| 148 |         /* paranoid */ verify( ! __preemption_enabled() );
 | 
|---|
| 149 | 
 | 
|---|
| 150 |         // Step 1 : lock global lock
 | 
|---|
| 151 |         // It is needed to avoid processors that register mid Critical-Section
 | 
|---|
| 152 |         //   to simply lock their own lock and enter.
 | 
|---|
| 153 |         __atomic_acquire( &write_lock );
 | 
|---|
| 154 | 
 | 
|---|
| 155 |         // Make sure we won't deadlock ourself
 | 
|---|
| 156 |         // Checking before acquiring the writer lock isn't safe
 | 
|---|
| 157 |         // because someone else could have locked us.
 | 
|---|
| 158 |         /* paranoid */ verify( ! kernelTLS().sched_lock );
 | 
|---|
| 159 | 
 | 
|---|
| 160 |         // Step 2 : lock per-proc lock
 | 
|---|
| 161 |         // Processors that are currently being registered aren't counted
 | 
|---|
| 162 |         //   but can't be in read_lock or in the critical section.
 | 
|---|
| 163 |         // All other processors are counted
 | 
|---|
| 164 |         uint_fast32_t s = ready;
 | 
|---|
| 165 |         for(uint_fast32_t i = 0; i < s; i++) {
 | 
|---|
| 166 |                 volatile bool * llock = data[i];
 | 
|---|
| 167 |                 if(llock) __atomic_acquire( llock );
 | 
|---|
| 168 |         }
 | 
|---|
| 169 | 
 | 
|---|
| 170 |         /* paranoid */ verify( ! __preemption_enabled() );
 | 
|---|
| 171 |         return s;
 | 
|---|
| 172 | }
 | 
|---|
| 173 | 
 | 
|---|
| 174 | void ready_mutate_unlock( uint_fast32_t last_s ) with(__scheduler_lock.lock) {
 | 
|---|
| 175 |         /* paranoid */ verify( ! __preemption_enabled() );
 | 
|---|
| 176 | 
 | 
|---|
| 177 |         // Step 1 : release local locks
 | 
|---|
| 178 |         // This must be done while the global lock is held to avoid
 | 
|---|
| 179 |         //   threads that where created mid critical section
 | 
|---|
| 180 |         //   to race to lock their local locks and have the writer
 | 
|---|
| 181 |         //   immidiately unlock them
 | 
|---|
| 182 |         // Alternative solution : return s in write_lock and pass it to write_unlock
 | 
|---|
| 183 |         for(uint_fast32_t i = 0; i < last_s; i++) {
 | 
|---|
| 184 |                 volatile bool * llock = data[i];
 | 
|---|
| 185 |                 if(llock) __atomic_store_n(llock, (bool)false, __ATOMIC_RELEASE);
 | 
|---|
| 186 |         }
 | 
|---|
| 187 | 
 | 
|---|
| 188 |         // Step 2 : release global lock
 | 
|---|
| 189 |         /*paranoid*/ assert(true == write_lock);
 | 
|---|
| 190 |         __atomic_store_n(&write_lock, (bool)false, __ATOMIC_RELEASE);
 | 
|---|
| 191 | 
 | 
|---|
| 192 |         /* paranoid */ verify( ! __preemption_enabled() );
 | 
|---|
| 193 | }
 | 
|---|
| 194 | 
 | 
|---|
| 195 | //=======================================================================
 | 
|---|
| 196 | // Cluster growth
 | 
|---|
| 197 | static const unsigned __readyq_single_shard = 2;
 | 
|---|
| 198 | 
 | 
|---|
| 199 | void  ?{}(__timestamp_t & this) { this.t.tv = 0; this.t.ma = 0; }
 | 
|---|
| 200 | void ^?{}(__timestamp_t &) {}
 | 
|---|
| 201 | 
 | 
|---|
| 202 | //-----------------------------------------------------------------------
 | 
|---|
| 203 | // Check that all the intrusive queues in the data structure are still consistent
 | 
|---|
| 204 | static void check_readyQ( cluster * cltr ) with (cltr->sched) {
 | 
|---|
| 205 |         #if defined(__CFA_WITH_VERIFY__)
 | 
|---|
| 206 |                 {
 | 
|---|
| 207 |                         const unsigned lanes_count = readyQ.count;
 | 
|---|
| 208 |                         for( idx ; lanes_count ) {
 | 
|---|
