source: libcfa/src/concurrency/kernel.cfa@ 211228e0

ADT arm-eh ast-experimental cleanup-dtors enum forall-pointer-decay jacob/cs343-translation jenkins-sandbox new-ast new-ast-unique-expr pthread-emulation qualifiedEnum
Last change on this file since 211228e0 was 8c01e1b, checked in by tdelisle <tdelisle@…>, 7 years ago

UserStack flag on coroutines is now folded into the storage pointer

  • Property mode set to 100644
File size: 23.5 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// kernel.c --
8//
9// Author : Thierry Delisle
10// Created On : Tue Jan 17 12:27:26 2017
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Mon Apr 9 16:11:46 2018
13// Update Count : 24
14//
15
16//C Includes
17#include <stddef.h>
18#include <errno.h>
19#include <string.h>
20extern "C" {
21#include <stdio.h>
22#include <fenv.h>
23#include <sys/resource.h>
24#include <signal.h>
25#include <unistd.h>
26}
27
28//CFA Includes
29#include "time.hfa"
30#include "kernel_private.hfa"
31#include "preemption.hfa"
32#include "startup.hfa"
33
34//Private includes
35#define __CFA_INVOKE_PRIVATE__
36#include "invoke.h"
37
38//Start and stop routine for the kernel, declared first to make sure they run first
39static void kernel_startup(void) __attribute__(( constructor( STARTUP_PRIORITY_KERNEL ) ));
40static void kernel_shutdown(void) __attribute__(( destructor ( STARTUP_PRIORITY_KERNEL ) ));
41
42//-----------------------------------------------------------------------------
43// Kernel storage
44KERNEL_STORAGE(cluster, mainCluster);
45KERNEL_STORAGE(processor, mainProcessor);
46KERNEL_STORAGE(thread_desc, mainThread);
47KERNEL_STORAGE(__stack_t, mainThreadCtx);
48
49cluster * mainCluster;
50processor * mainProcessor;
51thread_desc * mainThread;
52
53extern "C" {
54struct { __dllist_t(cluster) list; __spinlock_t lock; } __cfa_dbg_global_clusters;
55}
56
57size_t __page_size = 0;
58
59//-----------------------------------------------------------------------------
60// Global state
61thread_local struct KernelThreadData kernelTLS __attribute__ ((tls_model ( "initial-exec" ))) = {
62 NULL,
63 NULL,
64 { 1, false, false }
65};
66
67//-----------------------------------------------------------------------------
68// Struct to steal stack
69struct current_stack_info_t {
70 __stack_t * storage; // pointer to stack object
71 unsigned int size; // size of stack
72 void *base; // base of stack
73 void *limit; // stack grows towards stack limit
74 void *context; // address of cfa_context_t
75};
76
77void ?{}( current_stack_info_t & this ) {
78 __stack_context_t ctx;
79 CtxGet( ctx );
80 this.base = ctx.FP;
81
82 rlimit r;
83 getrlimit( RLIMIT_STACK, &r);
84 this.size = r.rlim_cur;
85
86 this.limit = (void *)(((intptr_t)this.base) - this.size);
87 this.context = &storage_mainThreadCtx;
88}
89
90//-----------------------------------------------------------------------------
91// Main thread construction
92
93void ?{}( coroutine_desc & this, current_stack_info_t * info) with( this ) {
94 context.errno_ = 0;
95 stack.storage = info->storage;
96 with(*stack.storage) {
97 size = info->size;
98 limit = info->limit;
99 base = info->base;
100 }
101 *((intptr_t*)&stack.storage) |= 0x1;
102 name = "Main Thread";
103 state = Start;
104 starter = NULL;
105 last = NULL;
106 cancellation = NULL;
107}
108
109void ?{}( thread_desc & this, current_stack_info_t * info) with( this ) {
110 self_cor{ info };
111 curr_cor = &self_cor;
112 curr_cluster = mainCluster;
113 self_mon.owner = &this;
114 self_mon.recursion = 1;
115 self_mon_p = &self_mon;
116 next = NULL;
117
118 node.next = NULL;
119 node.prev = NULL;
120 doregister(curr_cluster, this);
121
122 monitors{ &self_mon_p, 1, (fptr_t)0 };
123}
124
125//-----------------------------------------------------------------------------
126// Processor coroutine
