source: libcfa/src/concurrency/kernel.cfa@ b0c7419

ADT arm-eh ast-experimental enum forall-pointer-decay jacob/cs343-translation jenkins-sandbox new-ast new-ast-unique-expr pthread-emulation qualifiedEnum
Last change on this file since b0c7419 was b0c7419, checked in by Thierry Delisle <tdelisle@…>, 6 years ago

Yield now uses force_yield instead of park/unpark.
Final ctxswitch of a thread now uses ad-hoc mechanism instead of park/unpark.

  • Property mode set to 100644
File size: 29.4 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// kernel.c --
8//
9// Author : Thierry Delisle
10// Created On : Tue Jan 17 12:27:26 2017
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Thu Jan 30 22:55:50 2020
13// Update Count : 56
14//
15
16#define __cforall_thread__
17
18//C Includes
19#include <stddef.h>
20#include <errno.h>
21#include <string.h>
22extern "C" {
23#include <stdio.h>
24#include <fenv.h>
25#include <sys/resource.h>
26#include <signal.h>
27#include <unistd.h>
28#include <limits.h> // PTHREAD_STACK_MIN
29#include <sys/mman.h> // mprotect
30}
31
32//CFA Includes
33#include "time.hfa"
34#include "kernel_private.hfa"
35#include "preemption.hfa"
36#include "startup.hfa"
37
38//Private includes
39#define __CFA_INVOKE_PRIVATE__
40#include "invoke.h"
41
42//-----------------------------------------------------------------------------
43// Some assembly required
44#if defined( __i386 )
45 #define CtxGet( ctx ) \
46 __asm__ volatile ( \
47 "movl %%esp,%0\n"\
48 "movl %%ebp,%1\n"\
49 : "=rm" (ctx.SP),\
50 "=rm" (ctx.FP) \
51 )
52
53 // mxcr : SSE Status and Control bits (control bits are preserved across function calls)
54 // fcw : X87 FPU control word (preserved across function calls)
55 #define __x87_store \
56 uint32_t __mxcr; \
57 uint16_t __fcw; \
58 __asm__ volatile ( \
59 "stmxcsr %0\n" \
60 "fnstcw %1\n" \
61 : "=m" (__mxcr),\
62 "=m" (__fcw) \
63 )
64
65 #define __x87_load \
66 __asm__ volatile ( \
67 "fldcw %1\n" \
68 "ldmxcsr %0\n" \
69 ::"m" (__mxcr),\
70 "m" (__fcw) \
71 )
72
73#elif defined( __x86_64 )
74 #define CtxGet( ctx ) \
75 __asm__ volatile ( \
76 "movq %%rsp,%0\n"\
77 "movq %%rbp,%1\n"\
78 : "=rm" (ctx.SP),\
79 "=rm" (ctx.FP) \
80 )
81
82 #define __x87_store \
83 uint32_t __mxcr; \
84 uint16_t __fcw; \
85 __asm__ volatile ( \
86 "stmxcsr %0\n" \
87 "fnstcw %1\n" \
88 : "=m" (__mxcr),\
89 "=m" (__fcw) \
90 )
91
92 #define __x87_load \
93 __asm__ volatile ( \
94 "fldcw %1\n" \
95 "ldmxcsr %0\n" \
96 :: "m" (__mxcr),\
97 "m" (__fcw) \
98 )
99
100
101#elif defined( __ARM_ARCH )
102#define CtxGet( ctx ) __asm__ ( \
103 "mov %0,%%sp\n" \
104 "mov %1,%%r11\n" \
105 : "=rm" (ctx.SP), "=rm" (ctx.FP) )
106#else
107 #error unknown hardware architecture
108#endif
109
110//-----------------------------------------------------------------------------
111//Start and stop routine for the kernel, declared first to make sure they run first
112static void kernel_startup(void) __attribute__(( constructor( STARTUP_PRIORITY_KERNEL ) ));
113static void kernel_shutdown(void) __attribute__(( destructor ( STARTUP_PRIORITY_KERNEL ) ));
114
115//-----------------------------------------------------------------------------
116// Kernel storage
117KERNEL_STORAGE(cluster, mainCluster);
118KERNEL_STORAGE(processor, mainProcessor);
119KERNEL_STORAGE(thread_desc, mainThread);
120KERNEL_STORAGE(__stack_t, mainThreadCtx);
121
122cluster * mainCluster;
123processor * mainProcessor;
124thread_desc * mainThread;
125
126extern "C" {
127 struct { __dllist_t(cluster) list; __spinlock_t lock; } __cfa_dbg_global_clusters;
128}
129
130size_t __page_size = 0;
131
132//-----------------------------------------------------------------------------
133// Global state
134thread_local struct KernelThreadData kernelTLS __attribute__ ((tls_model ( "initial-exec" ))) = {
135 NULL, // cannot use 0p
136 NULL,
137 { 1, false, false },
138 6u //this should be seeded better but due to a bug calling rdtsc doesn't work
139};
140
