source: libcfa/src/concurrency/io.cfa@ f815c46

ADT arm-eh ast-experimental enum forall-pointer-decay jacob/cs343-translation new-ast-unique-expr pthread-emulation qualifiedEnum
Last change on this file since f815c46 was dddb3dd0, checked in by Thierry Delisle <tdelisle@…>, 5 years ago

Changed io to use ring per kernel threads.

  • Property mode set to 100644
File size: 14.6 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2020 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// io.cfa --
8//
9// Author : Thierry Delisle
10// Created On : Thu Apr 23 17:31:00 2020
11// Last Modified By :
12// Last Modified On :
13// Update Count :
14//
15
16#define __cforall_thread__
17
18#if defined(__CFA_DEBUG__)
19 // #define __CFA_DEBUG_PRINT_IO__
20 // #define __CFA_DEBUG_PRINT_IO_CORE__
21#endif
22
23
24#if defined(CFA_HAVE_LINUX_IO_URING_H)
25 #define _GNU_SOURCE /* See feature_test_macros(7) */
26 #include <errno.h>
27 #include <signal.h>
28 #include <stdint.h>
29 #include <string.h>
30 #include <unistd.h>
31
32 extern "C" {
33 #include <sys/syscall.h>
34 #include <sys/eventfd.h>
35
36 #include <linux/io_uring.h>
37 }
38
39 #include "stats.hfa"
40 #include "kernel.hfa"
41 #include "kernel/fwd.hfa"
42 #include "io/types.hfa"
43
44 __attribute__((unused)) static const char * opcodes[] = {
45 "OP_NOP",
46 "OP_READV",
47 "OP_WRITEV",
48 "OP_FSYNC",
49 "OP_READ_FIXED",
50 "OP_WRITE_FIXED",
51 "OP_POLL_ADD",
52 "OP_POLL_REMOVE",
53 "OP_SYNC_FILE_RANGE",
54 "OP_SENDMSG",
55 "OP_RECVMSG",
56 "OP_TIMEOUT",
57 "OP_TIMEOUT_REMOVE",
58 "OP_ACCEPT",
59 "OP_ASYNC_CANCEL",
60 "OP_LINK_TIMEOUT",
61 "OP_CONNECT",
62 "OP_FALLOCATE",
63 "OP_OPENAT",
64 "OP_CLOSE",
65 "OP_FILES_UPDATE",
66 "OP_STATX",
67 "OP_READ",
68 "OP_WRITE",
69 "OP_FADVISE",
70 "OP_MADVISE",
71 "OP_SEND",
72 "OP_RECV",
73 "OP_OPENAT2",
74 "OP_EPOLL_CTL",
75 "OP_SPLICE",
76 "OP_PROVIDE_BUFFERS",
77 "OP_REMOVE_BUFFERS",
78 "OP_TEE",
79 "INVALID_OP"
80 };
81
82 static $io_context * __ioarbiter_allocate( $io_arbiter & mutex this, processor *, __u32 idxs[], __u32 want );
83 static void __ioarbiter_submit( $io_arbiter & mutex this, $io_context * , __u32 idxs[], __u32 have, bool lazy );
84 static void __ioarbiter_flush ( $io_arbiter & mutex this, $io_context * );
85 static inline void __ioarbiter_notify( $io_context & ctx );
86//=============================================================================================
87// I/O Polling
88//=============================================================================================
89 static inline unsigned __flush( struct $io_context & );
90 static inline __u32 __release_sqes( struct $io_context & );
91
92 void __cfa_io_drain( processor * proc ) {
93 /* paranoid */ verify( ! __preemption_enabled() );
94 /* paranoid */ verify( proc );
95 /* paranoid */ verify( proc->io.ctx );
96
97 // Drain the queue
98 $io_context * ctx = proc->io.ctx;
99 unsigned head = *ctx->cq.head;
100 unsigned tail = *ctx->cq.tail;
101 const __u32 mask = *ctx->cq.mask;
102
103 __u32 count = tail - head;
104 __STATS__( false, io.calls.drain++; io.calls.completed += count; )
105
106 for(i; count) {
107 unsigned idx = (head + i) & mask;
108 volatile struct io_uring_cqe & cqe = ctx->cq.cqes[idx];
109
110 /* paranoid */ verify(&cqe);
111
112 struct io_future_t * future = (struct io_future_t *)(uintptr_t)cqe.user_data;
113 __cfadbg_print_safe( io, "Kernel I/O : Syscall completed : cqe %p, result %d for %p\n", &cqe, cqe.res, future );
114
115 fulfil( *future, cqe.res );
116 }
117
118 __cfadbg_print_safe(io, "Kernel I/O : %u completed\n", count);
119
120 // Mark to the kernel that the cqe has been seen
121 // Ensure that the kernel only sees the new value of the head index after the CQEs have been read.