| 209 |                                 __intrusive_lane_t & sl = readyQ.data[idx];
 | 
|---|
| 210 |                                 assert(!readyQ.data[idx].l.lock);
 | 
|---|
| 211 | 
 | 
|---|
| 212 |                                         if(is_empty(sl)) {
 | 
|---|
| 213 |                                                 assert( sl.l.anchor.next == 0p );
 | 
|---|
| 214 |                                                 assert( sl.l.anchor.ts   == MAX );
 | 
|---|
| 215 |                                                 assert( mock_head(sl)  == sl.l.prev );
 | 
|---|
| 216 |                                         } else {
 | 
|---|
| 217 |                                                 assert( sl.l.anchor.next != 0p );
 | 
|---|
| 218 |                                                 assert( sl.l.anchor.ts   != MAX );
 | 
|---|
| 219 |                                                 assert( mock_head(sl)  != sl.l.prev );
 | 
|---|
| 220 |                                         }
 | 
|---|
| 221 |                         }
 | 
|---|
| 222 |                 }
 | 
|---|
| 223 |         #endif
 | 
|---|
| 224 | }
 | 
|---|
| 225 | 
 | 
|---|
| 226 | // Call this function of the intrusive list was moved using memcpy
 | 
|---|
| 227 | // fixes the list so that the pointers back to anchors aren't left dangling
 | 
|---|
| 228 | static inline void fix(__intrusive_lane_t & ll) {
 | 
|---|
| 229 |         if(is_empty(ll)) {
 | 
|---|
| 230 |                 verify(ll.l.anchor.next == 0p);
 | 
|---|
| 231 |                 ll.l.prev = mock_head(ll);
 | 
|---|
| 232 |         }
 | 
|---|
| 233 | }
 | 
|---|
| 234 | 
 | 
|---|
| 235 | static void assign_list(unsigned & valrq, unsigned & valio, dlist(struct processor) & list, unsigned count) {
 | 
|---|
| 236 |         struct processor * it = &list`first;
 | 
|---|
| 237 |         for(unsigned i = 0; i < count; i++) {
 | 
|---|
| 238 |                 /* paranoid */ verifyf( it, "Unexpected null iterator, at index %u of %u\n", i, count);
 | 
|---|
| 239 |                 it->rdq.id = valrq;
 | 
|---|
| 240 |                 it->rdq.target = UINT_MAX;
 | 
|---|
| 241 |                 valrq += __shard_factor.readyq;
 | 
|---|
| 242 |                 #if defined(CFA_HAVE_LINUX_IO_URING_H)
 | 
|---|
| 243 |                         it->io.ctx->cq.id = valio;
 | 
|---|
| 244 |                         it->io.target = UINT_MAX;
 | 
|---|
| 245 |                         valio += __shard_factor.io;
 | 
|---|
| 246 |                 #endif
 | 
|---|
| 247 |                 it = &(*it)`next;
 | 
|---|
| 248 |         }
 | 
|---|
| 249 | }
 | 
|---|
| 250 | 
 | 
|---|
| 251 | static void reassign_cltr_id(struct cluster * cltr) {
 | 
|---|
| 252 |         unsigned prefrq = 0;
 | 
|---|
| 253 |         unsigned prefio = 0;
 | 
|---|
| 254 |         assign_list(prefrq, prefio, cltr->procs.actives, cltr->procs.total - cltr->procs.idle);
 | 
|---|
| 255 |         assign_list(prefrq, prefio, cltr->procs.idles  , cltr->procs.idle );
 | 
|---|
| 256 | }
 | 
|---|
| 257 | 
 | 
|---|
| 258 | #if defined(CFA_HAVE_LINUX_IO_URING_H)
 | 
|---|
| 259 |         static void assign_io(io_context$ ** data, size_t count, dlist(struct processor) & list) {
 | 
|---|
| 260 |                 struct processor * it = &list`first;
 | 
|---|
| 261 |                 while(it) {
 | 
|---|
| 262 |                         /* paranoid */ verifyf( it, "Unexpected null iterator\n");
 | 
|---|
| 263 |                         /* paranoid */ verifyf( it->io.ctx->cq.id < count, "Processor %p has id %u above count %zu\n", it, it->rdq.id, count);
 | 
|---|
| 264 |                         data[it->io.ctx->cq.id] = it->io.ctx;