141//-----------------------------------------------------------------------------
142// Struct to steal stack
143struct current_stack_info_t {
144 __stack_t * storage; // pointer to stack object
145 void * base; // base of stack
146 void * limit; // stack grows towards stack limit
147 void * context; // address of cfa_context_t
148};
149
150void ?{}( current_stack_info_t & this ) {
151 __stack_context_t ctx;
152 CtxGet( ctx );
153 this.base = ctx.FP;
154
155 rlimit r;
156 getrlimit( RLIMIT_STACK, &r);
157 size_t size = r.rlim_cur;
158
159 this.limit = (void *)(((intptr_t)this.base) - size);
160 this.context = &storage_mainThreadCtx;
161}
162
163//-----------------------------------------------------------------------------
164// Main thread construction
165
166void ?{}( coroutine_desc & this, current_stack_info_t * info) with( this ) {
167 stack.storage = info->storage;
168 with(*stack.storage) {
169 limit = info->limit;
170 base = info->base;
171 }
172 __attribute__((may_alias)) intptr_t * istorage = (intptr_t*) &stack.storage;
173 *istorage |= 0x1;
174 name = "Main Thread";
175 state = Start;
176 starter = 0p;
177 last = 0p;
178 cancellation = 0p;
179}
180
181void ?{}( thread_desc & this, current_stack_info_t * info) with( this ) {
182 state = Start;
183 self_cor{ info };
184 curr_cor = &self_cor;
185 curr_cluster = mainCluster;
186 self_mon.owner = &this;
187 self_mon.recursion = 1;
188 self_mon_p = &self_mon;
189 next = 0p;
190
191 node.next = 0p;
192 node.prev = 0p;
193 doregister(curr_cluster, this);
194
195 monitors{ &self_mon_p, 1, (fptr_t)0 };
196}
197
198//-----------------------------------------------------------------------------
199// Processor coroutine
200void ?{}(processorCtx_t & this) {
201
202}
203
204// Construct the processor context of non-main processors
205static void ?{}(processorCtx_t & this, processor * proc, current_stack_info_t * info) {
206 (this.__cor){ info };
207 this.proc = proc;
208}
209
210static void start(processor * this);
211void ?{}(processor & this, const char * name, cluster & cltr) with( this ) {
212 this.name = name;
213 this.cltr = &cltr;
214 terminated{ 0 };
215 destroyer = 0p;
216 do_terminate = false;
217 preemption_alarm = 0p;
218 pending_preemption = false;
219 runner.proc = &this;
220
221 idleLock{};
222
223 start( &this );
224}
225
226void ^?{}(processor & this) with( this ){
227 if( ! __atomic_load_n(&do_terminate, __ATOMIC_ACQUIRE) ) {
228 __cfaabi_dbg_print_safe("Kernel : core %p signaling termination\n", &this);
229
230 __atomic_store_n(&do_terminate, true, __ATOMIC_RELAXED);
231 wake( &this );
232
233 P( terminated );
234 verify( kernelTLS.this_processor != &this);
235 }
236
237 pthread_join( kernel_thread, 0p );
238 free( this.stack );
239}
240
241void ?{}(cluster & this, const char * name, Duration preemption_rate) with( this ) {
242 this.name = name;
243 this.preemption_rate = preemption_rate;
244 ready_queue{};
245 ready_queue_lock{};
246
247 procs{ __get };
248 idles{ __get };
249 threads{ __get };
250
251 doregister(this);
252}
253
254void ^?{}(cluster & this) {
255 unregister(this);
256}
257
258//=============================================================================================
259// Kernel Scheduling logic
260//=============================================================================================
261static thread_desc * nextThread(cluster * this);
262static void runThread(processor * this, thread_desc * dst);
263static void halt(processor * this);
264
265//Main of the processor contexts
266void main(processorCtx_t & runner) {
267 // Because of a bug, we couldn't initialized the seed on construction
268 // Do it here
269 kernelTLS.rand_seed ^= rdtscl();
270
271 processor * this = runner.proc;
272 verify(this);
273
274 __cfaabi_dbg_print_safe("Kernel : core %p starting\n", this);
275
276 doregister(this->cltr, this);
277
278 {
279 // Setup preemption data
280 preemption_scope scope = { this };
281
282 __cfaabi_dbg_print_safe("Kernel : core %p started\n", this);
283
