source: libcfa/src/concurrency/io.cfa @ d3652df

Last change on this file since d3652df was 9d47c1f, checked in by caparsons <caparson@…>, 17 months ago

changes over all usages of uC++ collections to use dlist instead

  • Property mode set to 100644
File size: 25.9 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2020 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// io.cfa --
8//
9// Author           : Thierry Delisle
10// Created On       : Thu Apr 23 17:31:00 2020
11// Last Modified By :
12// Last Modified On :
13// Update Count     :
14//
15
16#define __cforall_thread__
17
18#if defined(__CFA_DEBUG__)
19        // #define __CFA_DEBUG_PRINT_IO__
20        // #define __CFA_DEBUG_PRINT_IO_CORE__
21#endif
22
23
24#if defined(CFA_HAVE_LINUX_IO_URING_H)
25        #include <errno.h>
26        #include <signal.h>
27        #include <stdint.h>
28        #include <string.h>
29        #include <unistd.h>
30
31        extern "C" {
32                #include <sys/syscall.h>
33                #include <sys/eventfd.h>
34                #include <sys/uio.h>
35
36                #include <linux/io_uring.h>
37        }
38
39        #include "stats.hfa"
40        #include "kernel.hfa"
41        #include "kernel/fwd.hfa"
42        #include "kernel/private.hfa"
43        #include "kernel/cluster.hfa"
44        #include "io/types.hfa"
45
46        __attribute__((unused)) static const char * opcodes[] = {
47                "OP_NOP",
48                "OP_READV",
49                "OP_WRITEV",
50                "OP_FSYNC",
51                "OP_READ_FIXED",
52                "OP_WRITE_FIXED",
53                "OP_POLL_ADD",
54                "OP_POLL_REMOVE",
55                "OP_SYNC_FILE_RANGE",
56                "OP_SENDMSG",
57                "OP_RECVMSG",
58                "OP_TIMEOUT",
59                "OP_TIMEOUT_REMOVE",
60                "OP_ACCEPT",
61                "OP_ASYNC_CANCEL",
62                "OP_LINK_TIMEOUT",
63                "OP_CONNECT",
64                "OP_FALLOCATE",
65                "OP_OPENAT",
66                "OP_CLOSE",
67                "OP_FILES_UPDATE",
68                "OP_STATX",
69                "OP_READ",
70                "OP_WRITE",
71                "OP_FADVISE",
72                "OP_MADVISE",
73                "OP_SEND",
74                "OP_RECV",
75                "OP_OPENAT2",
76                "OP_EPOLL_CTL",
77                "OP_SPLICE",
78                "OP_PROVIDE_BUFFERS",
79                "OP_REMOVE_BUFFERS",
80                "OP_TEE",
81                "INVALID_OP"
82        };
83
84        static io_context$ * __ioarbiter_allocate( io_arbiter$ & this, __u32 idxs[], __u32 want );
85        static void __ioarbiter_submit( io_context$ * , __u32 idxs[], __u32 have, bool lazy );
86        static void __ioarbiter_flush ( io_context$ &, bool kernel );
87        static inline void __ioarbiter_notify( io_context$ & ctx );
88//=============================================================================================
89// I/O Polling
90//=============================================================================================
91        static inline unsigned __flush( struct io_context$ & );
92        static inline __u32 __release_sqes( struct io_context$ & );
93        extern void __kernel_unpark( thread$ * thrd, unpark_hint );
94
95        static inline void __post(oneshot & this, bool kernel, unpark_hint hint) {
96                thread$ * t = post( this, false );
97                if(kernel) __kernel_unpark( t, hint );
98                else unpark( t, hint );
99        }
100
101        // actual system call of io uring
102        // wrap so everything that needs to happen around it is always done
103        //   i.e., stats, book keeping, sqe reclamation, etc.