122 __atomic_store_n( ctx->cq.head, head + count, __ATOMIC_SEQ_CST );
123
124 /* paranoid */ verify( ! __preemption_enabled() );
125
126 return;
127 }
128
129 void __cfa_io_flush( processor * proc ) {
130 /* paranoid */ verify( ! __preemption_enabled() );
131 /* paranoid */ verify( proc );
132 /* paranoid */ verify( proc->io.ctx );
133
134 $io_context & ctx = *proc->io.ctx;
135
136 if(!ctx.ext_sq.empty) {
137 __ioarbiter_flush( *ctx.arbiter, &ctx );
138 }
139
140 __STATS__( true, io.calls.flush++; )
141 int ret = syscall( __NR_io_uring_enter, ctx.fd, ctx.sq.to_submit, 0, 0, (sigset_t *)0p, _NSIG / 8);
142 if( ret < 0 ) {
143 switch((int)errno) {
144 case EAGAIN:
145 case EINTR:
146 case EBUSY:
147 // Update statistics
148 __STATS__( false, io.calls.errors.busy ++; )
149 return;
150 default:
151 abort( "KERNEL ERROR: IO_URING SYSCALL - (%d) %s\n", (int)errno, strerror(errno) );
152 }
153 }
154
155 __cfadbg_print_safe(io, "Kernel I/O : %u submitted to io_uring %d\n", ret, ctx.fd);
156 __STATS__( true, io.calls.submitted += ret; )
157 /* paranoid */ verify( ctx.sq.to_submit <= *ctx.sq.num );
158 /* paranoid */ verify( ctx.sq.to_submit >= ret );
159
160 ctx.sq.to_submit -= ret;
161
162 /* paranoid */ verify( ctx.sq.to_submit <= *ctx.sq.num );
163
164 // Release the consumed SQEs
165 __release_sqes( ctx );
166
167 /* paranoid */ verify( ! __preemption_enabled() );
168
169 ctx.proc->io.pending = false;
170 }
171
172//=============================================================================================
173// I/O Submissions
174//=============================================================================================
175
176// Submition steps :
177// 1 - Allocate a queue entry. The ring already has memory for all entries but only the ones
178// listed in sq.array are visible by the kernel. For those not listed, the kernel does not
179// offer any assurance that an entry is not being filled by multiple flags. Therefore, we
180// need to write an allocator that allows allocating concurrently.
181//
182// 2 - Actually fill the submit entry, this is the only simple and straightforward step.
183//
184// 3 - Append the entry index to the array and adjust the tail accordingly. This operation
185// needs to arrive to two concensus at the same time:
186// A - The order in which entries are listed in the array: no two threads must pick the
187// same index for their entries
188// B - When can the tail be update for the kernel. EVERY entries in the array between
189// head and tail must be fully filled and shouldn't ever be touched again.
190//
191 //=============================================================================================
192 // Allocation
193 // for user's convenience fill the sqes from the indexes
194 static inline void __fill(struct io_uring_sqe * out_sqes[], __u32 want, __u32 idxs[], struct $io_context * ctx) {
195 struct io_uring_sqe * sqes = ctx->sq.sqes;
196 for(i; want) {
197 __cfadbg_print_safe(io, "Kernel I/O : filling loop\n");
198 out_sqes[i] = &sqes[idxs[i]];
199 }
200 }
201
202 // Try to directly allocate from the a given context
203 // Not thread-safe
204 static inline bool __alloc(struct $io_context * ctx, __u32 idxs[], __u32 want) {
205 __sub_ring_t & sq = ctx->sq;
206 const __u32 mask = *sq.mask;
207 __u32 fhead = sq.free_ring.head; // get the current head of the queue
208 __u32 ftail = sq.free_ring.tail; // get the current tail of the queue
209
210 // If we don't have enough sqes, fail
211 if((ftail - fhead) < want) { return false; }
212
213 // copy all the indexes we want from the available list
214 for(i; want) {
215 __cfadbg_print_safe(io, "Kernel I/O : allocating loop\n");
216 idxs[i] = sq.free_ring.array[(fhead + i) & mask];
217 }
218
219 // Advance the head to mark the indexes as consumed
220 __atomic_store_n(&sq.free_ring.head, fhead + want, __ATOMIC_RELEASE);
221
222 // return success
223 return true;
224 }
225
226 // Allocate an submit queue entry.
