[c42b8a1] | 1 | // |
---|
| 2 | // Cforall Version 1.0.0 Copyright (C) 2022 University of Waterloo |
---|
| 3 | // |
---|
| 4 | // The contents of this file are covered under the licence agreement in the |
---|
| 5 | // file "LICENCE" distributed with Cforall. |
---|
| 6 | // |
---|
[708ae38] | 7 | // cluster.cfa -- file that includes helpers for subsystem that need cluster wide support |
---|
[c42b8a1] | 8 | // |
---|
| 9 | // Author : Thierry Delisle |
---|
[708ae38] | 10 | // Created On : Fri Mar 11 12:39:24 2022 |
---|
[c42b8a1] | 11 | // Last Modified By : |
---|
| 12 | // Last Modified On : |
---|
| 13 | // Update Count : |
---|
| 14 | // |
---|
| 15 | |
---|
| 16 | #define __cforall_thread__ |
---|
| 17 | |
---|
| 18 | #include "bits/defs.hfa" |
---|
| 19 | #include "device/cpu.hfa" |
---|
[708ae38] | 20 | #include "kernel/cluster.hfa" |
---|
| 21 | #include "kernel/private.hfa" |
---|
[c42b8a1] | 22 | |
---|
| 23 | #include "stdlib.hfa" |
---|
| 24 | #include "limits.hfa" |
---|
| 25 | #include "math.hfa" |
---|
| 26 | |
---|
| 27 | #include "ready_subqueue.hfa" |
---|
[78a580d] | 28 | #include "io/types.hfa" |
---|
[c42b8a1] | 29 | |
---|
| 30 | #include <errno.h> |
---|
| 31 | #include <unistd.h> |
---|
| 32 | |
---|
| 33 | extern "C" { |
---|
| 34 | #include <sys/syscall.h> // __NR_xxx |
---|
| 35 | } |
---|
| 36 | |
---|
| 37 | // No overriden function, no environment variable, no define |
---|
| 38 | // fall back to a magic number |
---|
| 39 | #ifndef __CFA_MAX_PROCESSORS__ |
---|
| 40 | #define __CFA_MAX_PROCESSORS__ 1024 |
---|
| 41 | #endif |
---|
| 42 | |
---|
| 43 | #if !defined(__CFA_NO_STATISTICS__) |
---|
| 44 | #define __STATS(...) __VA_ARGS__ |
---|
| 45 | #else |
---|
| 46 | #define __STATS(...) |
---|
| 47 | #endif |
---|
| 48 | |
---|
| 49 | // returns the maximum number of processors the RWLock support |
---|
[c18bf9e] | 50 | __attribute__((weak)) unsigned __max_processors() libcfa_public { |
---|
[c42b8a1] | 51 | const char * max_cores_s = getenv("CFA_MAX_PROCESSORS"); |
---|
| 52 | if(!max_cores_s) { |
---|
| 53 | __cfadbg_print_nolock(ready_queue, "No CFA_MAX_PROCESSORS in ENV\n"); |
---|
| 54 | return __CFA_MAX_PROCESSORS__; |
---|
| 55 | } |
---|
| 56 | |
---|
| 57 | char * endptr = 0p; |
---|
| 58 | long int max_cores_l = strtol(max_cores_s, &endptr, 10); |
---|
| 59 | if(max_cores_l < 1 || max_cores_l > 65535) { |
---|
| 60 | __cfadbg_print_nolock(ready_queue, "CFA_MAX_PROCESSORS out of range : %ld\n", max_cores_l); |
---|
| 61 | return __CFA_MAX_PROCESSORS__; |
---|
| 62 | } |
---|
| 63 | if('\0' != *endptr) { |
---|
| 64 | __cfadbg_print_nolock(ready_queue, "CFA_MAX_PROCESSORS not a decimal number : %s\n", max_cores_s); |
---|
| 65 | return __CFA_MAX_PROCESSORS__; |
---|
| 66 | } |
---|
| 67 | |
---|
| 68 | return max_cores_l; |
---|
| 69 | } |
---|
| 70 | |
---|
| 71 | #if defined(CFA_HAVE_LINUX_LIBRSEQ) |
---|
| 72 | // No forward declaration needed |
---|
| 73 | #define __kernel_rseq_register rseq_register_current_thread |
---|
| 74 | #define __kernel_rseq_unregister rseq_unregister_current_thread |
---|
| 75 | #elif defined(CFA_HAVE_LINUX_RSEQ_H) |
---|
| 76 | static void __kernel_raw_rseq_register (void); |
---|
| 77 | static void __kernel_raw_rseq_unregister(void); |
---|
| 78 | |
---|
| 79 | #define __kernel_rseq_register __kernel_raw_rseq_register |
---|
| 80 | #define __kernel_rseq_unregister __kernel_raw_rseq_unregister |
---|
| 81 | #else |
---|