127void ?{}(processorCtx_t & this) {
128
129}
130
131// Construct the processor context of non-main processors
132static void ?{}(processorCtx_t & this, processor * proc, current_stack_info_t * info) {
133 (this.__cor){ info };
134 this.proc = proc;
135}
136
137static void start(processor * this);
138void ?{}(processor & this, const char * name, cluster & cltr) with( this ) {
139 this.name = name;
140 this.cltr = &cltr;
141 terminated{ 0 };
142 do_terminate = false;
143 preemption_alarm = NULL;
144 pending_preemption = false;
145 runner.proc = &this;
146
147 idleLock{};
148
149 start( &this );
150}
151
152void ^?{}(processor & this) with( this ){
153 if( ! __atomic_load_n(&do_terminate, __ATOMIC_ACQUIRE) ) {
154 __cfaabi_dbg_print_safe("Kernel : core %p signaling termination\n", &this);
155
156 __atomic_store_n(&do_terminate, true, __ATOMIC_RELAXED);
157 wake( &this );
158
159 P( terminated );
160 verify( kernelTLS.this_processor != &this);
161 }
162
163 pthread_join( kernel_thread, NULL );
164}
165
166void ?{}(cluster & this, const char * name, Duration preemption_rate) with( this ) {
167 this.name = name;
168 this.preemption_rate = preemption_rate;
169 ready_queue{};
170 ready_queue_lock{};
171
172 procs{ __get };
173 idles{ __get };
174 threads{ __get };
175
176 doregister(this);
177}
178
179void ^?{}(cluster & this) {
180 unregister(this);
181}
182
183//=============================================================================================
184// Kernel Scheduling logic
185//=============================================================================================
186static void runThread(processor * this, thread_desc * dst);
187static void finishRunning(processor * this);
188static void halt(processor * this);
189
190//Main of the processor contexts
191void main(processorCtx_t & runner) {
192 processor * this = runner.proc;
193 verify(this);
194
195 __cfaabi_dbg_print_safe("Kernel : core %p starting\n", this);
196
197 doregister(this->cltr, this);
198
199 {
200 // Setup preemption data
201 preemption_scope scope = { this };
202
203 __cfaabi_dbg_print_safe("Kernel : core %p started\n", this);
204
205 thread_desc * readyThread = NULL;
206 for( unsigned int spin_count = 0; ! __atomic_load_n(&this->do_terminate, __ATOMIC_SEQ_CST); spin_count++ )
207 {
208 readyThread = nextThread( this->cltr );
209
210 if(readyThread)
211 {
212 verify( ! kernelTLS.preemption_state.enabled );
213
214 runThread(this, readyThread);
215
216 verify( ! kernelTLS.preemption_state.enabled );
217
218 //Some actions need to be taken from the kernel
219 finishRunning(this);
220
221 spin_count = 0;
222 }
223 else
224 {
225 // spin(this, &spin_count);
226 halt(this);
227 }
228 }
229
230 __cfaabi_dbg_print_safe("Kernel : core %p stopping\n", this);
231 }
232
233 unregister(this->cltr, this);
234
235 V( this->terminated );
236
237 __cfaabi_dbg_print_safe("Kernel : core %p terminated\n", this);
238}
239
240// KERNEL ONLY
241// runThread runs a thread by context switching
242// from the processor coroutine to the target thread
243static void runThread(processor * this, thread_desc * dst) {
244 assert(dst->curr_cor);
245 coroutine_desc * proc_cor = get_coroutine(this->runner);
246 coroutine_desc * thrd_cor = dst->curr_cor;
247
248 // Reset the terminating actions here
249 this->finish.action_code = No_Action;
250
251 // Update global state
252 kernelTLS.this_thread = dst;
253
254 // Context Switch to the thread
255 ThreadCtxSwitch(proc_cor, thrd_cor);
256 // when ThreadCtxSwitch returns we are back in the processor coroutine
257}
258
259// KERNEL_ONLY
260static void returnToKernel() {
261 coroutine_desc * proc_cor = get_coroutine(kernelTLS.this_processor->runner);
262 coroutine_desc * thrd_cor = kernelTLS.this_thread->curr_cor;
263 ThreadCtxSwitch(thrd_cor, proc_cor);
264}
265