 | 
|---|
| 265 |                         it = &(*it)`next;
 | 
|---|
| 266 |                 }
 | 
|---|
| 267 |         }
 | 
|---|
| 268 | 
 | 
|---|
| 269 |         static void reassign_cltr_io(struct cluster * cltr) {
 | 
|---|
| 270 |                 assign_io(cltr->sched.io.data, cltr->sched.io.count, cltr->procs.actives);
 | 
|---|
| 271 |                 assign_io(cltr->sched.io.data, cltr->sched.io.count, cltr->procs.idles  );
 | 
|---|
| 272 |         }
 | 
|---|
| 273 | #else
 | 
|---|
| 274 |         static void reassign_cltr_io(struct cluster *) {}
 | 
|---|
| 275 | #endif
 | 
|---|
| 276 | 
 | 
|---|
| 277 | static void fix_times( __timestamp_t * volatile & tscs, unsigned count ) {
 | 
|---|
| 278 |         tscs = alloc(count, tscs`realloc);
 | 
|---|
| 279 |         for(i; count) {
 | 
|---|
| 280 |                 tscs[i].t.tv = rdtscl();
 | 
|---|
| 281 |                 tscs[i].t.ma = 0;
 | 
|---|
| 282 |         }
 | 
|---|
| 283 | }
 | 
|---|
| 284 | 
 | 
|---|
| 285 | // Grow the ready queue
 | 
|---|
| 286 | void ready_queue_grow(struct cluster * cltr) {
 | 
|---|
| 287 |         int target = cltr->procs.total;
 | 
|---|
| 288 | 
 | 
|---|
| 289 |         /* paranoid */ verify( ready_mutate_islocked() );
 | 
|---|
| 290 |         __cfadbg_print_safe(ready_queue, "Kernel : Growing ready queue\n");
 | 
|---|
| 291 | 
 | 
|---|
| 292 |         // Make sure that everything is consistent
 | 
|---|
| 293 |         /* paranoid */ check_readyQ( cltr );
 | 
|---|
| 294 | 
 | 
|---|
| 295 | 
 | 
|---|
| 296 |         // Find new count
 | 
|---|
| 297 |         // Make sure we always have atleast 1 list
 | 
|---|
| 298 |         size_t ocount = cltr->sched.readyQ.count;
 | 
|---|
| 299 |         size_t ncount = max(target * __shard_factor.readyq, __readyq_single_shard);
 | 
|---|
| 300 | 
 | 
|---|
| 301 |         // Do we have to do anything?
 | 
|---|
| 302 |         if( ocount != ncount ) {
 | 
|---|
| 303 | 
 | 
|---|
| 304 |                 // grow the ready queue
 | 
|---|
| 305 |                 with( cltr->sched ) {
 | 
|---|
| 306 | 
 | 
|---|
| 307 |                         // Allocate new array (uses realloc and memcpies the data)
 | 
|---|
| 308 |                         readyQ.data = alloc( ncount, readyQ.data`realloc );
 | 
|---|
| 309 | 
 | 
|---|
| 310 |                         // Fix the moved data
 | 
|---|
| 311 |                         for( idx; ocount ) {
 | 
|---|
| 312 |                                 fix(readyQ.data[idx]);
 | 
|---|
| 313 |                         }
 | 
|---|
| 314 | 
 | 
|---|
| 315 |                         // Construct new data
 | 
|---|
| 316 |                         for( idx; ocount ~ ncount) {
 | 
|---|
| 317 |                                 (readyQ.data[idx]){};
 | 
|---|
| 318 |                         }
 | 
|---|
| 319 | 
 | 
|---|
| 320 |                         // Update original count
 | 
|---|
| 321 |                         readyQ.count = ncount;
 | 
|---|
| 322 |                 }
 | 
|---|
| 323 | 
 | 
|---|
| 324 | 
 | 
|---|
| 325 |                 fix_times(cltr->sched.readyQ.tscs, cltr->sched.readyQ.count);
 | 
|---|
| 326 |         }
 | 
|---|
| 327 | 
 | 
|---|
| 328 |         // Fix the io times
 | 
|---|
| 329 |         cltr->sched.io.count = target * __shard_factor.io;
 | 
|---|
| 330 |         fix_times(cltr->sched.io.tscs, cltr->sched.io.count);
 | 
|---|
| 331 | 
 | 
|---|
| 332 |         // realloc the caches
 | 
|---|
| 333 |         cltr->sched.caches = alloc( target, cltr->sched.caches`realloc );
 | 
|---|
| 334 | 
 | 
|---|
| 335 |         // reassign the clusters.