| 82 | // No forward declaration needed |
---|
| 83 | // No initialization needed |
---|
| 84 | static inline void noop(void) {} |
---|
| 85 | |
---|
| 86 | #define __kernel_rseq_register noop |
---|
| 87 | #define __kernel_rseq_unregister noop |
---|
| 88 | #endif |
---|
| 89 | |
---|
| 90 | //======================================================================= |
---|
| 91 | // Cluster wide reader-writer lock |
---|
| 92 | //======================================================================= |
---|
| 93 | void ?{}(__scheduler_RWLock_t & this) { |
---|
[741e22c] | 94 | this.lock.max = __max_processors(); |
---|
| 95 | this.lock.alloc = 0; |
---|
| 96 | this.lock.ready = 0; |
---|
| 97 | this.lock.data = alloc(this.lock.max); |
---|
| 98 | this.lock.write_lock = false; |
---|
[c42b8a1] | 99 | |
---|
[741e22c] | 100 | /*paranoid*/ verify(__atomic_is_lock_free(sizeof(this.lock.alloc), &this.lock.alloc)); |
---|
| 101 | /*paranoid*/ verify(__atomic_is_lock_free(sizeof(this.lock.ready), &this.lock.ready)); |
---|
[c42b8a1] | 102 | |
---|
| 103 | } |
---|
| 104 | void ^?{}(__scheduler_RWLock_t & this) { |
---|
[741e22c] | 105 | free(this.lock.data); |
---|
[c42b8a1] | 106 | } |
---|
| 107 | |
---|
| 108 | |
---|
| 109 | //======================================================================= |
---|
| 110 | // Lock-Free registering/unregistering of threads |
---|
[cd3fc46] | 111 | unsigned register_proc_id( void ) with(__scheduler_lock.lock) { |
---|
[c42b8a1] | 112 | __kernel_rseq_register(); |
---|
| 113 | |
---|
| 114 | bool * handle = (bool *)&kernelTLS().sched_lock; |
---|
| 115 | |
---|
| 116 | // Step - 1 : check if there is already space in the data |
---|
| 117 | uint_fast32_t s = ready; |
---|
| 118 | |
---|
| 119 | // Check among all the ready |
---|
| 120 | for(uint_fast32_t i = 0; i < s; i++) { |
---|
| 121 | bool * volatile * cell = (bool * volatile *)&data[i]; // Cforall is bugged and the double volatiles causes problems |
---|
| 122 | /* paranoid */ verify( handle != *cell ); |
---|
| 123 | |
---|
| 124 | bool * null = 0p; // Re-write every loop since compare thrashes it |
---|
| 125 | if( __atomic_load_n(cell, (int)__ATOMIC_RELAXED) == null |
---|
| 126 | && __atomic_compare_exchange_n( cell, &null, handle, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST)) { |
---|
| 127 | /* paranoid */ verify(i < ready); |
---|
| 128 | /* paranoid */ verify( (kernelTLS().sched_id = i, true) ); |
---|
| 129 | return i; |
---|
| 130 | } |
---|
| 131 | } |
---|
| 132 | |
---|
[cd3fc46] | 133 | if(max <= alloc) abort("Trying to create more than %ud processors", __scheduler_lock.lock.max); |
---|
[c42b8a1] | 134 | |
---|
| 135 | // Step - 2 : F&A to get a new spot in the array. |
---|
| 136 | uint_fast32_t n = __atomic_fetch_add(&alloc, 1, __ATOMIC_SEQ_CST); |
---|
[cd3fc46] | 137 | if(max <= n) abort("Trying to create more than %ud processors", __scheduler_lock.lock.max); |
---|
[c42b8a1] | 138 | |
---|
| 139 | // Step - 3 : Mark space as used and then publish it. |
---|
| 140 | data[n] = handle; |
---|
| 141 | while() { |
---|
| 142 | unsigned copy = n; |
---|
| 143 | if( __atomic_load_n(&ready, __ATOMIC_RELAXED) == n |
---|
| 144 | && __atomic_compare_exchange_n(&ready, ©, n + 1, true, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST)) |
---|
| 145 | break; |
---|
| 146 | Pause(); |
---|
| 147 | } |
---|
| 148 | |
---|
| 149 | // Return new spot. |
---|
| 150 | /* paranoid */ verify(n < ready); |