266// KERNEL_ONLY
267// Once a thread has finished running, some of
268// its final actions must be executed from the kernel
269static void finishRunning(processor * this) with( this->finish ) {
270 verify( ! kernelTLS.preemption_state.enabled );
271 choose( action_code ) {
272 case No_Action:
273 break;
274 case Release:
275 unlock( *lock );
276 case Schedule:
277 ScheduleThread( thrd );
278 case Release_Schedule:
279 unlock( *lock );
280 ScheduleThread( thrd );
281 case Release_Multi:
282 for(int i = 0; i < lock_count; i++) {
283 unlock( *locks[i] );
284 }
285 case Release_Multi_Schedule:
286 for(int i = 0; i < lock_count; i++) {
287 unlock( *locks[i] );
288 }
289 for(int i = 0; i < thrd_count; i++) {
290 ScheduleThread( thrds[i] );
291 }
292 case Callback:
293 callback();
294 default:
295 abort("KERNEL ERROR: Unexpected action to run after thread");
296 }
297}
298
299// KERNEL_ONLY
300// Context invoker for processors
301// This is the entry point for processors (kernel threads)
302// It effectively constructs a coroutine by stealing the pthread stack
303static void * CtxInvokeProcessor(void * arg) {
304 processor * proc = (processor *) arg;
305 kernelTLS.this_processor = proc;
306 kernelTLS.this_thread = NULL;
307 kernelTLS.preemption_state.[enabled, disable_count] = [false, 1];
308 // SKULLDUGGERY: We want to create a context for the processor coroutine
309 // which is needed for the 2-step context switch. However, there is no reason
310 // to waste the perfectly valid stack create by pthread.
311 current_stack_info_t info;
312 __stack_t ctx;
313 info.storage = &ctx;
314 (proc->runner){ proc, &info };
315
316 __cfaabi_dbg_print_safe("Coroutine : created stack %p\n", get_coroutine(proc->runner)->stack.storage);
317
318 //Set global state
319 kernelTLS.this_thread = NULL;
320
321 //We now have a proper context from which to schedule threads
322 __cfaabi_dbg_print_safe("Kernel : core %p created (%p, %p)\n", proc, &proc->runner, &ctx);
323
324 // SKULLDUGGERY: Since the coroutine doesn't have its own stack, we can't
325 // resume it to start it like it normally would, it will just context switch
326 // back to here. Instead directly call the main since we already are on the
327 // appropriate stack.
328 get_coroutine(proc->runner)->state = Active;
329 main( proc->runner );
330 get_coroutine(proc->runner)->state = Halted;
331
332 // Main routine of the core returned, the core is now fully terminated
333 __cfaabi_dbg_print_safe("Kernel : core %p main ended (%p)\n", proc, &proc->runner);
334
335 return NULL;
336}
337
338static void start(processor * this) {
339 __cfaabi_dbg_print_safe("Kernel : Starting core %p\n", this);
340
341 pthread_create( &this->kernel_thread, NULL, CtxInvokeProcessor, (void*)this );
342
343 __cfaabi_dbg_print_safe("Kernel : core %p started\n", this);
344}
345
346// KERNEL_ONLY
347void kernel_first_resume(processor * this) {
348 coroutine_desc * src = mainThread->curr_cor;
349 coroutine_desc * dst = get_coroutine(this->runner);
350
351 verify( ! kernelTLS.preemption_state.enabled );
352
353 __stack_prepare( &dst->stack, 65000 );
354 CtxStart(&this->runner, CtxInvokeCoroutine);
355
356 verify( ! kernelTLS.preemption_state.enabled );
357
358 dst->last = src;
359 dst->starter = dst->starter ? dst->starter : src;
360
361 // set state of current coroutine to inactive
362 src->state = src->state == Halted ? Halted : Inactive;
363
364 // SKULLDUGGERY normally interrupts are enable before leaving a coroutine ctxswitch.
365 // Therefore, when first creating a coroutine, interrupts are enable before calling the main.
366 // This is consistent with thread creation. However, when creating the main processor coroutine,
367 // we wan't interrupts to be disabled. Therefore, we double-disable interrupts here so they will
368 // stay disabled.
