1 | // |
---|
2 | // Cforall Version 1.0.0 Copyright (C) 2022 University of Waterloo |
---|
3 | // |
---|
4 | // The contents of this file are covered under the licence agreement in the |
---|
5 | // file "LICENCE" distributed with Cforall. |
---|
6 | // |
---|
7 | // cluster.cfa -- file that includes helpers for subsystem that need cluster wide support |
---|
8 | // |
---|
9 | // Author : Thierry Delisle |
---|
10 | // Created On : Fri Mar 11 12:39:24 2022 |
---|
11 | // Last Modified By : |
---|
12 | // Last Modified On : |
---|
13 | // Update Count : |
---|
14 | // |
---|
15 | |
---|
16 | #define __cforall_thread__ |
---|
17 | |
---|
18 | #include "bits/defs.hfa" |
---|
19 | #include "device/cpu.hfa" |
---|
20 | #include "kernel/cluster.hfa" |
---|
21 | #include "kernel/private.hfa" |
---|
22 | |
---|
23 | #include "stdlib.hfa" |
---|
24 | #include "limits.hfa" |
---|
25 | #include "math.hfa" |
---|
26 | |
---|
27 | #include "ready_subqueue.hfa" |
---|
28 | #include "io/types.hfa" |
---|
29 | |
---|
30 | #include <errno.h> |
---|
31 | #include <unistd.h> |
---|
32 | |
---|
33 | extern "C" { |
---|
34 | #include <sys/syscall.h> // __NR_xxx |
---|
35 | } |
---|
36 | |
---|
37 | // No overriden function, no environment variable, no define |
---|
38 | // fall back to a magic number |
---|
39 | #ifndef __CFA_MAX_PROCESSORS__ |
---|
40 | #define __CFA_MAX_PROCESSORS__ 1024 |
---|
41 | #endif |
---|
42 | |
---|
43 | #if !defined(__CFA_NO_STATISTICS__) |
---|
44 | #define __STATS(...) __VA_ARGS__ |
---|
45 | #else |
---|
46 | #define __STATS(...) |
---|
47 | #endif |
---|
48 | |
---|
49 | // returns the maximum number of processors the RWLock support |
---|
50 | __attribute__((weak)) unsigned __max_processors() libcfa_public { |
---|
51 | const char * max_cores_s = getenv("CFA_MAX_PROCESSORS"); |
---|
52 | if(!max_cores_s) { |
---|
53 | __cfadbg_print_nolock(ready_queue, "No CFA_MAX_PROCESSORS in ENV\n"); |
---|
54 | return __CFA_MAX_PROCESSORS__; |
---|
55 | } |
---|
56 | |
---|
57 | char * endptr = 0p; |
---|
58 | long int max_cores_l = strtol(max_cores_s, &endptr, 10); |
---|
59 | if(max_cores_l < 1 || max_cores_l > 65535) { |
---|
60 | __cfadbg_print_nolock(ready_queue, "CFA_MAX_PROCESSORS out of range : %ld\n", max_cores_l); |
---|
61 | return __CFA_MAX_PROCESSORS__; |
---|
62 | } |
---|
63 | if('\0' != *endptr) { |
---|
64 | __cfadbg_print_nolock(ready_queue, "CFA_MAX_PROCESSORS not a decimal number : %s\n", max_cores_s); |
---|
65 | return __CFA_MAX_PROCESSORS__; |
---|
66 | } |
---|
67 | |
---|
68 | return max_cores_l; |
---|
69 | } |
---|
70 | |
---|
71 | //======================================================================= |
---|
72 | // Cluster wide reader-writer lock |
---|
73 | //======================================================================= |
---|
74 | void ?{}(__scheduler_RWLock_t & this) { |
---|
75 | this.lock.max = __max_processors(); |
---|
76 | this.lock.alloc = 0; |
---|
77 | this.lock.ready = 0; |
---|
78 | this.lock.data = alloc(this.lock.max); |
---|
79 | this.lock.write_lock = false; |
---|
80 | |
---|
81 | /*paranoid*/ verify(__atomic_is_lock_free(sizeof(this.lock.alloc), &this.lock.alloc)); |
---|
82 | /*paranoid*/ verify(__atomic_is_lock_free(sizeof(this.lock.ready), &this.lock.ready)); |
---|
83 | |
---|
84 | } |
---|
85 | void ^?{}(__scheduler_RWLock_t & this) { |
---|
86 | free(this.lock.data); |
---|
87 | } |
---|
88 | |
---|
89 | |
---|
90 | //======================================================================= |
---|