104        static void ioring_syscsll( struct io_context$ & ctx, unsigned int min_comp, unsigned int flags ) {
105                __STATS__( true, io.calls.flush++; )
106                int ret;
107                for() {
108                        // do the system call in a loop, repeat on interrupts
109                        ret = syscall( __NR_io_uring_enter, ctx.fd, ctx.sq.to_submit, min_comp, flags, (sigset_t *)0p, _NSIG / 8);
110                        if( ret < 0 ) {
111                                switch((int)errno) {
112                                case EINTR:
113                                        continue;
114                                case EAGAIN:
115                                case EBUSY:
116                                        // Update statistics
117                                        __STATS__( false, io.calls.errors.busy ++; )
118                                        return false;
119                                default:
120                                        abort( "KERNEL ERROR: IO_URING SYSCALL - (%d) %s\n", (int)errno, strerror(errno) );
121                                }
122                        }
123                        break;
124                }
125
126                __cfadbg_print_safe(io, "Kernel I/O : %u submitted to io_uring %d\n", ret, ctx.fd);
127                __STATS__( true, io.calls.submitted += ret; )
128                /* paranoid */ verify( ctx.sq.to_submit <= *ctx.sq.num );
129                /* paranoid */ verify( ctx.sq.to_submit >= ret );
130
131                // keep track of how many still need submitting
132                __atomic_fetch_sub(&ctx.sq.to_submit, ret, __ATOMIC_SEQ_CST);
133
134                /* paranoid */ verify( ctx.sq.to_submit <= *ctx.sq.num );
135
136                // Release the consumed SQEs
137                __release_sqes( ctx );
138
139                /* paranoid */ verify( ! __preemption_enabled() );
140
141                // mark that there is no pending io left
142                __atomic_store_n(&ctx.proc->io.pending, false, __ATOMIC_RELAXED);
143        }
144
145        // try to acquire an io context for draining, helping means we never *need* to drain, we can always do it later
146        static bool try_acquire( io_context$ * ctx ) __attribute__((nonnull(1))) {
147                /* paranoid */ verify( ! __preemption_enabled() );
148                /* paranoid */ verify( ready_schedule_islocked() );
149
150
151                {
152                        // if there is nothing to drain there is no point in acquiring anything
153                        const __u32 head = *ctx->cq.head;
154                        const __u32 tail = *ctx->cq.tail;
155
156                        if(head == tail) return false;
157                }
158
159                // try a simple spinlock acquire, it's likely there are completions to drain
160                if(!__atomic_try_acquire(&ctx->cq.try_lock)) {
161                        // some other processor already has it
162                        __STATS__( false, io.calls.locked++; )
163                        return false;
164                }
165
166                // acquired!!
167                return true;
168        }
169
170        // actually drain the completion
171        static bool __cfa_do_drain( io_context$ * ctx, cluster * cltr ) __attribute__((nonnull(1, 2))) {
172                /* paranoid */ verify( ! __preemption_enabled() );
173                /* paranoid */ verify( ready_schedule_islocked() );
174                /* paranoid */ verify( ctx->cq.try_lock == true );
175
176                // get all the invariants and initial state
177                const __u32 mask = *ctx->cq.mask;
178                const __u32 num  = *ctx->cq.num;
179                unsigned long long ts_prev = ctx->cq.ts;
180                unsigned long long ts_next;
181
182                // We might need to do this multiple times if more events completed than can fit in the queue.
183                for() {
184                        // re-read the head and tail in case it already changed.