369 disable_interrupts();
370
371 // context switch to specified coroutine
372 CtxSwitch( &src->context, &dst->context );
373 // when CtxSwitch returns we are back in the src coroutine
374
375 // set state of new coroutine to active
376 src->state = Active;
377
378 verify( ! kernelTLS.preemption_state.enabled );
379}
380
381//-----------------------------------------------------------------------------
382// Scheduler routines
383
384// KERNEL ONLY
385void ScheduleThread( thread_desc * thrd ) {
386 verify( thrd );
387 verify( thrd->self_cor.state != Halted );
388
389 verify( ! kernelTLS.preemption_state.enabled );
390
391 verifyf( thrd->next == NULL, "Expected null got %p", thrd->next );
392
393 with( *thrd->curr_cluster ) {
394 lock ( ready_queue_lock __cfaabi_dbg_ctx2 );
395 bool was_empty = !(ready_queue != 0);
396 append( ready_queue, thrd );
397 unlock( ready_queue_lock );
398
399 if(was_empty) {
400 lock (proc_list_lock __cfaabi_dbg_ctx2);
401 if(idles) {
402 wake_fast(idles.head);
403 }
404 unlock (proc_list_lock);
405 }
406 else if( struct processor * idle = idles.head ) {
407 wake_fast(idle);
408 }
409
410 }
411
412 verify( ! kernelTLS.preemption_state.enabled );
413}
414
415// KERNEL ONLY
416thread_desc * nextThread(cluster * this) with( *this ) {
417 verify( ! kernelTLS.preemption_state.enabled );
418 lock( ready_queue_lock __cfaabi_dbg_ctx2 );
419 thread_desc * head = pop_head( ready_queue );
420 unlock( ready_queue_lock );
421 verify( ! kernelTLS.preemption_state.enabled );
422 return head;
423}
424
425void BlockInternal() {
426 disable_interrupts();
427 verify( ! kernelTLS.preemption_state.enabled );
428 returnToKernel();
429 verify( ! kernelTLS.preemption_state.enabled );
430 enable_interrupts( __cfaabi_dbg_ctx );
431}
432
433void BlockInternal( __spinlock_t * lock ) {
434 disable_interrupts();
435 with( *kernelTLS.this_processor ) {
436 finish.action_code = Release;
437 finish.lock = lock;
438 }
439
440 verify( ! kernelTLS.preemption_state.enabled );
441 returnToKernel();
442 verify( ! kernelTLS.preemption_state.enabled );
443
444 enable_interrupts( __cfaabi_dbg_ctx );
445}
446
447void BlockInternal( thread_desc * thrd ) {
448 disable_interrupts();
449 with( * kernelTLS.this_processor ) {
450 finish.action_code = Schedule;
451 finish.thrd = thrd;
452 }
453
454 verify( ! kernelTLS.preemption_state.enabled );
455 returnToKernel();
456 verify( ! kernelTLS.preemption_state.enabled );
457
458 enable_interrupts( __cfaabi_dbg_ctx );
459}
460
461void BlockInternal( __spinlock_t * lock, thread_desc * thrd ) {
462 assert(thrd);
463 disable_interrupts();
464 with( * kernelTLS.this_processor ) {
465 finish.action_code = Release_Schedule;
466 finish.lock = lock;
467 finish.thrd = thrd;
468 }
469
470 verify( ! kernelTLS.preemption_state.enabled );
471 returnToKernel();
472 verify( ! kernelTLS.preemption_state.enabled );
473
474 enable_interrupts( __cfaabi_dbg_ctx );
475}
476
477void BlockInternal(__spinlock_t * locks [], unsigned short count) {
478 disable_interrupts();
479 with( * kernelTLS.this_processor ) {
480 finish.action_code = Release_Multi;
481 finish.locks = locks;
482 finish.lock_count = count;
483 }
484
485 verify( ! kernelTLS.preemption_state.enabled );
486 returnToKernel();
487 verify( ! kernelTLS.preemption_state.enabled );
488
489 enable_interrupts( __cfaabi_dbg_ctx );
490}
491
492void BlockInternal(__spinlock_t * locks [], unsigned short lock_count, thread_desc * thrds [], unsigned short thrd_count) {
493 disable_interrupts();
494 with( *kernelTLS.this_processor ) {
495 finish.action_code = Release_Multi_Schedule;
496 finish.locks = locks;
497 finish.lock_count = lock_count;