91 | // Lock-Free registering/unregistering of threads |
---|
92 | unsigned register_proc_id( void ) with(__scheduler_lock.lock) { |
---|
93 | bool * handle = (bool *)&kernelTLS().sched_lock; |
---|
94 | |
---|
95 | // Step - 1 : check if there is already space in the data |
---|
96 | uint_fast32_t s = ready; |
---|
97 | |
---|
98 | // Check among all the ready |
---|
99 | for(uint_fast32_t i = 0; i < s; i++) { |
---|
100 | bool * volatile * cell = (bool * volatile *)&data[i]; // Cforall is bugged and the double volatiles causes problems |
---|
101 | /* paranoid */ verify( handle != *cell ); |
---|
102 | |
---|
103 | bool * null = 0p; // Re-write every loop since compare thrashes it |
---|
104 | if( __atomic_load_n(cell, (int)__ATOMIC_RELAXED) == null |
---|
105 | && __atomic_compare_exchange_n( cell, &null, handle, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST)) { |
---|
106 | /* paranoid */ verify(i < ready); |
---|
107 | /* paranoid */ verify( (kernelTLS().sched_id = i, true) ); |
---|
108 | return i; |
---|
109 | } |
---|
110 | } |
---|
111 | |
---|
112 | if(max <= alloc) abort("Trying to create more than %ud processors", __scheduler_lock.lock.max); |
---|
113 | |
---|
114 | // Step - 2 : F&A to get a new spot in the array. |
---|
115 | uint_fast32_t n = __atomic_fetch_add(&alloc, 1, __ATOMIC_SEQ_CST); |
---|
116 | if(max <= n) abort("Trying to create more than %ud processors", __scheduler_lock.lock.max); |
---|
117 | |
---|
118 | // Step - 3 : Mark space as used and then publish it. |
---|
119 | data[n] = handle; |
---|
120 | while() { |
---|
121 | unsigned copy = n; |
---|
122 | if( __atomic_load_n(&ready, __ATOMIC_RELAXED) == n |
---|
123 | && __atomic_compare_exchange_n(&ready, ©, n + 1, true, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST)) |
---|
124 | break; |
---|
125 | Pause(); |
---|
126 | } |
---|
127 | |
---|
128 | // Return new spot. |
---|
129 | /* paranoid */ verify(n < ready); |
---|
130 | /* paranoid */ verify( (kernelTLS().sched_id = n, true) ); |
---|
131 | return n; |
---|
132 | } |
---|
133 | |
---|
134 | void unregister_proc_id( unsigned id ) with(__scheduler_lock.lock) { |
---|
135 | /* paranoid */ verify(id < ready); |
---|
136 | /* paranoid */ verify(id == kernelTLS().sched_id); |
---|
137 | /* paranoid */ verify(data[id] == &kernelTLS().sched_lock); |
---|
138 | |
---|
139 | bool * volatile * cell = (bool * volatile *)&data[id]; // Cforall is bugged and the double volatiles causes problems |
---|
140 | |
---|
141 | __atomic_store_n(cell, 0p, __ATOMIC_RELEASE); |
---|
142 | } |
---|
143 | |
---|
144 | //----------------------------------------------------------------------- |
---|
145 | // Writer side : acquire when changing the ready queue, e.g. adding more |
---|
146 | // queues or removing them. |
---|
147 | uint_fast32_t ready_mutate_lock( void ) with(__scheduler_lock.lock) { |
---|
148 | /* paranoid */ verify( ! __preemption_enabled() ); |
---|
149 | |
---|
150 | // Step 1 : lock global lock |
---|
151 | // It is needed to avoid processors that register mid Critical-Section |
---|
152 | // to simply lock their own lock and enter. |
---|
153 | __atomic_acquire( &write_lock ); |
---|
154 | |
---|
155 | // Make sure we won't deadlock ourself |
---|
156 | // Checking before acquiring the writer lock isn't safe |
---|
157 | // because someone else could have locked us. |
---|
158 | /* paranoid */ verify( ! kernelTLS().sched_lock ); |
---|
159 | |
---|
160 | // Step 2 : lock per-proc lock |
---|
161 | // Processors that are currently being registered aren't counted |