185                        // count the difference between the two
186                        const __u32 head = *ctx->cq.head;
187                        const __u32 tail = *ctx->cq.tail;
188                        const __u32 count = tail - head;
189                        __STATS__( false, io.calls.drain++; io.calls.completed += count; )
190
191                        // for everything between head and tail, drain it
192                        for(i; count) {
193                                unsigned idx = (head + i) & mask;
194                                volatile struct io_uring_cqe & cqe = ctx->cq.cqes[idx];
195
196                                /* paranoid */ verify(&cqe);
197
198                                // find the future in the completion
199                                struct io_future_t * future = (struct io_future_t *)(uintptr_t)cqe.user_data;
200                                // __cfadbg_print_safe( io, "Kernel I/O : Syscall completed : cqe %p, result %d for %p\n", &cqe, cqe.res, future );
201
202                                // don't directly fulfill the future, preemption is disabled so we need to use kernel_unpark
203                                __kernel_unpark( fulfil( *future, cqe.res, false ), UNPARK_LOCAL );
204                        }
205
206                        // update the timestamps accordingly
207                        // keep a local copy so we can update the relaxed copy
208                        ts_next = ctx->cq.ts = rdtscl();
209
210                        // Mark to the kernel that the cqe has been seen
211                        // Ensure that the kernel only sees the new value of the head index after the CQEs have been read.
212                        __atomic_store_n( ctx->cq.head, head + count, __ATOMIC_SEQ_CST );
213                        ctx->proc->idle_wctx.drain_time = ts_next;
214
215                        // we finished draining the completions... unless the ring buffer was full and there are more secret completions in the kernel.
216                        if(likely(count < num)) break;
217
218                        // the ring buffer was full, there could be more stuff in the kernel.
219                        ioring_syscsll( *ctx, 0, IORING_ENTER_GETEVENTS);
220                }
221
222                __cfadbg_print_safe(io, "Kernel I/O : %u completed age %llu\n", count, ts_next);
223                /* paranoid */ verify( ready_schedule_islocked() );
224                /* paranoid */ verify( ! __preemption_enabled() );
225
226                // everything is drained, we can release the lock
227                __atomic_unlock(&ctx->cq.try_lock);
228
229                // update the relaxed timestamp
230                touch_tsc( cltr->sched.io.tscs, ctx->cq.id, ts_prev, ts_next, false );
231
232                return true;
233        }
234
235        // call from a processor to flush
236        // contains all the bookkeeping a proc must do, not just the barebones flushing logic
237        void __cfa_do_flush( io_context$ & ctx, bool kernel ) {
238                /* paranoid */ verify( ! __preemption_enabled() );
239
240                // flush any external requests
241                ctx.sq.last_external = false; // clear the external bit, the arbiter will reset it if needed
242                __ioarbiter_flush( ctx, kernel );
243
244                // if submitting must be submitted, do the system call
245                if(ctx.sq.to_submit != 0) {
246                        ioring_syscsll(ctx, 0, 0);
247                }
248        }
249
250        // call from a processor to drain
251        // contains all the bookkeeping a proc must do, not just the barebones draining logic
252        bool __cfa_io_drain( struct processor * proc ) {
253                bool local = false;
254                bool remote = false;
255
256                // make sure no ones creates/destroys io contexts
257                ready_schedule_lock();
258
259                cluster * const cltr = proc->cltr;
260                io_context$ * const ctx = proc->io.ctx;
261                /* paranoid */ verify( cltr );
262                /* paranoid */ verify( ctx );
263
264                // Help if needed
265                with(cltr->sched) {
266                        const size_t ctxs_count = io.count;
267
268                        /* paranoid */ verify( ready_schedule_islocked() );
269                        /* paranoid */ verify( ! __preemption_enabled() );
270                        /* paranoid */ verify( active_processor() == proc );
271                        /* paranoid */ verify( __shard_factor.io > 0 );
272                        /* paranoid */ verify( ctxs_count > 0 );
273                        /* paranoid */ verify( ctx->cq.id < ctxs_count );
274
275                        const unsigned this_cache = cache_id(cltr, ctx->cq.id / __shard_factor.io);
276                        const unsigned long long ctsc = rdtscl();
277
278                        // only help once every other time
279                        // pick a target when not helping
280                        if(proc->io.target == UINT_MAX) {
281                                uint64_t chaos = __tls_rand();