284 thread_desc * readyThread = 0p;
285 for( unsigned int spin_count = 0; ! __atomic_load_n(&this->do_terminate, __ATOMIC_SEQ_CST); spin_count++ ) {
286 readyThread = nextThread( this->cltr );
287
288 if(readyThread) {
289 /* paranoid */ verify( ! kernelTLS.preemption_state.enabled );
290 /* paranoid */ verifyf( readyThread->state == Inactive || readyThread->state == Start || readyThread->preempted != __NO_PREEMPTION, "state : %d, preempted %d\n", readyThread->state, readyThread->preempted);
291 /* paranoid */ verifyf( readyThread->next == 0p, "Expected null got %p", readyThread->next );
292
293 runThread(this, readyThread);
294
295 /* paranoid */ verify( ! kernelTLS.preemption_state.enabled );
296
297 spin_count = 0;
298 } else {
299 // spin(this, &spin_count);
300 // halt(this);
301 }
302 }
303
304 __cfaabi_dbg_print_safe("Kernel : core %p stopping\n", this);
305 }
306
307 unregister(this->cltr, this);
308
309 V( this->terminated );
310
311 __cfaabi_dbg_print_safe("Kernel : core %p terminated\n", this);
312}
313
314static int * __volatile_errno() __attribute__((noinline));
315static int * __volatile_errno() { asm(""); return &errno; }
316
317// KERNEL ONLY
318// runThread runs a thread by context switching
319// from the processor coroutine to the target thread
320static void runThread(processor * this, thread_desc * thrd_dst) {
321 coroutine_desc * proc_cor = get_coroutine(this->runner);
322
323 // Update global state
324 kernelTLS.this_thread = thrd_dst;
325
326 // set state of processor coroutine to inactive
327 verify(proc_cor->state == Active);
328 proc_cor->state = Inactive;
329
330 // Actually run the thread
331 RUNNING: while(true) {
332 if(unlikely(thrd_dst->preempted)) {
333 thrd_dst->preempted = __NO_PREEMPTION;
334 verify(thrd_dst->state == Active || thrd_dst->state == Rerun);
335 } else {
336 verify(thrd_dst->state == Start || thrd_dst->state == Primed || thrd_dst->state == Inactive);
337 thrd_dst->state = Active;
338 }
339
340 /* paranoid */ verify( ! kernelTLS.preemption_state.enabled );
341
342 // set context switch to the thread that the processor is executing
343 verify( thrd_dst->context.SP );
344 CtxSwitch( &proc_cor->context, &thrd_dst->context );
345 // when CtxSwitch returns we are back in the processor coroutine
346
347 /* paranoid */ verify( ! kernelTLS.preemption_state.enabled );
348
349
350 // We just finished running a thread, there are a few things that could have happened.
351 // 1 - Regular case : the thread has blocked and now one has scheduled it yet.
352 // 2 - Racy case : the thread has blocked but someone has already tried to schedule it.
353 // 3 - Polite Racy case : the thread has blocked, someone has already tried to schedule it, but the thread is nice and wants to go through the ready-queue any way
354 // 4 - Preempted
355 // In case 1, we may have won a race so we can't write to the state again.
356 // In case 2, we lost the race so we now own the thread.
357 // In case 3, we lost the race but can just reschedule the thread.
358
359 if(unlikely(thrd_dst->preempted != __NO_PREEMPTION)) {
360 // The thread was preempted, reschedule it and reset the flag
361 ScheduleThread( thrd_dst );
362 break RUNNING;
363 }
364
365 // set state of processor coroutine to active and the thread to inactive
366 static_assert(sizeof(thrd_dst->state) == sizeof(int));
367 enum coroutine_state old_state = __atomic_exchange_n(&thrd_dst->state, Inactive, __ATOMIC_SEQ_CST);
368 switch(old_state) {
369 case Halted:
370 // The thread has halted, it should never be scheduled/run again, leave it back to Halted and move on
371 thrd_dst->state = Halted;
372
373 // We may need to wake someone up here since
374 unpark( this->destroyer );
375 this->destroyer = 0p;
376 break RUNNING;
377 case Active:
378 // This is case 1, the regular case, nothing more is needed
379 break RUNNING;
380 case Rerun:
381 // This is case 2, the racy case, someone tried to run this thread before it finished blocking
382 // In this case, just run it again.