---|
162 | // but can't be in read_lock or in the critical section. |
---|
163 | // All other processors are counted |
---|
164 | uint_fast32_t s = ready; |
---|
165 | for(uint_fast32_t i = 0; i < s; i++) { |
---|
166 | volatile bool * llock = data[i]; |
---|
167 | if(llock) __atomic_acquire( llock ); |
---|
168 | } |
---|
169 | |
---|
170 | /* paranoid */ verify( ! __preemption_enabled() ); |
---|
171 | return s; |
---|
172 | } |
---|
173 | |
---|
174 | void ready_mutate_unlock( uint_fast32_t last_s ) with(__scheduler_lock.lock) { |
---|
175 | /* paranoid */ verify( ! __preemption_enabled() ); |
---|
176 | |
---|
177 | // Step 1 : release local locks |
---|
178 | // This must be done while the global lock is held to avoid |
---|
179 | // threads that where created mid critical section |
---|
180 | // to race to lock their local locks and have the writer |
---|
181 | // immidiately unlock them |
---|
182 | // Alternative solution : return s in write_lock and pass it to write_unlock |
---|
183 | for(uint_fast32_t i = 0; i < last_s; i++) { |
---|
184 | volatile bool * llock = data[i]; |
---|
185 | if(llock) __atomic_store_n(llock, (bool)false, __ATOMIC_RELEASE); |
---|
186 | } |
---|
187 | |
---|
188 | // Step 2 : release global lock |
---|
189 | /*paranoid*/ assert(true == write_lock); |
---|
190 | __atomic_store_n(&write_lock, (bool)false, __ATOMIC_RELEASE); |
---|
191 | |
---|
192 | /* paranoid */ verify( ! __preemption_enabled() ); |
---|
193 | } |
---|
194 | |
---|
195 | //======================================================================= |
---|
196 | // Cluster growth |
---|
197 | static const unsigned __readyq_single_shard = 2; |
---|
198 | |
---|
199 | void ?{}(__timestamp_t & this) { this.t.tv = 0; this.t.ma = 0; } |
---|
200 | void ^?{}(__timestamp_t &) {} |
---|
201 | |
---|
202 | //----------------------------------------------------------------------- |
---|
203 | // Check that all the intrusive queues in the data structure are still consistent |
---|
204 | static void check_readyQ( cluster * cltr ) with (cltr->sched) { |
---|
205 | #if defined(__CFA_WITH_VERIFY__) |
---|
206 | { |
---|
207 | const unsigned lanes_count = readyQ.count; |
---|
208 | for( idx ; lanes_count ) { |
---|
209 | __intrusive_lane_t & sl = readyQ.data[idx]; |
---|
210 | assert(!readyQ.data[idx].l.lock); |
---|
211 | |
---|
212 | if(is_empty(sl)) { |
---|
213 | assert( sl.l.anchor.next == 0p ); |
---|
214 | assert( sl.l.anchor.ts == MAX ); |
---|
215 | assert( mock_head(sl) == sl.l.prev ); |
---|
216 | } else { |
---|
217 | assert( sl.l.anchor.next != 0p ); |
---|
218 | assert( sl.l.anchor.ts != MAX ); |
---|
219 | assert( mock_head(sl) != sl.l.prev ); |
---|
220 | } |
---|
221 | } |
---|
222 | } |
---|
223 | #endif |
---|
224 | } |
---|
225 | |
---|
226 | // Call this function of the intrusive list was moved using memcpy |
---|
227 | // fixes the list so that the pointers back to anchors aren't left dangling |
---|
228 | static inline void fix(__intrusive_lane_t & ll) { |
---|
229 | if(is_empty(ll)) { |
---|
230 | verify(ll.l.anchor.next == 0p); |
---|
231 | ll.l.prev = mock_head(ll); |
---|
232 | } |
---|
233 | } |
---|
234 | |
---|
235 | static void assign_list(unsigned & valrq, unsigned & valio, dlist(struct processor) & list, unsigned count) { |
---|
236 | struct processor * it = &list`first; |
---|
237 | for(unsigned i = 0; i < count; i++) { |
---|
238 | /* paranoid */ verifyf( it, "Unexpected null iterator, at index %u of %u\n", i, count); |
---|
239 | it->rdq.id = valrq; |
---|