498 finish.thrds = thrds;
499 finish.thrd_count = thrd_count;
500 }
501
502 verify( ! kernelTLS.preemption_state.enabled );
503 returnToKernel();
504 verify( ! kernelTLS.preemption_state.enabled );
505
506 enable_interrupts( __cfaabi_dbg_ctx );
507}
508
509void BlockInternal(__finish_callback_fptr_t callback) {
510 disable_interrupts();
511 with( *kernelTLS.this_processor ) {
512 finish.action_code = Callback;
513 finish.callback = callback;
514 }
515
516 verify( ! kernelTLS.preemption_state.enabled );
517 returnToKernel();
518 verify( ! kernelTLS.preemption_state.enabled );
519
520 enable_interrupts( __cfaabi_dbg_ctx );
521}
522
523// KERNEL ONLY
524void LeaveThread(__spinlock_t * lock, thread_desc * thrd) {
525 verify( ! kernelTLS.preemption_state.enabled );
526 with( * kernelTLS.this_processor ) {
527 finish.action_code = thrd ? Release_Schedule : Release;
528 finish.lock = lock;
529 finish.thrd = thrd;
530 }
531
532 returnToKernel();
533}
534
535//=============================================================================================
536// Kernel Setup logic
537//=============================================================================================
538//-----------------------------------------------------------------------------
539// Kernel boot procedures
540static void kernel_startup(void) {
541 verify( ! kernelTLS.preemption_state.enabled );
542 __cfaabi_dbg_print_safe("Kernel : Starting\n");
543
544 __page_size = sysconf( _SC_PAGESIZE );
545
546 __cfa_dbg_global_clusters.list{ __get };
547 __cfa_dbg_global_clusters.lock{};
548
549 // Initialize the main cluster
550 mainCluster = (cluster *)&storage_mainCluster;
551 (*mainCluster){"Main Cluster"};
552
553 __cfaabi_dbg_print_safe("Kernel : Main cluster ready\n");
554
555 // Start by initializing the main thread
556 // SKULLDUGGERY: the mainThread steals the process main thread
557 // which will then be scheduled by the mainProcessor normally
558 mainThread = (thread_desc *)&storage_mainThread;
559 current_stack_info_t info;
560 info.storage = (__stack_t*)&storage_mainThreadCtx;
561 (*mainThread){ &info };
562
563 __cfaabi_dbg_print_safe("Kernel : Main thread ready\n");
564
565
566
567 // Construct the processor context of the main processor
568 void ?{}(processorCtx_t & this, processor * proc) {
569 (this.__cor){ "Processor" };
570 this.__cor.starter = NULL;
571 this.proc = proc;
572 }
573
574 void ?{}(processor & this) with( this ) {
575 name = "Main Processor";
576 cltr = mainCluster;
577 terminated{ 0 };
578 do_terminate = false;
579 preemption_alarm = NULL;
580 pending_preemption = false;
581 kernel_thread = pthread_self();
582
583 runner{ &this };
584 __cfaabi_dbg_print_safe("Kernel : constructed main processor context %p\n", &runner);
585 }
586
587 // Initialize the main processor and the main processor ctx
588 // (the coroutine that contains the processing control flow)
589 mainProcessor = (processor *)&storage_mainProcessor;
590 (*mainProcessor){};
591
592 //initialize the global state variables
593 kernelTLS.this_processor = mainProcessor;
594 kernelTLS.this_thread = mainThread;
595
596 // Enable preemption
597 kernel_start_preemption();
598
599 // Add the main thread to the ready queue
600 // once resume is called on mainProcessor->runner the mainThread needs to be scheduled like any normal thread
601 ScheduleThread(mainThread);
602
603 // SKULLDUGGERY: Force a context switch to the main processor to set the main thread's context to the current UNIX
604 // context. Hence, the main thread does not begin through CtxInvokeThread, like all other threads. The trick here is that
605 // mainThread is on the ready queue when this call is made.