 | 
|---|
| 336 |         reassign_cltr_id(cltr);
 | 
|---|
| 337 | 
 | 
|---|
| 338 |         cltr->sched.io.data = alloc( cltr->sched.io.count, cltr->sched.io.data`realloc );
 | 
|---|
| 339 |         reassign_cltr_io(cltr);
 | 
|---|
| 340 | 
 | 
|---|
| 341 |         // Make sure that everything is consistent
 | 
|---|
| 342 |         /* paranoid */ check_readyQ( cltr );
 | 
|---|
| 343 | //      /* paranoid */ verify( (target == 0) == (cltr->sched.caches == 0p) );
 | 
|---|
| 344 | 
 | 
|---|
| 345 |         __cfadbg_print_safe(ready_queue, "Kernel : Growing ready queue done\n");
 | 
|---|
| 346 | 
 | 
|---|
| 347 |         /* paranoid */ verify( ready_mutate_islocked() );
 | 
|---|
| 348 | }
 | 
|---|
| 349 | 
 | 
|---|
| 350 | // Shrink the ready queue
 | 
|---|
| 351 | void ready_queue_shrink(struct cluster * cltr) {
 | 
|---|
| 352 |         /* paranoid */ verify( ready_mutate_islocked() );
 | 
|---|
| 353 |         __cfadbg_print_safe(ready_queue, "Kernel : Shrinking ready queue\n");
 | 
|---|
| 354 | 
 | 
|---|
| 355 |         // Make sure that everything is consistent
 | 
|---|
| 356 |         /* paranoid */ check_readyQ( cltr );
 | 
|---|
| 357 | 
 | 
|---|
| 358 |         int target = cltr->procs.total;
 | 
|---|
| 359 | 
 | 
|---|
| 360 |         with( cltr->sched ) {
 | 
|---|
| 361 |                 // Remember old count
 | 
|---|
| 362 |                 size_t ocount = readyQ.count;
 | 
|---|
| 363 | 
 | 
|---|
| 364 |                 // Find new count
 | 
|---|
| 365 |                 // Make sure we always have atleast 1 list
 | 
|---|
| 366 |                 size_t ncount = max(target * __shard_factor.readyq, __readyq_single_shard);
 | 
|---|
| 367 |                 /* paranoid */ verifyf( ocount >= ncount, "Error in shrinking size calculation, %zu >= %zu", ocount, ncount );
 | 
|---|
| 368 |                 /* paranoid */ verifyf( ncount == target * __shard_factor.readyq || ncount == __readyq_single_shard,
 | 
|---|
| 369 |                 /* paranoid */          "Error in shrinking size calculation, expected %u or %u, got %zu", target * __shard_factor.readyq, __readyq_single_shard, ncount );
 | 
|---|
| 370 | 
 | 
|---|
| 371 |                 readyQ.count = ncount;
 | 
|---|
| 372 | 
 | 
|---|
| 373 |                 // for printing count the number of displaced threads
 | 
|---|
| 374 |                 #if defined(__CFA_DEBUG_PRINT__) || defined(__CFA_DEBUG_PRINT_READY_QUEUE__)
 | 
|---|
| 375 |                         __attribute__((unused)) size_t displaced = 0;
 | 
|---|
| 376 |                 #endif
 | 
|---|
| 377 | 
 | 
|---|
| 378 |                 // redistribute old data
 | 
|---|
| 379 |                 for( idx; ncount ~ ocount) {
 | 
|---|
| 380 |                         // Lock is not strictly needed but makes checking invariants much easier
 | 
|---|
| 381 |                         __attribute__((unused)) bool locked = __atomic_try_acquire(&readyQ.data[idx].l.lock);
 | 
|---|
| 382 |                         verify(locked);
 | 