383 continue RUNNING;
384 default:
385 // This makes no sense, something is wrong abort
386 abort("Finished running a thread that was Inactive/Start/Primed %d\n", old_state);
387 }
388 }
389
390 // Just before returning to the processor, set the processor coroutine to active
391 proc_cor->state = Active;
392}
393
394// KERNEL_ONLY
395void returnToKernel() {
396 /* paranoid */ verify( ! kernelTLS.preemption_state.enabled );
397 coroutine_desc * proc_cor = get_coroutine(kernelTLS.this_processor->runner);
398 thread_desc * thrd_src = kernelTLS.this_thread;
399
400 // Run the thread on this processor
401 {
402 int local_errno = *__volatile_errno();
403 #if defined( __i386 ) || defined( __x86_64 )
404 __x87_store;
405 #endif
406 verify( proc_cor->context.SP );
407 CtxSwitch( &thrd_src->context, &proc_cor->context );
408 #if defined( __i386 ) || defined( __x86_64 )
409 __x87_load;
410 #endif
411 *__volatile_errno() = local_errno;
412 }
413
414 /* paranoid */ verify( ! kernelTLS.preemption_state.enabled );
415}
416
417// KERNEL_ONLY
418// Context invoker for processors
419// This is the entry point for processors (kernel threads)
420// It effectively constructs a coroutine by stealing the pthread stack
421static void * CtxInvokeProcessor(void * arg) {
422 processor * proc = (processor *) arg;
423 kernelTLS.this_processor = proc;
424 kernelTLS.this_thread = 0p;
425 kernelTLS.preemption_state.[enabled, disable_count] = [false, 1];
426 // SKULLDUGGERY: We want to create a context for the processor coroutine
427 // which is needed for the 2-step context switch. However, there is no reason
428 // to waste the perfectly valid stack create by pthread.
429 current_stack_info_t info;
430 __stack_t ctx;
431 info.storage = &ctx;
432 (proc->runner){ proc, &info };
433
434 __cfaabi_dbg_print_safe("Coroutine : created stack %p\n", get_coroutine(proc->runner)->stack.storage);
435
436 //Set global state
437 kernelTLS.this_thread = 0p;
438
439 //We now have a proper context from which to schedule threads
440 __cfaabi_dbg_print_safe("Kernel : core %p created (%p, %p)\n", proc, &proc->runner, &ctx);
441
442 // SKULLDUGGERY: Since the coroutine doesn't have its own stack, we can't
443 // resume it to start it like it normally would, it will just context switch
444 // back to here. Instead directly call the main since we already are on the
445 // appropriate stack.
446 get_coroutine(proc->runner)->state = Active;
447 main( proc->runner );
448 get_coroutine(proc->runner)->state = Halted;
449
450 // Main routine of the core returned, the core is now fully terminated
451 __cfaabi_dbg_print_safe("Kernel : core %p main ended (%p)\n", proc, &proc->runner);
452
453 return 0p;
454}
455
456static void Abort( int ret, const char * func ) {
457 if ( ret ) { // pthread routines return errno values
458 abort( "%s : internal error, error(%d) %s.", func, ret, strerror( ret ) );
459 } // if
460} // Abort
461
462void * create_pthread( pthread_t * pthread, void * (*start)(void *), void * arg ) {
463 pthread_attr_t attr;
464
465 Abort( pthread_attr_init( &attr ), "pthread_attr_init" ); // initialize attribute
466
467 size_t stacksize;
468 // default stack size, normally defined by shell limit
469 Abort( pthread_attr_getstacksize( &attr, &stacksize ), "pthread_attr_getstacksize" );
470 assert( stacksize >= PTHREAD_STACK_MIN );
471
472 void * stack;
473 __cfaabi_dbg_debug_do(
474 stack = memalign( __page_size, stacksize + __page_size );
475 // pthread has no mechanism to create the guard page in user supplied stack.