---|
| 151 | /* paranoid */ verify( (kernelTLS().sched_id = n, true) ); |
---|
| 152 | return n; |
---|
| 153 | } |
---|
| 154 | |
---|
[cd3fc46] | 155 | void unregister_proc_id( unsigned id ) with(__scheduler_lock.lock) { |
---|
[c42b8a1] | 156 | /* paranoid */ verify(id < ready); |
---|
| 157 | /* paranoid */ verify(id == kernelTLS().sched_id); |
---|
| 158 | /* paranoid */ verify(data[id] == &kernelTLS().sched_lock); |
---|
| 159 | |
---|
| 160 | bool * volatile * cell = (bool * volatile *)&data[id]; // Cforall is bugged and the double volatiles causes problems |
---|
| 161 | |
---|
| 162 | __atomic_store_n(cell, 0p, __ATOMIC_RELEASE); |
---|
| 163 | |
---|
| 164 | __kernel_rseq_unregister(); |
---|
| 165 | } |
---|
| 166 | |
---|
| 167 | //----------------------------------------------------------------------- |
---|
| 168 | // Writer side : acquire when changing the ready queue, e.g. adding more |
---|
| 169 | // queues or removing them. |
---|
[cd3fc46] | 170 | uint_fast32_t ready_mutate_lock( void ) with(__scheduler_lock.lock) { |
---|
[c42b8a1] | 171 | /* paranoid */ verify( ! __preemption_enabled() ); |
---|
| 172 | |
---|
| 173 | // Step 1 : lock global lock |
---|
| 174 | // It is needed to avoid processors that register mid Critical-Section |
---|
| 175 | // to simply lock their own lock and enter. |
---|
| 176 | __atomic_acquire( &write_lock ); |
---|
| 177 | |
---|
| 178 | // Make sure we won't deadlock ourself |
---|
| 179 | // Checking before acquiring the writer lock isn't safe |
---|
| 180 | // because someone else could have locked us. |
---|
| 181 | /* paranoid */ verify( ! kernelTLS().sched_lock ); |
---|
| 182 | |
---|
| 183 | // Step 2 : lock per-proc lock |
---|
| 184 | // Processors that are currently being registered aren't counted |
---|
| 185 | // but can't be in read_lock or in the critical section. |
---|
| 186 | // All other processors are counted |
---|
| 187 | uint_fast32_t s = ready; |
---|
| 188 | for(uint_fast32_t i = 0; i < s; i++) { |
---|
| 189 | volatile bool * llock = data[i]; |
---|
| 190 | if(llock) __atomic_acquire( llock ); |
---|
| 191 | } |
---|
| 192 | |
---|
| 193 | /* paranoid */ verify( ! __preemption_enabled() ); |
---|
| 194 | return s; |
---|
| 195 | } |
---|
| 196 | |
---|
[cd3fc46] | 197 | void ready_mutate_unlock( uint_fast32_t last_s ) with(__scheduler_lock.lock) { |
---|
[c42b8a1] | 198 | /* paranoid */ verify( ! __preemption_enabled() ); |
---|
| 199 | |
---|
| 200 | // Step 1 : release local locks |
---|
| 201 | // This must be done while the global lock is held to avoid |
---|
| 202 | // threads that where created mid critical section |
---|
| 203 | // to race to lock their local locks and have the writer |
---|
| 204 | // immidiately unlock them |
---|
| 205 | // Alternative solution : return s in write_lock and pass it to write_unlock |
---|
| 206 | for(uint_fast32_t i = 0; i < last_s; i++) { |
---|
| 207 | volatile bool * llock = data[i]; |
---|
| 208 | if(llock) __atomic_store_n(llock, (bool)false, __ATOMIC_RELEASE); |
---|
| 209 | } |
---|
| 210 | |
---|
| 211 | // Step 2 : release global lock |
---|
| 212 | /*paranoid*/ assert(true == write_lock); |
---|
| 213 | __atomic_store_n(&write_lock, (bool)false, __ATOMIC_RELEASE); |
---|
| 214 | |
---|
| 215 | /* paranoid */ verify( ! __preemption_enabled() ); |
---|
| 216 | } |
---|
| 217 | |
---|
| 218 | //======================================================================= |