|---|
| 383 | 
 | 
|---|
| 384 |                         // As long as we can pop from this lane to push the threads somewhere else in the queue
 | 
|---|
| 385 |                         while(!is_empty(readyQ.data[idx])) {
 | 
|---|
| 386 |                                 struct thread$ * thrd;
 | 
|---|
| 387 |                                 unsigned long long _;
 | 
|---|
| 388 |                                 [thrd, _] = pop(readyQ.data[idx]);
 | 
|---|
| 389 | 
 | 
|---|
| 390 |                                 push(cltr, thrd, true);
 | 
|---|
| 391 | 
 | 
|---|
| 392 |                                 // for printing count the number of displaced threads
 | 
|---|
| 393 |                                 #if defined(__CFA_DEBUG_PRINT__) || defined(__CFA_DEBUG_PRINT_READY_QUEUE__)
 | 
|---|
| 394 |                                         displaced++;
 | 
|---|
| 395 |                                 #endif
 | 
|---|
| 396 |                         }
 | 
|---|
| 397 | 
 | 
|---|
| 398 |                         // Unlock the lane
 | 
|---|
| 399 |                         __atomic_unlock(&readyQ.data[idx].l.lock);
 | 
|---|
| 400 | 
 | 
|---|
| 401 |                         // TODO print the queue statistics here
 | 
|---|
| 402 | 
 | 
|---|
| 403 |                         ^(readyQ.data[idx]){};
 | 
|---|
| 404 |                 }
 | 
|---|
| 405 | 
 | 
|---|
| 406 |                 __cfadbg_print_safe(ready_queue, "Kernel : Shrinking ready queue displaced %zu threads\n", displaced);
 | 
|---|
| 407 | 
 | 
|---|
| 408 |                 // Allocate new array (uses realloc and memcpies the data)
 | 
|---|
| 409 |                 readyQ.data = alloc( ncount, readyQ.data`realloc );
 | 
|---|
| 410 | 
 | 
|---|
| 411 |                 // Fix the moved data
 | 
|---|
| 412 |                 for( idx; ncount ) {
 | 
|---|
| 413 |                         fix(readyQ.data[idx]);
 | 
|---|
| 414 |                 }
 | 
|---|
| 415 | 
 | 
|---|
| 416 |                 fix_times(readyQ.tscs, ncount);
 | 
|---|
| 417 |         }
 | 
|---|
| 418 | 
 | 
|---|
| 419 |         cltr->sched.caches = alloc( target, cltr->sched.caches`realloc );
 | 
|---|
| 420 | 
 | 
|---|
| 421 |         // Fix the io times
 | 
|---|
| 422 |         cltr->sched.io.count = target * __shard_factor.io;
 | 
|---|
| 423 |         fix_times(cltr->sched.io.tscs, cltr->sched.io.count);
 | 
|---|
| 424 | 
 | 
|---|
| 425 |         reassign_cltr_id(cltr);
 | 
|---|
| 426 | 
 | 
|---|
| 427 |         cltr->sched.io.data = alloc( cltr->sched.io.count, cltr->sched.io.data`realloc );
 | 
|---|
| 428 |         reassign_cltr_io(cltr);
 | 
|---|
| 429 | 
 | 
|---|
| 430 |         // Make sure that everything is consistent
 | 
|---|
| 431 | //      /* paranoid */ verify( (target == 0) == (cltr->sched.caches == 0p) );
 | 
|---|
| 432 |         /* paranoid */ check_readyQ( cltr );
 | 
|---|
| 433 | 
 | 
|---|
| 434 |         __cfadbg_print_safe(ready_queue, "Kernel : Shrinking ready queue done\n");
 | 
|---|