227 // The kernel cannot see these entries until they are submitted, but other threads must be
228 // able to see which entries can be used and which are already un used by an other thread
229 // for convenience, return both the index and the pointer to the sqe
230 // sqe == &sqes[idx]
231 struct $io_context * cfa_io_allocate(struct io_uring_sqe * sqes[], __u32 idxs[], __u32 want) {
232 __cfadbg_print_safe(io, "Kernel I/O : attempting to allocate %u\n", want);
233
234 disable_interrupts();
235 processor * proc = __cfaabi_tls.this_processor;
236 $io_context * ctx = proc->io.ctx;
237 /* paranoid */ verify( __cfaabi_tls.this_processor );
238 /* paranoid */ verify( ctx );
239
240 __cfadbg_print_safe(io, "Kernel I/O : attempting to fast allocation\n");
241
242 // We can proceed to the fast path
243 if( __alloc(ctx, idxs, want) ) {
244 // Allocation was successful
245 __STATS__( true, io.alloc.fast += 1; )
246 enable_interrupts( __cfaabi_dbg_ctx );
247
248 __cfadbg_print_safe(io, "Kernel I/O : fast allocation successful from ring %d\n", ctx->fd);
249
250 __fill( sqes, want, idxs, ctx );
251 return ctx;
252 }
253 // The fast path failed, fallback
254 __STATS__( true, io.alloc.fail += 1; )
255
256 // Fast path failed, fallback on arbitration
257 __STATS__( true, io.alloc.slow += 1; )
258 enable_interrupts( __cfaabi_dbg_ctx );
259
260 $io_arbiter * ioarb = proc->cltr->io.arbiter;
261 /* paranoid */ verify( ioarb );
262
263 __cfadbg_print_safe(io, "Kernel I/O : falling back on arbiter for allocation\n");
264
265 struct $io_context * ret = __ioarbiter_allocate(*ioarb, proc, idxs, want);
266
267 __cfadbg_print_safe(io, "Kernel I/O : slow allocation completed from ring %d\n", ret->fd);
268
269 __fill( sqes, want, idxs,ret );
270 return ret;
271 }
272
273
274 //=============================================================================================
275 // submission
276 static inline void __submit( struct $io_context * ctx, __u32 idxs[], __u32 have, bool lazy) {
277 // We can proceed to the fast path
278 // Get the right objects
279 __sub_ring_t & sq = ctx->sq;
280 const __u32 mask = *sq.mask;
281 __u32 tail = *sq.kring.tail;
282
283 // Add the sqes to the array
284 for( i; have ) {
285 __cfadbg_print_safe(io, "Kernel I/O : __submit loop\n");
286 sq.kring.array[ (tail + i) & mask ] = idxs[i];
287 }
288
289 // Make the sqes visible to the submitter
290 __atomic_store_n(sq.kring.tail, tail + have, __ATOMIC_RELEASE);
291 sq.to_submit++;
292
293 ctx->proc->io.pending = true;
294 ctx->proc->io.dirty = true;
295 if(sq.to_submit > 30 || !lazy) {
296 __cfa_io_flush( ctx->proc );
297 }
298 }
299
300 void cfa_io_submit( struct $io_context * inctx, __u32 idxs[], __u32 have, bool lazy ) __attribute__((nonnull (1))) {
301 __cfadbg_print_safe(io, "Kernel I/O : attempting to submit %u (%s)\n", have, lazy ? "lazy" : "eager");
302
303 disable_interrupts();
304 processor * proc = __cfaabi_tls.this_processor;
305 $io_context * ctx = proc->io.ctx;
306 /* paranoid */ verify( __cfaabi_tls.this_processor );
307 /* paranoid */ verify( ctx );
308
309 // Can we proceed to the fast path
310 if( ctx == inctx ) // We have the right instance?