240 | it->rdq.target = UINT_MAX; |
---|
241 | valrq += __shard_factor.readyq; |
---|
242 | #if defined(CFA_HAVE_LINUX_IO_URING_H) |
---|
243 | it->io.ctx->cq.id = valio; |
---|
244 | it->io.target = UINT_MAX; |
---|
245 | valio += __shard_factor.io; |
---|
246 | #endif |
---|
247 | it = &(*it)`next; |
---|
248 | } |
---|
249 | } |
---|
250 | |
---|
251 | static void reassign_cltr_id(struct cluster * cltr) { |
---|
252 | unsigned prefrq = 0; |
---|
253 | unsigned prefio = 0; |
---|
254 | assign_list(prefrq, prefio, cltr->procs.actives, cltr->procs.total - cltr->procs.idle); |
---|
255 | assign_list(prefrq, prefio, cltr->procs.idles , cltr->procs.idle ); |
---|
256 | } |
---|
257 | |
---|
258 | #if defined(CFA_HAVE_LINUX_IO_URING_H) |
---|
259 | static void assign_io(io_context$ ** data, size_t count, dlist(struct processor) & list) { |
---|
260 | struct processor * it = &list`first; |
---|
261 | while(it) { |
---|
262 | /* paranoid */ verifyf( it, "Unexpected null iterator\n"); |
---|
263 | /* paranoid */ verifyf( it->io.ctx->cq.id < count, "Processor %p has id %u above count %zu\n", it, it->rdq.id, count); |
---|
264 | data[it->io.ctx->cq.id] = it->io.ctx; |
---|
265 | it = &(*it)`next; |
---|
266 | } |
---|
267 | } |
---|
268 | |
---|
269 | static void reassign_cltr_io(struct cluster * cltr) { |
---|
270 | assign_io(cltr->sched.io.data, cltr->sched.io.count, cltr->procs.actives); |
---|
271 | assign_io(cltr->sched.io.data, cltr->sched.io.count, cltr->procs.idles ); |
---|
272 | } |
---|
273 | #else |
---|
274 | static void reassign_cltr_io(struct cluster *) {} |
---|
275 | #endif |
---|
276 | |
---|
277 | static void fix_times( __timestamp_t * volatile & tscs, unsigned count ) { |
---|
278 | tscs = alloc(count, tscs`realloc); |
---|
279 | for(i; count) { |
---|
280 | tscs[i].t.tv = rdtscl(); |
---|
281 | tscs[i].t.ma = 0; |
---|
282 | } |
---|
283 | } |
---|
284 | |
---|
285 | // Grow the ready queue |
---|
286 | void ready_queue_grow(struct cluster * cltr) { |
---|
287 | int target = cltr->procs.total; |
---|
288 | |
---|
289 | /* paranoid */ verify( ready_mutate_islocked() ); |
---|
290 | __cfadbg_print_safe(ready_queue, "Kernel : Growing ready queue\n"); |
---|
291 | |
---|
292 | // Make sure that everything is consistent |
---|
293 | /* paranoid */ check_readyQ( cltr ); |
---|
294 | |
---|
295 | |
---|
296 | // Find new count |
---|
297 | // Make sure we always have atleast 1 list |
---|
298 | size_t ocount = cltr->sched.readyQ.count; |
---|
299 | size_t ncount = max(target * __shard_factor.readyq, __readyq_single_shard); |
---|
300 | |
---|
301 | // Do we have to do anything? |
---|
302 | if( ocount != ncount ) { |
---|
303 | |
---|
304 | // grow the ready queue |
---|
305 | with( cltr->sched ) { |
---|
306 | |
---|
307 | // Allocate new array (uses realloc and memcpies the data) |
---|
308 | readyQ.data = alloc( ncount, readyQ.data`realloc ); |
---|
309 | |
---|
310 | // Fix the moved data |
---|
311 | for( idx; ocount ) { |
---|
312 | fix(readyQ.data[idx]); |
---|
313 | } |
---|
314 | |
---|
315 | // Construct new data |
---|
316 | for( idx; ocount ~ ncount) { |
---|
317 | (readyQ.data[idx]){}; |
---|
318 | } |
---|
319 | |
---|
320 | // Update original count |
---|
321 | readyQ.count = ncount; |
---|
322 | } |
---|
323 | |
---|
324 | |
---|
325 | fix_times(cltr->sched.readyQ.tscs, cltr->sched.readyQ.count); |
---|
326 | } |
---|
327 | |
---|
328 | // Fix the io times |
---|
329 | cltr->sched.io.count = target * __shard_factor.io; |
---|
330 | fix_times(cltr->sched.io.tscs, cltr->sched.io.count); |