| 435 |         /* paranoid */ verify( ready_mutate_islocked() );
 | 
|---|
| 436 | }
 | 
|---|
| 437 | 
 | 
|---|
| 438 | void ready_queue_close(struct cluster * cltr) {
 | 
|---|
| 439 |         free( cltr->sched.readyQ.data );
 | 
|---|
| 440 |         free( cltr->sched.readyQ.tscs );
 | 
|---|
| 441 |         cltr->sched.readyQ.data = 0p;
 | 
|---|
| 442 |         cltr->sched.readyQ.tscs = 0p;
 | 
|---|
| 443 |         cltr->sched.readyQ.count = 0;
 | 
|---|
| 444 | 
 | 
|---|
| 445 |         free( cltr->sched.io.tscs );
 | 
|---|
| 446 |         free( cltr->sched.caches );
 | 
|---|
| 447 | }
 | 
|---|
| 448 | 
 | 
|---|
| 449 | #define nested_offsetof(type, field) ((off_t)(&(((type*)0)-> field)))
 | 
|---|
| 450 | 
 | 
|---|
| 451 | // Ctor
 | 
|---|
| 452 | void ?{}( __intrusive_lane_t & this ) {
 | 
|---|
| 453 |         this.l.lock = false;
 | 
|---|
| 454 |         this.l.prev = mock_head(this);
 | 
|---|
| 455 |         this.l.anchor.next = 0p;
 | 
|---|
| 456 |         this.l.anchor.ts   = MAX;
 | 
|---|
| 457 |         #if !defined(__CFA_NO_STATISTICS__)
 | 
|---|
| 458 |                 this.l.cnt  = 0;
 | 
|---|
| 459 |         #endif
 | 
|---|
| 460 | 
 | 
|---|
| 461 |         // We add a boat-load of assertions here because the anchor code is very fragile
 | 
|---|
| 462 |         /* paranoid */ _Static_assert( offsetof( thread$, rdy_link ) == nested_offsetof(__intrusive_lane_t, l.anchor) );
 | 
|---|
| 463 |         /* paranoid */ verify( offsetof( thread$, rdy_link ) == nested_offsetof(__intrusive_lane_t, l.anchor) );
 | 
|---|
| 464 |         /* paranoid */ verify( ((uintptr_t)( mock_head(this) ) + offsetof( thread$, rdy_link )) == (uintptr_t)(&this.l.anchor) );
 | 
|---|
| 465 |         /* paranoid */ verify( &mock_head(this)->rdy_link.next == &this.l.anchor.next );
 | 
|---|
| 466 |         /* paranoid */ verify( &mock_head(this)->rdy_link.ts   == &this.l.anchor.ts   );
 | 
|---|
| 467 |         /* paranoid */ verify( mock_head(this)->rdy_link.next == 0p );
 | 
|---|
| 468 |         /* paranoid */ verify( mock_head(this)->rdy_link.ts   == MAX );
 | 
|---|
| 469 |         /* paranoid */ verify( mock_head(this) == this.l.prev );
 | 
|---|
| 470 |         /* paranoid */ verify( __alignof__(__intrusive_lane_t) == 64 );
 | 
|---|
| 471 |         /* paranoid */ verify( __alignof__(this) == 64 );
 | 
|---|
| 472 |         /* paranoid */ verifyf( ((intptr_t)(&this) % 64) == 0, "Expected address to be aligned %p %% 64 == %zd", &this, ((intptr_t)(&this) % 64) );
 | 
|---|
| 473 | }
 | 
|---|
| 474 | 
 | 
|---|
| 475 | #undef nested_offsetof
 | 
|---|
| 476 | 
 | 
|---|
| 477 | // Dtor is trivial
 | 
|---|
| 478 | void ^?{}( __intrusive_lane_t & this ) {
 | 
|---|
| 479 |         // Make sure the list is empty
 | 
|---|
| 480 |         /* paranoid */ verify( this.l.anchor.next == 0p );
 | 
|---|
| 481 |         /* paranoid */ verify( this.l.anchor.ts   == MAX );
 | 
|---|
| 482 |         /* paranoid */ verify( mock_head(this)    == this.l.prev );
 | 
|---|
| 483 | }
 | 
|---|