476 if ( mprotect( stack, __page_size, PROT_NONE ) == -1 ) {
477 abort( "mprotect : internal error, mprotect failure, error(%d) %s.", errno, strerror( errno ) );
478 } // if
479 );
480 __cfaabi_dbg_no_debug_do(
481 stack = malloc( stacksize );
482 );
483
484 Abort( pthread_attr_setstack( &attr, stack, stacksize ), "pthread_attr_setstack" );
485
486 Abort( pthread_create( pthread, &attr, start, arg ), "pthread_create" );
487 return stack;
488}
489
490static void start(processor * this) {
491 __cfaabi_dbg_print_safe("Kernel : Starting core %p\n", this);
492
493 this->stack = create_pthread( &this->kernel_thread, CtxInvokeProcessor, (void *)this );
494
495 __cfaabi_dbg_print_safe("Kernel : core %p started\n", this);
496}
497
498// KERNEL_ONLY
499void kernel_first_resume( processor * this ) {
500 thread_desc * src = mainThread;
501 coroutine_desc * dst = get_coroutine(this->runner);
502
503 verify( ! kernelTLS.preemption_state.enabled );
504
505 kernelTLS.this_thread->curr_cor = dst;
506 __stack_prepare( &dst->stack, 65000 );
507 CtxStart(main, dst, this->runner, CtxInvokeCoroutine);
508
509 verify( ! kernelTLS.preemption_state.enabled );
510
511 dst->last = &src->self_cor;
512 dst->starter = dst->starter ? dst->starter : &src->self_cor;
513
514 // set state of current coroutine to inactive
515 src->state = src->state == Halted ? Halted : Inactive;
516
517 // context switch to specified coroutine
518 verify( dst->context.SP );
519 CtxSwitch( &src->context, &dst->context );
520 // when CtxSwitch returns we are back in the src coroutine
521
522 mainThread->curr_cor = &mainThread->self_cor;
523
524 // set state of new coroutine to active
525 src->state = Active;
526
527 verify( ! kernelTLS.preemption_state.enabled );
528}
529
530// KERNEL_ONLY
531void kernel_last_resume( processor * this ) {
532 coroutine_desc * src = &mainThread->self_cor;
533 coroutine_desc * dst = get_coroutine(this->runner);
534
535 verify( ! kernelTLS.preemption_state.enabled );
536 verify( dst->starter == src );
537 verify( dst->context.SP );
538
539 // context switch to the processor
540 CtxSwitch( &src->context, &dst->context );
541}
542
543//-----------------------------------------------------------------------------
544// Scheduler routines
545// KERNEL ONLY
546void ScheduleThread( thread_desc * thrd ) with( *thrd->curr_cluster ) {
547 /* paranoid */ verify( ! kernelTLS.preemption_state.enabled );
548 /* paranoid */ #if defined( __CFA_WITH_VERIFY__ )
549 /* paranoid */ if( thrd->state == Inactive || thrd->state == Start ) assertf( thrd->preempted == __NO_PREEMPTION,
550 "Error inactive thread marked as preempted, state %d, preemption %d\n", thrd->state, thrd->preempted );
551 /* paranoid */ if( thrd->preempted != __NO_PREEMPTION ) assertf(thrd->state == Active || thrd->state == Rerun,
552 "Error preempted thread marked as not currently running, state %d, preemption %d\n", thrd->state, thrd->preempted );
553 /* paranoid */ #endif
554 /* paranoid */ verifyf( thrd->next == 0p, "Expected null got %p", thrd->next );
555
556 lock ( ready_queue_lock __cfaabi_dbg_ctx2 );
557 bool was_empty = !(ready_queue != 0);
558 append( ready_queue, thrd );
559 unlock( ready_queue_lock );
560
561 if(was_empty) {
562 lock (proc_list_lock __cfaabi_dbg_ctx2);
563 if(idles) {
564 wake_fast(idles.head);
565 }
566 unlock (proc_list_lock);
567 }
568 else if( struct processor * idle = idles.head ) {
569 wake_fast(idle);
570 }
571
572 /* paranoid */ verify( ! kernelTLS.preemption_state.enabled );
573}
574
575// KERNEL ONLY
576static thread_desc * nextThread(cluster * this) with( *this ) {
577 /* paranoid */ verify( ! kernelTLS.preemption_state.enabled );
578
579 lock( ready_queue_lock __cfaabi_dbg_ctx2 );
580 thread_desc * head = pop_head( ready_queue );
581 unlock( ready_queue_lock );
582
583 /* paranoid */ verify( ! kernelTLS.preemption_state.enabled );
584 return head;
585}
586
587void unpark( thread_desc * thrd ) {
588 if( !thrd ) return;
589
590 disable_interrupts();
591 static_assert(sizeof(thrd->state) == sizeof(int));
592 enum coroutine_state old_state = __atomic_exchange_n(&thrd->state, Rerun, __ATOMIC_SEQ_CST);
593 switch(old_state) {
594 case Active:
595 // Wake won the race, the thread will reschedule/rerun itself
596 break;
597 case Inactive:
598 /* paranoid */ verify( ! thrd->preempted != __NO_PREEMPTION );
599
600 // Wake lost the race,
601 thrd->state = Inactive;
602 ScheduleThread( thrd );
603 break;
604 case Rerun:
605 abort("More than one thread attempted to schedule thread %p\n", thrd);