282                                // choose who to help and whether to accept helping far processors
283                                unsigned ext = chaos & 0xff;
284                                unsigned other  = (chaos >> 8) % (ctxs_count);
285
286                                // if the processor is on the same cache line or is lucky ( 3 out of 256 odds ) help it
287                                if(ext < 3 || __atomic_load_n(&caches[other / __shard_factor.io].id, __ATOMIC_RELAXED) == this_cache) {
288                                        proc->io.target = other;
289                                }
290                        }
291                        else {
292                                // a target was picked last time, help it
293                                const unsigned target = proc->io.target;
294                                /* paranoid */ verify( io.tscs[target].t.tv != ULLONG_MAX );
295                                // make sure the target hasn't stopped existing since last time
296                                HELP: if(target < ctxs_count) {
297                                        // calculate it's age and how young it could be before we give up on helping
298                                        const __readyQ_avg_t cutoff = calc_cutoff(ctsc, ctx->cq.id, ctxs_count, io.data, io.tscs, __shard_factor.io, false);
299                                        const __readyQ_avg_t age = moving_average(ctsc, io.tscs[target].t.tv, io.tscs[target].t.ma, false);
300                                        __cfadbg_print_safe(io, "Kernel I/O: Help attempt on %u from %u, age %'llu vs cutoff %'llu, %s\n", target, ctx->cq.id, age, cutoff, age > cutoff ? "yes" : "no");
301                                        // is the target older than the cutoff, recall 0 is oldest and bigger ints are younger
302                                        if(age <= cutoff) break HELP;
303
304                                        // attempt to help the submission side
305                                        __cfa_do_flush( *io.data[target], true );
306
307                                        // attempt to help the completion side
308                                        if(!try_acquire(io.data[target])) break HELP; // already acquire no help needed
309
310                                        // actually help
311                                        if(!__cfa_do_drain( io.data[target], cltr )) break HELP;
312
313                                        // track we did help someone
314                                        remote = true;
315                                        __STATS__( true, io.calls.helped++; )
316                                }
317
318                                // reset the target
319                                proc->io.target = UINT_MAX;
320                        }
321                }
322
323                // Drain the local queue
324                if(try_acquire( proc->io.ctx )) {
325                        local = __cfa_do_drain( proc->io.ctx, cltr );
326                }
327
328                /* paranoid */ verify( ready_schedule_islocked() );
329                /* paranoid */ verify( ! __preemption_enabled() );
330                /* paranoid */ verify( active_processor() == proc );
331
332                ready_schedule_unlock();
333
334                // return true if some completion entry, local or remote, was drained
335                return local || remote;
336        }
337
338
339
340        // call from a processor to flush
341        // contains all the bookkeeping a proc must do, not just the barebones flushing logic
342        bool __cfa_io_flush( struct processor * proc ) {
343                /* paranoid */ verify( ! __preemption_enabled() );
344                /* paranoid */ verify( proc );
345                /* paranoid */ verify( proc->io.ctx );
346
347                __cfa_do_flush( *proc->io.ctx, false );
348
349                // also drain since some stuff will immediately complete
350                return __cfa_io_drain( proc );
351        }
352
353//=============================================================================================
354// I/O Submissions
355//=============================================================================================
356
357// Submition steps :
358// 1 - Allocate a queue entry. The ring already has memory for all entries but only the ones
359//     listed in sq.array are visible by the kernel. For those not listed, the kernel does not
360//     offer any assurance that an entry is not being filled by multiple flags. Therefore, we
361//     need to write an allocator that allows allocating concurrently.
362//
363// 2 - Actually fill the submit entry, this is the only simple and straightforward step.
364//
365// 3 - Append the entry index to the array and adjust the tail accordingly. This operation
366//     needs to arrive to two concensus at the same time:
367//     A - The order in which entries are listed in the array: no two threads must pick the
368//         same index for their entries
369//     B - When can the tail be update for the kernel. EVERY entries in the array between
370//         head and tail must be fully filled and shouldn't ever be touched again.