311 {
312 __submit(ctx, idxs, have, lazy);
313
314 // Mark the instance as no longer in-use, re-enable interrupts and return
315 __STATS__( true, io.submit.fast += 1; )
316 enable_interrupts( __cfaabi_dbg_ctx );
317
318 __cfadbg_print_safe(io, "Kernel I/O : submitted on fast path\n");
319 return;
320 }
321
322 // Fast path failed, fallback on arbitration
323 __STATS__( true, io.submit.slow += 1; )
324 enable_interrupts( __cfaabi_dbg_ctx );
325
326 __cfadbg_print_safe(io, "Kernel I/O : falling back on arbiter for submission\n");
327
328 __ioarbiter_submit(*inctx->arbiter, inctx, idxs, have, lazy);
329 }
330
331 //=============================================================================================
332 // Flushing
333 // Go through the ring's submit queue and release everything that has already been consumed
334 // by io_uring
335 // This cannot be done by multiple threads
336 static __u32 __release_sqes( struct $io_context & ctx ) {
337 const __u32 mask = *ctx.sq.mask;
338
339 __attribute__((unused))
340 __u32 ctail = *ctx.sq.kring.tail; // get the current tail of the queue
341 __u32 chead = *ctx.sq.kring.head; // get the current head of the queue
342 __u32 phead = ctx.sq.kring.released; // get the head the last time we were here
343
344 __u32 ftail = ctx.sq.free_ring.tail; // get the current tail of the queue
345
346 // the 3 fields are organized like this diagram
347 // except it's are ring
348 // ---+--------+--------+----
349 // ---+--------+--------+----
350 // ^ ^ ^
351 // phead chead ctail
352
353 // make sure ctail doesn't wrap around and reach phead
354 /* paranoid */ verify(
355 (ctail >= chead && chead >= phead)
356 || (chead >= phead && phead >= ctail)
357 || (phead >= ctail && ctail >= chead)
358 );
359
360 // find the range we need to clear
361 __u32 count = chead - phead;
362
363 if(count == 0) {
364 return 0;
365 }
366
367 // We acquired an previous-head/current-head range
368 // go through the range and release the sqes
369 for( i; count ) {
370 __cfadbg_print_safe(io, "Kernel I/O : release loop\n");
371 __u32 idx = ctx.sq.kring.array[ (phead + i) & mask ];
372 ctx.sq.free_ring.array[ (ftail + i) & mask ] = idx;
373 }
374
375 ctx.sq.kring.released = chead; // note up to were we processed
376 __atomic_store_n(&ctx.sq.free_ring.tail, ftail + count, __ATOMIC_SEQ_CST);
377
378 __ioarbiter_notify(ctx);
379
380 return count;
381 }
382
383//=============================================================================================
384// I/O Arbiter
385//=============================================================================================
386 static $io_context * __ioarbiter_allocate( $io_arbiter & mutex this, processor * proc, __u32 idxs[], __u32 want ) {
387 __cfadbg_print_safe(io, "Kernel I/O : arbiter allocating\n");
388
389 __STATS__( false, io.alloc.block += 1; )
390
391 // No one has any resources left, wait for something to finish
392 // Mark as pending
393 __atomic_store_n( &this.pending.flag, true, __ATOMIC_SEQ_CST );
394
395 // Wait for our turn to submit
396 wait( this.pending.blocked, want );
397
398 __attribute((unused)) bool ret =
399 __alloc( this.pending.ctx, idxs, want);
400 /* paranoid */ verify( ret );
401
402 return this.pending.ctx;
403
404 }
405
406 static void __ioarbiter_notify( $io_arbiter & mutex this, $io_context * ctx ) {
407 /* paranoid */ verify( !is_empty(this.pending.blocked) );
408 this.pending.ctx = ctx;
409
410 while( !is_empty(this.pending.blocked) ) {
411 __cfadbg_print_safe(io, "Kernel I/O : notifying\n");
412 __u32 have = ctx->sq.free_ring.tail - ctx->sq.free_ring.head;
413 __u32 want = front( this.pending.blocked );
414
415 if( have > want ) return;
416
417 signal_block( this.pending.blocked );
418 }
419
420 this.pending.flag = false;
421 }
422
423 static void __ioarbiter_notify( $io_context & ctx ) {
424 if(__atomic_load_n( &ctx.arbiter->pending.flag, __ATOMIC_SEQ_CST)) {
425 __ioarbiter_notify( *ctx.arbiter, &ctx );
426 }
427 }
428
429 // Simply append to the pending
430 static void __ioarbiter_submit( $io_arbiter & mutex this, $io_context * ctx, __u32 idxs[], __u32 have, bool lazy ) {
431 __cfadbg_print_safe(io, "Kernel I/O : submitting %u from the arbiter to context %u\n", have, ctx->fd);
432
433 /* paranoid */ verify( &this == ctx->arbiter );
434
435 // Mark as pending
436 __atomic_store_n( &ctx->ext_sq.empty, false, __ATOMIC_SEQ_CST );
437
438 __cfadbg_print_safe(io, "Kernel I/O : waiting to submit %u\n", have);
439
440 // Wait for our turn to submit
441 wait( ctx->ext_sq.blocked );
442
443 // Submit our indexes
444 __submit(ctx, idxs, have, lazy);
445
446 __cfadbg_print_safe(io, "Kernel I/O : %u submitted from arbiter\n", have);
447 }
448
449 static void __ioarbiter_flush( $io_arbiter & mutex this, $io_context * ctx ) {
450 /* paranoid */ verify( &this == ctx->arbiter );
451
452 __STATS__( false, io.flush.external += 1; )
453
454 __cfadbg_print_safe(io, "Kernel I/O : arbiter flushing\n");
455
456 condition & blcked = ctx->ext_sq.blocked;
457 /* paranoid */ verify( ctx->ext_sq.empty == is_empty( blcked ) );
458 while(!is_empty( blcked )) {
459 signal_block( blcked );
460 }
461
462 ctx->ext_sq.empty = true;
463 }
464#endif
Note: See TracBrowser for help on using the repository browser.