---|
| 219 | // Cluster growth |
---|
| 220 | static const unsigned __readyq_single_shard = 2; |
---|
| 221 | |
---|
[31c967b] | 222 | void ?{}(__timestamp_t & this) { this.t.tv = 0; this.t.ma = 0; } |
---|
| 223 | void ^?{}(__timestamp_t &) {} |
---|
| 224 | |
---|
[c42b8a1] | 225 | //----------------------------------------------------------------------- |
---|
| 226 | // Check that all the intrusive queues in the data structure are still consistent |
---|
[884f3f67] | 227 | static void check_readyQ( cluster * cltr ) with (cltr->sched) { |
---|
[c42b8a1] | 228 | #if defined(__CFA_WITH_VERIFY__) |
---|
| 229 | { |
---|
[884f3f67] | 230 | const unsigned lanes_count = readyQ.count; |
---|
| 231 | for( idx ; lanes_count ) { |
---|
| 232 | __intrusive_lane_t & sl = readyQ.data[idx]; |
---|
[2af1943] | 233 | assert(!readyQ.data[idx].l.lock); |
---|
[c42b8a1] | 234 | |
---|
| 235 | if(is_empty(sl)) { |
---|
[2af1943] | 236 | assert( sl.l.anchor.next == 0p ); |
---|
| 237 | assert( sl.l.anchor.ts == MAX ); |
---|
| 238 | assert( mock_head(sl) == sl.l.prev ); |
---|
[c42b8a1] | 239 | } else { |
---|
[2af1943] | 240 | assert( sl.l.anchor.next != 0p ); |
---|
| 241 | assert( sl.l.anchor.ts != MAX ); |
---|
| 242 | assert( mock_head(sl) != sl.l.prev ); |
---|
[c42b8a1] | 243 | } |
---|
| 244 | } |
---|
| 245 | } |
---|
| 246 | #endif |
---|
| 247 | } |
---|
| 248 | |
---|
| 249 | // Call this function of the intrusive list was moved using memcpy |
---|
| 250 | // fixes the list so that the pointers back to anchors aren't left dangling |
---|
| 251 | static inline void fix(__intrusive_lane_t & ll) { |
---|
[708ae38] | 252 | if(is_empty(ll)) { |
---|
[2af1943] | 253 | verify(ll.l.anchor.next == 0p); |
---|
| 254 | ll.l.prev = mock_head(ll); |
---|
[708ae38] | 255 | } |
---|
[c42b8a1] | 256 | } |
---|
| 257 | |
---|
[1756e08] | 258 | static void assign_list(unsigned & valrq, unsigned & valio, dlist(struct processor) & list, unsigned count) { |
---|
| 259 | struct processor * it = &list`first; |
---|
[c42b8a1] | 260 | for(unsigned i = 0; i < count; i++) { |
---|
| 261 | /* paranoid */ verifyf( it, "Unexpected null iterator, at index %u of %u\n", i, count); |
---|
[adb3ea1] | 262 | it->rdq.id = valrq; |
---|
[b035046] | 263 | it->rdq.target = UINT_MAX; |
---|
[adb3ea1] | 264 | valrq += __shard_factor.readyq; |
---|
[1a567d0] | 265 | #if defined(CFA_HAVE_LINUX_IO_URING_H) |
---|
| 266 | it->io.ctx->cq.id = valio; |
---|
[b035046] | 267 | it->io.target = UINT_MAX; |
---|
[1a567d0] | 268 | valio += __shard_factor.io; |
---|
| 269 | #endif |
---|
[c42b8a1] | 270 | it = &(*it)`next; |
---|
| 271 | } |
---|
| 272 | } |
---|
| 273 | |
---|
| 274 | static void reassign_cltr_id(struct cluster * cltr) { |
---|
[adb3ea1] | 275 | unsigned prefrq = 0; |
---|
| 276 | unsigned prefio = 0; |
---|
| 277 | assign_list(prefrq, prefio, cltr->procs.actives, cltr->procs.total - cltr->procs.idle); |
---|
| 278 | assign_list(prefrq, prefio, cltr->procs.idles , cltr->procs.idle ); |
---|
| 279 | } |
---|
| 280 | |
---|
[1a567d0] | 281 | #if defined(CFA_HAVE_LINUX_IO_URING_H) |
---|
[1756e08] | 282 | static void assign_io(io_context$ ** data, size_t count, dlist(struct processor) & list) { |
---|
| 283 | struct processor * it = &list`first; |
---|
[1a567d0] | 284 | while(it) { |
---|
| 285 | /* paranoid */ verifyf( it, "Unexpected null iterator\n"); |
---|
| 286 | /* paranoid */ verifyf( it->io.ctx->cq.id < count, "Processor %p has id %u above count %zu\n", it, it->rdq.id, count); |