371//
372        //=============================================================================================
373        // Allocation
374        // for user's convenience fill the sqes from the indexes
375        static inline void __fill(struct io_uring_sqe * out_sqes[], __u32 want, __u32 idxs[], struct io_context$ * ctx)  {
376                struct io_uring_sqe * sqes = ctx->sq.sqes;
377                for(i; want) {
378                        // __cfadbg_print_safe(io, "Kernel I/O : filling loop\n");
379                        out_sqes[i] = &sqes[idxs[i]];
380                }
381        }
382
383        // Try to directly allocate from the a given context
384        // Not thread-safe
385        static inline bool __alloc(struct io_context$ * ctx, __u32 idxs[], __u32 want) {
386                __sub_ring_t & sq = ctx->sq;
387                const __u32 mask  = *sq.mask;
388                __u32 fhead = sq.free_ring.head;    // get the current head of the queue
389                __u32 ftail = sq.free_ring.tail;    // get the current tail of the queue
390
391                // If we don't have enough sqes, fail
392                if((ftail - fhead) < want) { return false; }
393
394                // copy all the indexes we want from the available list
395                for(i; want) {
396                        // __cfadbg_print_safe(io, "Kernel I/O : allocating loop\n");
397                        idxs[i] = sq.free_ring.array[(fhead + i) & mask];
398                }
399
400                // Advance the head to mark the indexes as consumed
401                __atomic_store_n(&sq.free_ring.head, fhead + want, __ATOMIC_RELEASE);
402
403                // return success
404                return true;
405        }
406
407        // Allocate an submit queue entry.
408        // The kernel cannot see these entries until they are submitted, but other threads must be
409        // able to see which entries can be used and which are already un used by an other thread
410        // for convenience, return both the index and the pointer to the sqe
411        // sqe == &sqes[idx]
412        struct io_context$ * cfa_io_allocate(struct io_uring_sqe * sqes[], __u32 idxs[], __u32 want) libcfa_public {
413                // __cfadbg_print_safe(io, "Kernel I/O : attempting to allocate %u\n", want);
414
415                disable_interrupts();
416                struct processor * proc = __cfaabi_tls.this_processor;
417                io_context$ * ctx = proc->io.ctx;
418                /* paranoid */ verify( __cfaabi_tls.this_processor );
419                /* paranoid */ verify( ctx );
420
421                // __cfadbg_print_safe(io, "Kernel I/O : attempting to fast allocation\n");
422
423                // We can proceed to the fast path
424                if( __alloc(ctx, idxs, want) ) {
425                        // Allocation was successful
426                        __STATS__( true, io.alloc.fast += 1; )
427                        enable_interrupts();
428
429                        // __cfadbg_print_safe(io, "Kernel I/O : fast allocation successful from ring %d\n", ctx->fd);
430
431                        __fill( sqes, want, idxs, ctx );
432                        return ctx;
433                }
434                // The fast path failed, fallback
435                __STATS__( true, io.alloc.fail += 1; )
436
437                // Fast path failed, fallback on arbitration
438                __STATS__( true, io.alloc.slow += 1; )
439                enable_interrupts();
440
441                io_arbiter$ * ioarb = proc->cltr->io.arbiter;
442                /* paranoid */ verify( ioarb );
443
444                // __cfadbg_print_safe(io, "Kernel I/O : falling back on arbiter for allocation\n");
445
446                struct io_context$ * ret = __ioarbiter_allocate(*ioarb, idxs, want);
447
448                // __cfadbg_print_safe(io, "Kernel I/O : slow allocation completed from ring %d\n", ret->fd);
449
450                __fill( sqes, want, idxs,ret );
451                return ret;
452        }
453
454        //=============================================================================================
455        // submission
456        // barebones logic to submit a group of sqes