606 break;
607 case Halted:
608 case Start:
609 case Primed:
610 default:
611 // This makes no sense, something is wrong abort
612 abort();
613 }
614 enable_interrupts( __cfaabi_dbg_ctx );
615}
616
617void park( void ) {
618 /* paranoid */ verify( kernelTLS.preemption_state.enabled );
619 disable_interrupts();
620 /* paranoid */ verify( ! kernelTLS.preemption_state.enabled );
621 /* paranoid */ verify( kernelTLS.this_thread->preempted == __NO_PREEMPTION );
622
623 returnToKernel();
624
625 /* paranoid */ verify( ! kernelTLS.preemption_state.enabled );
626 enable_interrupts( __cfaabi_dbg_ctx );
627 /* paranoid */ verify( kernelTLS.preemption_state.enabled );
628
629}
630
631// KERNEL ONLY
632void __leave_thread() {
633 /* paranoid */ verify( ! kernelTLS.preemption_state.enabled );
634 returnToKernel();
635 abort();
636}
637
638// KERNEL ONLY
639bool force_yield( __Preemption_Reason reason ) {
640 /* paranoid */ verify( kernelTLS.preemption_state.enabled );
641 disable_interrupts();
642 /* paranoid */ verify( ! kernelTLS.preemption_state.enabled );
643
644 thread_desc * thrd = kernelTLS.this_thread;
645 /* paranoid */ verify(thrd->state == Active || thrd->state == Rerun);
646
647 // SKULLDUGGERY: It is possible that we are preempting this thread just before
648 // it was going to park itself. If that is the case and it is already using the
649 // intrusive fields then we can't use them to preempt the thread
650 // If that is the case, abandon the preemption.
651 bool preempted = false;
652 if(thrd->next == 0p) {
653 preempted = true;
654 thrd->preempted = reason;
655 returnToKernel();
656 }
657
658 /* paranoid */ verify( ! kernelTLS.preemption_state.enabled );
659 enable_interrupts_noPoll();
660 /* paranoid */ verify( kernelTLS.preemption_state.enabled );
661
662 return preempted;
663}
664
665//=============================================================================================
666// Kernel Setup logic
667//=============================================================================================
668//-----------------------------------------------------------------------------
669// Kernel boot procedures
670static void kernel_startup(void) {
671 verify( ! kernelTLS.preemption_state.enabled );
672 __cfaabi_dbg_print_safe("Kernel : Starting\n");
673
674 __page_size = sysconf( _SC_PAGESIZE );
675
676 __cfa_dbg_global_clusters.list{ __get };
677 __cfa_dbg_global_clusters.lock{};
678
679 // Initialize the main cluster
680 mainCluster = (cluster *)&storage_mainCluster;
681 (*mainCluster){"Main Cluster"};
682
683 __cfaabi_dbg_print_safe("Kernel : Main cluster ready\n");
684
685 // Start by initializing the main thread
686 // SKULLDUGGERY: the mainThread steals the process main thread
687 // which will then be scheduled by the mainProcessor normally
688 mainThread = (thread_desc *)&storage_mainThread;
689 current_stack_info_t info;
690 info.storage = (__stack_t*)&storage_mainThreadCtx;
691 (*mainThread){ &info };
692
693 __cfaabi_dbg_print_safe("Kernel : Main thread ready\n");
694
695
696
697 // Construct the processor context of the main processor
698 void ?{}(processorCtx_t & this, processor * proc) {
699 (this.__cor){ "Processor" };
700 this.__cor.starter = 0p;
701 this.proc = proc;
702 }
703
704 void ?{}(processor & this) with( this ) {
705 name = "Main Processor";
706 cltr = mainCluster;
707 terminated{ 0 };
708 do_terminate = false;
709 preemption_alarm = 0p;
710 pending_preemption = false;
711 kernel_thread = pthread_self();
712
713 runner{ &this };
714 __cfaabi_dbg_print_safe("Kernel : constructed main processor context %p\n", &runner);
715 }
716
717 // Initialize the main processor and the main processor ctx
718 // (the coroutine that contains the processing control flow)
719 mainProcessor = (processor *)&storage_mainProcessor;
720 (*mainProcessor){};
721
722 //initialize the global state variables
723 kernelTLS.this_processor = mainProcessor;
724 kernelTLS.this_thread = mainThread;
725
726 // Enable preemption
727 kernel_start_preemption();
728
729 // Add the main thread to the ready queue
730 // once resume is called on mainProcessor->runner the mainThread needs to be scheduled like any normal thread
731 ScheduleThread(mainThread);
732
733 // SKULLDUGGERY: Force a context switch to the main processor to set the main thread's context to the current UNIX
734 // context. Hence, the main thread does not begin through CtxInvokeThread, like all other threads. The trick here is that
735 // mainThread is on the ready queue when this call is made.