---|
| 287 | data[it->io.ctx->cq.id] = it->io.ctx; |
---|
| 288 | it = &(*it)`next; |
---|
| 289 | } |
---|
[adb3ea1] | 290 | } |
---|
| 291 | |
---|
[1a567d0] | 292 | static void reassign_cltr_io(struct cluster * cltr) { |
---|
| 293 | assign_io(cltr->sched.io.data, cltr->sched.io.count, cltr->procs.actives); |
---|
| 294 | assign_io(cltr->sched.io.data, cltr->sched.io.count, cltr->procs.idles ); |
---|
| 295 | } |
---|
| 296 | #else |
---|
| 297 | static void reassign_cltr_io(struct cluster *) {} |
---|
| 298 | #endif |
---|
[c42b8a1] | 299 | |
---|
[884f3f67] | 300 | static void fix_times( __timestamp_t * volatile & tscs, unsigned count ) { |
---|
| 301 | tscs = alloc(count, tscs`realloc); |
---|
| 302 | for(i; count) { |
---|
[2af1943] | 303 | tscs[i].t.tv = rdtscl(); |
---|
| 304 | tscs[i].t.ma = 0; |
---|
[c42b8a1] | 305 | } |
---|
| 306 | } |
---|
| 307 | |
---|
| 308 | // Grow the ready queue |
---|
| 309 | void ready_queue_grow(struct cluster * cltr) { |
---|
| 310 | int target = cltr->procs.total; |
---|
| 311 | |
---|
| 312 | /* paranoid */ verify( ready_mutate_islocked() ); |
---|
| 313 | __cfadbg_print_safe(ready_queue, "Kernel : Growing ready queue\n"); |
---|
| 314 | |
---|
| 315 | // Make sure that everything is consistent |
---|
[884f3f67] | 316 | /* paranoid */ check_readyQ( cltr ); |
---|
[c42b8a1] | 317 | |
---|
| 318 | |
---|
[884f3f67] | 319 | // Find new count |
---|
| 320 | // Make sure we always have atleast 1 list |
---|
| 321 | size_t ocount = cltr->sched.readyQ.count; |
---|
| 322 | size_t ncount = max(target * __shard_factor.readyq, __readyq_single_shard); |
---|
[c42b8a1] | 323 | |
---|
[884f3f67] | 324 | // Do we have to do anything? |
---|
| 325 | if( ocount != ncount ) { |
---|
| 326 | |
---|
| 327 | // grow the ready queue |
---|
| 328 | with( cltr->sched ) { |
---|
| 329 | |
---|
| 330 | // Allocate new array (uses realloc and memcpies the data) |
---|
| 331 | readyQ.data = alloc( ncount, readyQ.data`realloc ); |
---|
[c42b8a1] | 332 | |
---|
[884f3f67] | 333 | // Fix the moved data |
---|
| 334 | for( idx; ocount ) { |
---|
| 335 | fix(readyQ.data[idx]); |
---|
| 336 | } |
---|
| 337 | |
---|
| 338 | // Construct new data |
---|
| 339 | for( idx; ocount ~ ncount) { |
---|
| 340 | (readyQ.data[idx]){}; |
---|
| 341 | } |
---|
| 342 | |
---|
| 343 | // Update original count |
---|
| 344 | readyQ.count = ncount; |
---|
[c42b8a1] | 345 | } |
---|
| 346 | |
---|
| 347 | |
---|
[884f3f67] | 348 | fix_times(cltr->sched.readyQ.tscs, cltr->sched.readyQ.count); |
---|
[c42b8a1] | 349 | } |
---|
| 350 | |
---|
[708ae38] | 351 | // Fix the io times |
---|
[adb3ea1] | 352 | cltr->sched.io.count = target * __shard_factor.io; |
---|
[708ae38] | 353 | fix_times(cltr->sched.io.tscs, cltr->sched.io.count); |
---|
| 354 | |
---|
[884f3f67] | 355 | // realloc the caches |
---|
| 356 | cltr->sched.caches = alloc( target, cltr->sched.caches`realloc ); |
---|
[c42b8a1] | 357 | |
---|
[884f3f67] | 358 | // reassign the clusters. |
---|
[c42b8a1] | 359 | reassign_cltr_id(cltr); |
---|
| 360 | |
---|
[adb3ea1] | 361 | cltr->sched.io.data = alloc( cltr->sched.io.count, cltr->sched.io.data`realloc ); |
---|
| 362 | reassign_cltr_io(cltr); |
---|
| 363 | |
---|
[c42b8a1] | 364 | // Make sure that everything is consistent |
---|
[884f3f67] | 365 | /* paranoid */ check_readyQ( cltr ); |
---|