---|
331 | |
---|
332 | // realloc the caches |
---|
333 | cltr->sched.caches = alloc( target, cltr->sched.caches`realloc ); |
---|
334 | |
---|
335 | // reassign the clusters. |
---|
336 | reassign_cltr_id(cltr); |
---|
337 | |
---|
338 | cltr->sched.io.data = alloc( cltr->sched.io.count, cltr->sched.io.data`realloc ); |
---|
339 | reassign_cltr_io(cltr); |
---|
340 | |
---|
341 | // Make sure that everything is consistent |
---|
342 | /* paranoid */ check_readyQ( cltr ); |
---|
343 | // /* paranoid */ verify( (target == 0) == (cltr->sched.caches == 0p) ); |
---|
344 | |
---|
345 | __cfadbg_print_safe(ready_queue, "Kernel : Growing ready queue done\n"); |
---|
346 | |
---|
347 | /* paranoid */ verify( ready_mutate_islocked() ); |
---|
348 | } |
---|
349 | |
---|
350 | // Shrink the ready queue |
---|
351 | void ready_queue_shrink(struct cluster * cltr) { |
---|
352 | /* paranoid */ verify( ready_mutate_islocked() ); |
---|
353 | __cfadbg_print_safe(ready_queue, "Kernel : Shrinking ready queue\n"); |
---|
354 | |
---|
355 | // Make sure that everything is consistent |
---|
356 | /* paranoid */ check_readyQ( cltr ); |
---|
357 | |
---|
358 | int target = cltr->procs.total; |
---|
359 | |
---|
360 | with( cltr->sched ) { |
---|
361 | // Remember old count |
---|
362 | size_t ocount = readyQ.count; |
---|
363 | |
---|
364 | // Find new count |
---|
365 | // Make sure we always have atleast 1 list |
---|
366 | size_t ncount = max(target * __shard_factor.readyq, __readyq_single_shard); |
---|
367 | /* paranoid */ verifyf( ocount >= ncount, "Error in shrinking size calculation, %zu >= %zu", ocount, ncount ); |
---|
368 | /* paranoid */ verifyf( ncount == target * __shard_factor.readyq || ncount == __readyq_single_shard, |
---|
369 | /* paranoid */ "Error in shrinking size calculation, expected %u or %u, got %zu", target * __shard_factor.readyq, __readyq_single_shard, ncount ); |
---|
370 | |
---|
371 | readyQ.count = ncount; |
---|
372 | |
---|
373 | // for printing count the number of displaced threads |
---|
374 | #if defined(__CFA_DEBUG_PRINT__) || defined(__CFA_DEBUG_PRINT_READY_QUEUE__) |
---|
375 | __attribute__((unused)) size_t displaced = 0; |
---|
376 | #endif |
---|
377 | |
---|
378 | // redistribute old data |
---|
379 | for( idx; ncount ~ ocount) { |
---|
380 | // Lock is not strictly needed but makes checking invariants much easier |
---|
381 | __attribute__((unused)) bool locked = __atomic_try_acquire(&readyQ.data[idx].l.lock); |
---|
382 | verify(locked); |
---|
383 | |
---|
384 | // As long as we can pop from this lane to push the threads somewhere else in the queue |
---|
385 | while(!is_empty(readyQ.data[idx])) { |
---|
386 | struct thread$ * thrd; |
---|
387 | unsigned long long _; |
---|
388 | [thrd, _] = pop(readyQ.data[idx]); |
---|
389 | |
---|
390 | push(cltr, thrd, true); |
---|
391 | |
---|
392 | // for printing count the number of displaced threads |
---|
393 | #if defined(__CFA_DEBUG_PRINT__) || defined(__CFA_DEBUG_PRINT_READY_QUEUE__) |
---|
394 | displaced++; |
---|
395 | #endif |
---|
396 | } |
---|
397 | |
---|
398 | // Unlock the lane |
---|
399 | __atomic_unlock(&readyQ.data[idx].l.lock); |
---|
400 | |
---|
401 | // TODO print the queue statistics here |
---|
402 | |
---|
403 | ^(readyQ.data[idx]){}; |
---|
404 | } |
---|
405 | |
---|
406 | __cfadbg_print_safe(ready_queue, "Kernel : Shrinking ready queue displaced %zu threads\n", displaced); |
---|
407 | |
---|
408 | // Allocate new array (uses realloc and memcpies the data) |
---|