606 kernel_first_resume( kernelTLS.this_processor );
607
608
609
610 // THE SYSTEM IS NOW COMPLETELY RUNNING
611 __cfaabi_dbg_print_safe("Kernel : Started\n--------------------------------------------------\n\n");
612
613 verify( ! kernelTLS.preemption_state.enabled );
614 enable_interrupts( __cfaabi_dbg_ctx );
615 verify( TL_GET( preemption_state.enabled ) );
616}
617
618static void kernel_shutdown(void) {
619 __cfaabi_dbg_print_safe("\n--------------------------------------------------\nKernel : Shutting down\n");
620
621 verify( TL_GET( preemption_state.enabled ) );
622 disable_interrupts();
623 verify( ! kernelTLS.preemption_state.enabled );
624
625 // SKULLDUGGERY: Notify the mainProcessor it needs to terminates.
626 // When its coroutine terminates, it return control to the mainThread
627 // which is currently here
628 __atomic_store_n(&mainProcessor->do_terminate, true, __ATOMIC_RELEASE);
629 returnToKernel();
630 mainThread->self_cor.state = Halted;
631
632 // THE SYSTEM IS NOW COMPLETELY STOPPED
633
634 // Disable preemption
635 kernel_stop_preemption();
636
637 // Destroy the main processor and its context in reverse order of construction
638 // These were manually constructed so we need manually destroy them
639 ^(mainProcessor->runner){};
640 ^(mainProcessor){};
641
642 // Final step, destroy the main thread since it is no longer needed
643 // Since we provided a stack to this taxk it will not destroy anything
644 ^(mainThread){};
645
646 ^(__cfa_dbg_global_clusters.list){};
647 ^(__cfa_dbg_global_clusters.lock){};
648
649 __cfaabi_dbg_print_safe("Kernel : Shutdown complete\n");
650}
651
652//=============================================================================================
653// Kernel Quiescing
654//=============================================================================================
655static void halt(processor * this) with( *this ) {
656 // verify( ! __atomic_load_n(&do_terminate, __ATOMIC_SEQ_CST) );
657
658 with( *cltr ) {
659 lock (proc_list_lock __cfaabi_dbg_ctx2);
660 remove (procs, *this);
661 push_front(idles, *this);
662 unlock (proc_list_lock);
663 }
664
665 __cfaabi_dbg_print_safe("Kernel : Processor %p ready to sleep\n", this);
666
667 wait( idleLock );
668
669 __cfaabi_dbg_print_safe("Kernel : Processor %p woke up and ready to run\n", this);
670
671 with( *cltr ) {
672 lock (proc_list_lock __cfaabi_dbg_ctx2);
673 remove (idles, *this);
674 push_front(procs, *this);
675 unlock (proc_list_lock);
676 }
677}
678
679//=============================================================================================
680// Unexpected Terminating logic
681//=============================================================================================
682static __spinlock_t kernel_abort_lock;
683static bool kernel_abort_called = false;
684
685void * kernel_abort(void) __attribute__ ((__nothrow__)) {
686 // abort cannot be recursively entered by the same or different processors because all signal handlers return when
687 // the globalAbort flag is true.
688 lock( kernel_abort_lock __cfaabi_dbg_ctx2 );
689
690 // first task to abort ?
691 if ( kernel_abort_called ) { // not first task to abort ?