| 366 | /* paranoid */ verify( (target == 0) == (cltr->sched.caches == 0p) ); |
---|
[c42b8a1] | 367 | |
---|
| 368 | __cfadbg_print_safe(ready_queue, "Kernel : Growing ready queue done\n"); |
---|
| 369 | |
---|
| 370 | /* paranoid */ verify( ready_mutate_islocked() ); |
---|
| 371 | } |
---|
| 372 | |
---|
| 373 | // Shrink the ready queue |
---|
| 374 | void ready_queue_shrink(struct cluster * cltr) { |
---|
| 375 | /* paranoid */ verify( ready_mutate_islocked() ); |
---|
| 376 | __cfadbg_print_safe(ready_queue, "Kernel : Shrinking ready queue\n"); |
---|
| 377 | |
---|
| 378 | // Make sure that everything is consistent |
---|
[884f3f67] | 379 | /* paranoid */ check_readyQ( cltr ); |
---|
[c42b8a1] | 380 | |
---|
| 381 | int target = cltr->procs.total; |
---|
| 382 | |
---|
[884f3f67] | 383 | with( cltr->sched ) { |
---|
[c42b8a1] | 384 | // Remember old count |
---|
[884f3f67] | 385 | size_t ocount = readyQ.count; |
---|
[c42b8a1] | 386 | |
---|
| 387 | // Find new count |
---|
| 388 | // Make sure we always have atleast 1 list |
---|
[884f3f67] | 389 | size_t ncount = max(target * __shard_factor.readyq, __readyq_single_shard); |
---|
| 390 | /* paranoid */ verifyf( ocount >= ncount, "Error in shrinking size calculation, %zu >= %zu", ocount, ncount ); |
---|
| 391 | /* paranoid */ verifyf( ncount == target * __shard_factor.readyq || ncount == __readyq_single_shard, |
---|
[bfb9bf5] | 392 | /* paranoid */ "Error in shrinking size calculation, expected %u or %u, got %zu", target * __shard_factor.readyq, __readyq_single_shard, ncount ); |
---|
[884f3f67] | 393 | |
---|
| 394 | readyQ.count = ncount; |
---|
[c42b8a1] | 395 | |
---|
| 396 | // for printing count the number of displaced threads |
---|
| 397 | #if defined(__CFA_DEBUG_PRINT__) || defined(__CFA_DEBUG_PRINT_READY_QUEUE__) |
---|
| 398 | __attribute__((unused)) size_t displaced = 0; |
---|
| 399 | #endif |
---|
| 400 | |
---|
| 401 | // redistribute old data |
---|
[884f3f67] | 402 | for( idx; ncount ~ ocount) { |
---|
[c42b8a1] | 403 | // Lock is not strictly needed but makes checking invariants much easier |
---|
[2af1943] | 404 | __attribute__((unused)) bool locked = __atomic_try_acquire(&readyQ.data[idx].l.lock); |
---|
[c42b8a1] | 405 | verify(locked); |
---|
| 406 | |
---|
| 407 | // As long as we can pop from this lane to push the threads somewhere else in the queue |
---|
[884f3f67] | 408 | while(!is_empty(readyQ.data[idx])) { |
---|
[c42b8a1] | 409 | struct thread$ * thrd; |
---|
| 410 | unsigned long long _; |
---|
[884f3f67] | 411 | [thrd, _] = pop(readyQ.data[idx]); |
---|
[c42b8a1] | 412 | |
---|
| 413 | push(cltr, thrd, true); |
---|
| 414 | |
---|
| 415 | // for printing count the number of displaced threads |
---|
| 416 | #if defined(__CFA_DEBUG_PRINT__) || defined(__CFA_DEBUG_PRINT_READY_QUEUE__) |
---|
| 417 | displaced++; |
---|
| 418 | #endif |
---|
| 419 | } |
---|
| 420 | |
---|
| 421 | // Unlock the lane |
---|
[2af1943] | 422 | __atomic_unlock(&readyQ.data[idx].l.lock); |
---|
[c42b8a1] | 423 | |
---|
| 424 | // TODO print the queue statistics here |
---|
| 425 | |
---|
[884f3f67] | 426 | ^(readyQ.data[idx]){}; |
---|
[c42b8a1] | 427 | } |
---|
| 428 | |
---|
| 429 | __cfadbg_print_safe(ready_queue, "Kernel : Shrinking ready queue displaced %zu threads\n", displaced); |
---|
| 430 | |
---|
| 431 | // Allocate new array (uses realloc and memcpies the data) |
---|
[884f3f67] | 432 | readyQ.data = alloc( ncount, readyQ.data`realloc ); |
---|