409 | readyQ.data = alloc( ncount, readyQ.data`realloc ); |
---|
410 | |
---|
411 | // Fix the moved data |
---|
412 | for( idx; ncount ) { |
---|
413 | fix(readyQ.data[idx]); |
---|
414 | } |
---|
415 | |
---|
416 | fix_times(readyQ.tscs, ncount); |
---|
417 | } |
---|
418 | |
---|
419 | cltr->sched.caches = alloc( target, cltr->sched.caches`realloc ); |
---|
420 | |
---|
421 | // Fix the io times |
---|
422 | cltr->sched.io.count = target * __shard_factor.io; |
---|
423 | fix_times(cltr->sched.io.tscs, cltr->sched.io.count); |
---|
424 | |
---|
425 | reassign_cltr_id(cltr); |
---|
426 | |
---|
427 | cltr->sched.io.data = alloc( cltr->sched.io.count, cltr->sched.io.data`realloc ); |
---|
428 | reassign_cltr_io(cltr); |
---|
429 | |
---|
430 | // Make sure that everything is consistent |
---|
431 | // /* paranoid */ verify( (target == 0) == (cltr->sched.caches == 0p) ); |
---|
432 | /* paranoid */ check_readyQ( cltr ); |
---|
433 | |
---|
434 | __cfadbg_print_safe(ready_queue, "Kernel : Shrinking ready queue done\n"); |
---|
435 | /* paranoid */ verify( ready_mutate_islocked() ); |
---|
436 | } |
---|
437 | |
---|
438 | void ready_queue_close(struct cluster * cltr) { |
---|
439 | free( cltr->sched.readyQ.data ); |
---|
440 | free( cltr->sched.readyQ.tscs ); |
---|
441 | cltr->sched.readyQ.data = 0p; |
---|
442 | cltr->sched.readyQ.tscs = 0p; |
---|
443 | cltr->sched.readyQ.count = 0; |
---|
444 | |
---|
445 | free( cltr->sched.io.tscs ); |
---|
446 | free( cltr->sched.caches ); |
---|
447 | } |
---|
448 | |
---|
449 | #define nested_offsetof(type, field) ((off_t)(&(((type*)0)-> field))) |
---|
450 | |
---|
451 | // Ctor |
---|
452 | void ?{}( __intrusive_lane_t & this ) { |
---|
453 | this.l.lock = false; |
---|
454 | this.l.prev = mock_head(this); |
---|
455 | this.l.anchor.next = 0p; |
---|
456 | this.l.anchor.ts = MAX; |
---|
457 | #if !defined(__CFA_NO_STATISTICS__) |
---|
458 | this.l.cnt = 0; |
---|
459 | #endif |
---|
460 | |
---|
461 | // We add a boat-load of assertions here because the anchor code is very fragile |
---|
462 | /* paranoid */ _Static_assert( offsetof( thread$, rdy_link ) == nested_offsetof(__intrusive_lane_t, l.anchor) ); |
---|
463 | /* paranoid */ verify( offsetof( thread$, rdy_link ) == nested_offsetof(__intrusive_lane_t, l.anchor) ); |
---|
464 | /* paranoid */ verify( ((uintptr_t)( mock_head(this) ) + offsetof( thread$, rdy_link )) == (uintptr_t)(&this.l.anchor) ); |
---|
465 | /* paranoid */ verify( &mock_head(this)->rdy_link.next == &this.l.anchor.next ); |
---|
466 | /* paranoid */ verify( &mock_head(this)->rdy_link.ts == &this.l.anchor.ts ); |
---|
467 | /* paranoid */ verify( mock_head(this)->rdy_link.next == 0p ); |
---|
468 | /* paranoid */ verify( mock_head(this)->rdy_link.ts == MAX ); |
---|
469 | /* paranoid */ verify( mock_head(this) == this.l.prev ); |
---|
470 | /* paranoid */ verify( __alignof__(__intrusive_lane_t) == 64 ); |
---|
471 | /* paranoid */ verify( __alignof__(this) == 64 ); |
---|
472 | /* paranoid */ verifyf( ((intptr_t)(&this) % 64) == 0, "Expected address to be aligned %p %% 64 == %zd", &this, ((intptr_t)(&this) % 64) ); |
---|
473 | } |
---|
474 | |
---|
475 | #undef nested_offsetof |
---|
476 | |
---|
477 | // Dtor is trivial |
---|
478 | void ^?{}( __intrusive_lane_t & this ) { |
---|
479 | // Make sure the list is empty |
---|
480 | /* paranoid */ verify( this.l.anchor.next == 0p ); |
---|
481 | /* paranoid */ verify( this.l.anchor.ts == MAX ); |
---|
482 | /* paranoid */ verify( mock_head(this) == this.l.prev ); |
---|
483 | } |
---|