692 unlock( kernel_abort_lock );
693
694 sigset_t mask;
695 sigemptyset( &mask );
696 sigaddset( &mask, SIGALRM ); // block SIGALRM signals
697 sigsuspend( &mask ); // block the processor to prevent further damage during abort
698 _exit( EXIT_FAILURE ); // if processor unblocks before it is killed, terminate it
699 }
700 else {
701 kernel_abort_called = true;
702 unlock( kernel_abort_lock );
703 }
704
705 return kernelTLS.this_thread;
706}
707
708void kernel_abort_msg( void * kernel_data, char * abort_text, int abort_text_size ) {
709 thread_desc * thrd = kernel_data;
710
711 if(thrd) {
712 int len = snprintf( abort_text, abort_text_size, "Error occurred while executing thread %.256s (%p)", thrd->self_cor.name, thrd );
713 __cfaabi_dbg_bits_write( abort_text, len );
714
715 if ( &thrd->self_cor != thrd->curr_cor ) {
716 len = snprintf( abort_text, abort_text_size, " in coroutine %.256s (%p).\n", thrd->curr_cor->name, thrd->curr_cor );
717 __cfaabi_dbg_bits_write( abort_text, len );
718 }
719 else {
720 __cfaabi_dbg_bits_write( ".\n", 2 );
721 }
722 }
723 else {
724 int len = snprintf( abort_text, abort_text_size, "Error occurred outside of any thread.\n" );
725 __cfaabi_dbg_bits_write( abort_text, len );
726 }
727}
728
729int kernel_abort_lastframe( void ) __attribute__ ((__nothrow__)) {
730 return get_coroutine(kernelTLS.this_thread) == get_coroutine(mainThread) ? 4 : 2;
731}
732
733static __spinlock_t kernel_debug_lock;
734
735extern "C" {
736 void __cfaabi_dbg_bits_acquire() {
737 lock( kernel_debug_lock __cfaabi_dbg_ctx2 );
738 }
739
740 void __cfaabi_dbg_bits_release() {
741 unlock( kernel_debug_lock );
742 }
743}
744
745//=============================================================================================
746// Kernel Utilities
747//=============================================================================================
748//-----------------------------------------------------------------------------
749// Locks
750void ?{}( semaphore & this, int count = 1 ) {
751 (this.lock){};
752 this.count = count;
753 (this.waiting){};
754}
755void ^?{}(semaphore & this) {}
756
757void P(semaphore & this) with( this ){
758 lock( lock __cfaabi_dbg_ctx2 );
759 count -= 1;
760 if ( count < 0 ) {
761 // queue current task
762 append( waiting, kernelTLS.this_thread );
763
764 // atomically release spin lock and block
765 BlockInternal( &lock );
766 }
767 else {
768 unlock( lock );
769 }
770}
771
772void V(semaphore & this) with( this ) {
773 thread_desc * thrd = NULL;
774 lock( lock __cfaabi_dbg_ctx2 );
775 count += 1;
776 if ( count <= 0 ) {
777 // remove task at head of waiting list
778 thrd = pop_head( waiting );
779 }
780
781 unlock( lock );
782
783 // make new owner
784 WakeThread( thrd );
785}
786
787//-----------------------------------------------------------------------------
788// Global Queues
789void doregister( cluster & cltr ) {
790 lock ( __cfa_dbg_global_clusters.lock __cfaabi_dbg_ctx2);
791 push_front( __cfa_dbg_global_clusters.list, cltr );
792 unlock ( __cfa_dbg_global_clusters.lock );
793}
794
795void unregister( cluster & cltr ) {
796 lock ( __cfa_dbg_global_clusters.lock __cfaabi_dbg_ctx2);
797 remove( __cfa_dbg_global_clusters.list, cltr );
798 unlock( __cfa_dbg_global_clusters.lock );
799}
800
801void doregister( cluster * cltr, thread_desc & thrd ) {
802 lock (cltr->thread_list_lock __cfaabi_dbg_ctx2);
803 push_front(cltr->threads, thrd);
804 unlock (cltr->thread_list_lock);
805}
806
807void unregister( cluster * cltr, thread_desc & thrd ) {
808 lock (cltr->thread_list_lock __cfaabi_dbg_ctx2);
809 remove(cltr->threads, thrd );
810 unlock(cltr->thread_list_lock);
811}
812
813void doregister( cluster * cltr, processor * proc ) {
814 lock (cltr->proc_list_lock __cfaabi_dbg_ctx2);
815 push_front(cltr->procs, *proc);
816 unlock (cltr->proc_list_lock);
817}
818
819void unregister( cluster * cltr, processor * proc ) {
820 lock (cltr->proc_list_lock __cfaabi_dbg_ctx2);
821 remove(cltr->procs, *proc );
822 unlock(cltr->proc_list_lock);
823}
824
825//-----------------------------------------------------------------------------
826// Debug
827__cfaabi_dbg_debug_do(
828 extern "C" {
829 void __cfaabi_dbg_record(__spinlock_t & this, const char * prev_name) {
830 this.prev_name = prev_name;
831 this.prev_thrd = kernelTLS.this_thread;
832 }
833 }
834)
835// Local Variables: //
836// mode: c //
837// tab-width: 4 //
838// End: //
Note: See TracBrowser for help on using the repository browser.