736 kernel_first_resume( kernelTLS.this_processor );
737
738
739
740 // THE SYSTEM IS NOW COMPLETELY RUNNING
741 __cfaabi_dbg_print_safe("Kernel : Started\n--------------------------------------------------\n\n");
742
743 verify( ! kernelTLS.preemption_state.enabled );
744 enable_interrupts( __cfaabi_dbg_ctx );
745 verify( TL_GET( preemption_state.enabled ) );
746}
747
748static void kernel_shutdown(void) {
749 __cfaabi_dbg_print_safe("\n--------------------------------------------------\nKernel : Shutting down\n");
750
751 verify( TL_GET( preemption_state.enabled ) );
752 disable_interrupts();
753 verify( ! kernelTLS.preemption_state.enabled );
754
755 // SKULLDUGGERY: Notify the mainProcessor it needs to terminates.
756 // When its coroutine terminates, it return control to the mainThread
757 // which is currently here
758 __atomic_store_n(&mainProcessor->do_terminate, true, __ATOMIC_RELEASE);
759 kernel_last_resume( kernelTLS.this_processor );
760 mainThread->self_cor.state = Halted;
761
762 // THE SYSTEM IS NOW COMPLETELY STOPPED
763
764 // Disable preemption
765 kernel_stop_preemption();
766
767 // Destroy the main processor and its context in reverse order of construction
768 // These were manually constructed so we need manually destroy them
769 ^(mainProcessor->runner){};
770 ^(mainProcessor){};
771
772 // Final step, destroy the main thread since it is no longer needed
773 // Since we provided a stack to this taxk it will not destroy anything
774 ^(mainThread){};
775
776 ^(__cfa_dbg_global_clusters.list){};
777 ^(__cfa_dbg_global_clusters.lock){};
778
779 __cfaabi_dbg_print_safe("Kernel : Shutdown complete\n");
780}
781
782//=============================================================================================
783// Kernel Quiescing
784//=============================================================================================
785static void halt(processor * this) with( *this ) {
786 // verify( ! __atomic_load_n(&do_terminate, __ATOMIC_SEQ_CST) );
787
788 with( *cltr ) {
789 lock (proc_list_lock __cfaabi_dbg_ctx2);
790 remove (procs, *this);
791 push_front(idles, *this);
792 unlock (proc_list_lock);
793 }
794
795 __cfaabi_dbg_print_safe("Kernel : Processor %p ready to sleep\n", this);
796
797 wait( idleLock );
798
799 __cfaabi_dbg_print_safe("Kernel : Processor %p woke up and ready to run\n", this);
800
801 with( *cltr ) {
802 lock (proc_list_lock __cfaabi_dbg_ctx2);
803 remove (idles, *this);
804 push_front(procs, *this);
805 unlock (proc_list_lock);
806 }
807}
808
809//=============================================================================================
810// Unexpected Terminating logic
811//=============================================================================================
812static __spinlock_t kernel_abort_lock;
813static bool kernel_abort_called = false;
814
815void * kernel_abort(void) __attribute__ ((__nothrow__)) {
816 // abort cannot be recursively entered by the same or different processors because all signal handlers return when
817 // the globalAbort flag is true.
818 lock( kernel_abort_lock __cfaabi_dbg_ctx2 );
819
820 // first task to abort ?
821 if ( kernel_abort_called ) { // not first task to abort ?