[c42b8a1] | 433 | |
---|
| 434 | // Fix the moved data |
---|
[884f3f67] | 435 | for( idx; ncount ) { |
---|
| 436 | fix(readyQ.data[idx]); |
---|
[c42b8a1] | 437 | } |
---|
| 438 | |
---|
[884f3f67] | 439 | fix_times(readyQ.tscs, ncount); |
---|
[c42b8a1] | 440 | } |
---|
[884f3f67] | 441 | cltr->sched.caches = alloc( target, cltr->sched.caches`realloc ); |
---|
[c42b8a1] | 442 | |
---|
[708ae38] | 443 | // Fix the io times |
---|
[adb3ea1] | 444 | cltr->sched.io.count = target * __shard_factor.io; |
---|
[708ae38] | 445 | fix_times(cltr->sched.io.tscs, cltr->sched.io.count); |
---|
[c42b8a1] | 446 | |
---|
| 447 | reassign_cltr_id(cltr); |
---|
| 448 | |
---|
[adb3ea1] | 449 | cltr->sched.io.data = alloc( cltr->sched.io.count, cltr->sched.io.data`realloc ); |
---|
| 450 | reassign_cltr_io(cltr); |
---|
| 451 | |
---|
[c42b8a1] | 452 | // Make sure that everything is consistent |
---|
[884f3f67] | 453 | /* paranoid */ verify( (target == 0) == (cltr->sched.caches == 0p) ); |
---|
| 454 | /* paranoid */ check_readyQ( cltr ); |
---|
[c42b8a1] | 455 | |
---|
| 456 | __cfadbg_print_safe(ready_queue, "Kernel : Shrinking ready queue done\n"); |
---|
| 457 | /* paranoid */ verify( ready_mutate_islocked() ); |
---|
| 458 | } |
---|
| 459 | |
---|
[884f3f67] | 460 | void ready_queue_close(struct cluster * cltr) { |
---|
| 461 | free( cltr->sched.readyQ.data ); |
---|
| 462 | free( cltr->sched.readyQ.tscs ); |
---|
| 463 | cltr->sched.readyQ.data = 0p; |
---|
| 464 | cltr->sched.readyQ.tscs = 0p; |
---|
| 465 | cltr->sched.readyQ.count = 0; |
---|
| 466 | |
---|
| 467 | free( cltr->sched.io.tscs ); |
---|
| 468 | free( cltr->sched.caches ); |
---|
| 469 | } |
---|
| 470 | |
---|
[2af1943] | 471 | #define nested_offsetof(type, field) ((off_t)(&(((type*)0)-> field))) |
---|
| 472 | |
---|
[c42b8a1] | 473 | // Ctor |
---|
| 474 | void ?{}( __intrusive_lane_t & this ) { |
---|
[2af1943] | 475 | this.l.lock = false; |
---|
| 476 | this.l.prev = mock_head(this); |
---|
| 477 | this.l.anchor.next = 0p; |
---|
| 478 | this.l.anchor.ts = MAX; |
---|
[c42b8a1] | 479 | #if !defined(__CFA_NO_STATISTICS__) |
---|
[2af1943] | 480 | this.l.cnt = 0; |
---|
[c42b8a1] | 481 | #endif |
---|
| 482 | |
---|
| 483 | // We add a boat-load of assertions here because the anchor code is very fragile |
---|
[15c93d8] | 484 | /* paranoid */ _Static_assert( offsetof( thread$, rdy_link ) == nested_offsetof(__intrusive_lane_t, l.anchor) ); |
---|
| 485 | /* paranoid */ verify( offsetof( thread$, rdy_link ) == nested_offsetof(__intrusive_lane_t, l.anchor) ); |
---|
| 486 | /* paranoid */ verify( ((uintptr_t)( mock_head(this) ) + offsetof( thread$, rdy_link )) == (uintptr_t)(&this.l.anchor) ); |
---|
| 487 | /* paranoid */ verify( &mock_head(this)->rdy_link.next == &this.l.anchor.next ); |
---|
| 488 | /* paranoid */ verify( &mock_head(this)->rdy_link.ts == &this.l.anchor.ts ); |
---|
| 489 | /* paranoid */ verify( mock_head(this)->rdy_link.next == 0p ); |
---|
| 490 | /* paranoid */ verify( mock_head(this)->rdy_link.ts == MAX ); |
---|
[2af1943] | 491 | /* paranoid */ verify( mock_head(this) == this.l.prev ); |
---|
| 492 | /* paranoid */ verify( __alignof__(__intrusive_lane_t) == 64 ); |
---|
| 493 | /* paranoid */ verify( __alignof__(this) == 64 ); |
---|
| 494 | /* paranoid */ verifyf( ((intptr_t)(&this) % 64) == 0, "Expected address to be aligned %p %% 64 == %zd", &this, ((intptr_t)(&this) % 64) ); |
---|
[c42b8a1] | 495 | } |
---|
| 496 | |
---|
[2af1943] | 497 | #undef nested_offsetof |
---|
| 498 | |
---|
[c42b8a1] | 499 | // Dtor is trivial |
---|
| 500 | void ^?{}( __intrusive_lane_t & this ) { |
---|
| 501 | // Make sure the list is empty |
---|
[2af1943] | 502 | /* paranoid */ verify( this.l.anchor.next == 0p ); |
---|
| 503 | /* paranoid */ verify( this.l.anchor.ts == MAX ); |
---|
| 504 | /* paranoid */ verify( mock_head(this) == this.l.prev ); |
---|
[c42b8a1] | 505 | } |
---|
| 506 | |
---|
| 507 | #if defined(CFA_HAVE_LINUX_LIBRSEQ) |
---|
| 508 | // No definition needed |
---|
| 509 | #elif defined(CFA_HAVE_LINUX_RSEQ_H) |
---|
| 510 | |
---|
| 511 | #if defined( __x86_64 ) || defined( __i386 ) |
---|
| 512 | #define RSEQ_SIG 0x53053053 |
---|
| 513 | #elif defined( __ARM_ARCH ) |
---|
| 514 | #ifdef __ARMEB__ |
---|
| 515 | #define RSEQ_SIG 0xf3def5e7 /* udf #24035 ; 0x5de3 (ARMv6+) */ |
---|
| 516 | #else |
---|
| 517 | #define RSEQ_SIG 0xe7f5def3 /* udf #24035 ; 0x5de3 */ |
---|
| 518 | #endif |
---|
| 519 | #endif |
---|
| 520 | |
---|
| 521 | extern void __disable_interrupts_hard(); |
---|
| 522 | extern void __enable_interrupts_hard(); |
---|
| 523 | |
---|
| 524 | static void __kernel_raw_rseq_register (void) { |
---|
| 525 | /* paranoid */ verify( __cfaabi_rseq.cpu_id == RSEQ_CPU_ID_UNINITIALIZED ); |
---|
| 526 | |
---|
| 527 | // int ret = syscall(__NR_rseq, &__cfaabi_rseq, sizeof(struct rseq), 0, (sigset_t *)0p, _NSIG / 8); |
---|
| 528 | int ret = syscall(__NR_rseq, &__cfaabi_rseq, sizeof(struct rseq), 0, RSEQ_SIG); |
---|
| 529 | if(ret != 0) { |
---|
| 530 | int e = errno; |
---|
| 531 | switch(e) { |
---|
| 532 | case EINVAL: abort("KERNEL ERROR: rseq register invalid argument"); |
---|
| 533 | case ENOSYS: abort("KERNEL ERROR: rseq register no supported"); |
---|
| 534 | case EFAULT: abort("KERNEL ERROR: rseq register with invalid argument"); |
---|
| 535 | case EBUSY : abort("KERNEL ERROR: rseq register already registered"); |
---|
| 536 | case EPERM : abort("KERNEL ERROR: rseq register sig argument on unregistration does not match the signature received on registration"); |
---|
| 537 | default: abort("KERNEL ERROR: rseq register unexpected return %d", e); |
---|
| 538 | } |
---|
| 539 | } |
---|
| 540 | } |
---|
| 541 | |
---|
| 542 | static void __kernel_raw_rseq_unregister(void) { |
---|
| 543 | /* paranoid */ verify( __cfaabi_rseq.cpu_id >= 0 ); |
---|
| 544 | |
---|
| 545 | // int ret = syscall(__NR_rseq, &__cfaabi_rseq, sizeof(struct rseq), RSEQ_FLAG_UNREGISTER, (sigset_t *)0p, _NSIG / 8); |
---|
| 546 | int ret = syscall(__NR_rseq, &__cfaabi_rseq, sizeof(struct rseq), RSEQ_FLAG_UNREGISTER, RSEQ_SIG); |
---|
| 547 | if(ret != 0) { |
---|
| 548 | int e = errno; |
---|
| 549 | switch(e) { |
---|
| 550 | case EINVAL: abort("KERNEL ERROR: rseq unregister invalid argument"); |
---|
| 551 | case ENOSYS: abort("KERNEL ERROR: rseq unregister no supported"); |
---|
| 552 | case EFAULT: abort("KERNEL ERROR: rseq unregister with invalid argument"); |
---|
| 553 | case EBUSY : abort("KERNEL ERROR: rseq unregister already registered"); |
---|
| 554 | case EPERM : abort("KERNEL ERROR: rseq unregister sig argument on unregistration does not match the signature received on registration"); |
---|
| 555 | default: abort("KERNEL ERROR: rseq unregisteunexpected return %d", e); |
---|
| 556 | } |
---|
| 557 | } |
---|
| 558 | } |
---|
| 559 | #else |
---|
| 560 | // No definition needed |
---|
| 561 | #endif |
---|