822 unlock( kernel_abort_lock );
823
824 sigset_t mask;
825 sigemptyset( &mask );
826 sigaddset( &mask, SIGALRM ); // block SIGALRM signals
827 sigaddset( &mask, SIGUSR1 ); // block SIGALRM signals
828 sigsuspend( &mask ); // block the processor to prevent further damage during abort
829 _exit( EXIT_FAILURE ); // if processor unblocks before it is killed, terminate it
830 }
831 else {
832 kernel_abort_called = true;
833 unlock( kernel_abort_lock );
834 }
835
836 return kernelTLS.this_thread;
837}
838
839void kernel_abort_msg( void * kernel_data, char * abort_text, int abort_text_size ) {
840 thread_desc * thrd = kernel_data;
841
842 if(thrd) {
843 int len = snprintf( abort_text, abort_text_size, "Error occurred while executing thread %.256s (%p)", thrd->self_cor.name, thrd );
844 __cfaabi_bits_write( STDERR_FILENO, abort_text, len );
845
846 if ( &thrd->self_cor != thrd->curr_cor ) {
847 len = snprintf( abort_text, abort_text_size, " in coroutine %.256s (%p).\n", thrd->curr_cor->name, thrd->curr_cor );
848 __cfaabi_bits_write( STDERR_FILENO, abort_text, len );
849 }
850 else {
851 __cfaabi_bits_write( STDERR_FILENO, ".\n", 2 );
852 }
853 }
854 else {
855 int len = snprintf( abort_text, abort_text_size, "Error occurred outside of any thread.\n" );
856 __cfaabi_bits_write( STDERR_FILENO, abort_text, len );
857 }
858}
859
860int kernel_abort_lastframe( void ) __attribute__ ((__nothrow__)) {
861 return get_coroutine(kernelTLS.this_thread) == get_coroutine(mainThread) ? 4 : 2;
862}
863
864static __spinlock_t kernel_debug_lock;
865
866extern "C" {
867 void __cfaabi_bits_acquire() {
868 lock( kernel_debug_lock __cfaabi_dbg_ctx2 );
869 }
870
871 void __cfaabi_bits_release() {
872 unlock( kernel_debug_lock );
873 }
874}
875
876//=============================================================================================
877// Kernel Utilities
878//=============================================================================================
879//-----------------------------------------------------------------------------
880// Locks
881void ?{}( semaphore & this, int count = 1 ) {
882 (this.lock){};
883 this.count = count;
884 (this.waiting){};
885}
886void ^?{}(semaphore & this) {}
887
888void P(semaphore & this) with( this ){
889 lock( lock __cfaabi_dbg_ctx2 );
890 count -= 1;
891 if ( count < 0 ) {
892 // queue current task
893 append( waiting, kernelTLS.this_thread );
894
895 // atomically release spin lock and block
896 unlock( lock );
897 park();
898 }
899 else {
900 unlock( lock );
901 }
902}
903
904void V(semaphore & this) with( this ) {
905 thread_desc * thrd = 0p;
906 lock( lock __cfaabi_dbg_ctx2 );
907 count += 1;
908 if ( count <= 0 ) {
909 // remove task at head of waiting list
910 thrd = pop_head( waiting );
911 }
912
913 unlock( lock );
914
915 // make new owner
916 unpark( thrd );
917}
918
919//-----------------------------------------------------------------------------
920// Global Queues
921void doregister( cluster & cltr ) {
922 lock ( __cfa_dbg_global_clusters.lock __cfaabi_dbg_ctx2);
923 push_front( __cfa_dbg_global_clusters.list, cltr );
924 unlock ( __cfa_dbg_global_clusters.lock );
925}
926
927void unregister( cluster & cltr ) {
928 lock ( __cfa_dbg_global_clusters.lock __cfaabi_dbg_ctx2);
929 remove( __cfa_dbg_global_clusters.list, cltr );
930 unlock( __cfa_dbg_global_clusters.lock );
931}
932
933void doregister( cluster * cltr, thread_desc & thrd ) {
934 lock (cltr->thread_list_lock __cfaabi_dbg_ctx2);
935 cltr->nthreads += 1;
936 push_front(cltr->threads, thrd);
937 unlock (cltr->thread_list_lock);
938}
939
940void unregister( cluster * cltr, thread_desc & thrd ) {
941 lock (cltr->thread_list_lock __cfaabi_dbg_ctx2);
942 remove(cltr->threads, thrd );
943 cltr->nthreads -= 1;
944 unlock(cltr->thread_list_lock);
945}
946
947void doregister( cluster * cltr, processor * proc ) {
948 lock (cltr->proc_list_lock __cfaabi_dbg_ctx2);
949 cltr->nprocessors += 1;
950 push_front(cltr->procs, *proc);
951 unlock (cltr->proc_list_lock);
952}
953
954void unregister( cluster * cltr, processor * proc ) {
955 lock (cltr->proc_list_lock __cfaabi_dbg_ctx2);
956 remove(cltr->procs, *proc );
957 cltr->nprocessors -= 1;
958 unlock(cltr->proc_list_lock);
959}
960
961//-----------------------------------------------------------------------------
962// Debug
963__cfaabi_dbg_debug_do(
964 extern "C" {
965 void __cfaabi_dbg_record(__spinlock_t & this, const char * prev_name) {
966 this.prev_name = prev_name;
967 this.prev_thrd = kernelTLS.this_thread;
968 }
969 }
970)
971
972//-----------------------------------------------------------------------------
973// Debug
974bool threading_enabled(void) {
975 return true;
976}
977// Local Variables: //
978// mode: c //
979// tab-width: 4 //
980// End: //
Note: See TracBrowser for help on using the repository browser.