457        static inline void __submit_only( struct io_context$ * ctx, __u32 idxs[], __u32 have, bool lock) {
458                if(!lock)
459                        lock( ctx->ext_sq.lock __cfaabi_dbg_ctx2 );
460                // We can proceed to the fast path
461                // Get the right objects
462                __sub_ring_t & sq = ctx->sq;
463                const __u32 mask  = *sq.mask;
464                __u32 tail = *sq.kring.tail;
465
466                // Add the sqes to the array
467                for( i; have ) {
468                        // __cfadbg_print_safe(io, "Kernel I/O : __submit loop\n");
469                        sq.kring.array[ (tail + i) & mask ] = idxs[i];
470                }
471
472                // Make the sqes visible to the submitter
473                __atomic_store_n(sq.kring.tail, tail + have, __ATOMIC_RELEASE);
474                __atomic_fetch_add(&sq.to_submit, have, __ATOMIC_SEQ_CST);
475
476                // set the bit to mark things need to be flushed
477                __atomic_store_n(&ctx->proc->io.pending, true, __ATOMIC_RELAXED);
478                __atomic_store_n(&ctx->proc->io.dirty  , true, __ATOMIC_RELAXED);
479
480                if(!lock)
481                        unlock( ctx->ext_sq.lock );
482        }
483
484        // submission logic + maybe flushing
485        static inline void __submit( struct io_context$ * ctx, __u32 idxs[], __u32 have, bool lazy) {
486                __sub_ring_t & sq = ctx->sq;
487                __submit_only(ctx, idxs, have, false);
488
489                if(sq.to_submit > 30) {
490                        __tls_stats()->io.flush.full++;
491                        __cfa_io_flush( ctx->proc );
492                }
493                if(!lazy) {
494                        __tls_stats()->io.flush.eager++;
495                        __cfa_io_flush( ctx->proc );
496                }
497        }
498
499        // call from a processor to flush
500        // might require arbitration if the thread was migrated after the allocation
501        void cfa_io_submit( struct io_context$ * inctx, __u32 idxs[], __u32 have, bool lazy ) __attribute__((nonnull (1))) libcfa_public {
502                // __cfadbg_print_safe(io, "Kernel I/O : attempting to submit %u (%s)\n", have, lazy ? "lazy" : "eager");
503
504                disable_interrupts();
505                __STATS__( true, if(!lazy) io.submit.eagr += 1; )
506                struct processor * proc = __cfaabi_tls.this_processor;
507                io_context$ * ctx = proc->io.ctx;
508                /* paranoid */ verify( __cfaabi_tls.this_processor );
509                /* paranoid */ verify( ctx );
510
511                // Can we proceed to the fast path
512                if( ctx == inctx )              // We have the right instance?
513                {
514                        // yes! fast submit
515                        __submit(ctx, idxs, have, lazy);
516
517                        // Mark the instance as no longer in-use, re-enable interrupts and return
518                        __STATS__( true, io.submit.fast += 1; )
519                        enable_interrupts();
520
521                        // __cfadbg_print_safe(io, "Kernel I/O : submitted on fast path\n");
522                        return;
523                }
524
525                // Fast path failed, fallback on arbitration
526                __STATS__( true, io.submit.slow += 1; )
527                enable_interrupts();
528
529                // __cfadbg_print_safe(io, "Kernel I/O : falling back on arbiter for submission\n");
530
531                __ioarbiter_submit(inctx, idxs, have, lazy);
532        }
533
534        //=============================================================================================
535        // Flushing
536        // Go through the ring's submit queue and release everything that has already been consumed
537        // by io_uring
538        // This cannot be done by multiple threads
539        static __u32 __release_sqes( struct io_context$ & ctx ) {
540                const __u32 mask = *ctx.sq.mask;
541
542                __attribute__((unused))
543                __u32 ctail = *ctx.sq.kring.tail;    // get the current tail of the queue
544                __u32 chead = *ctx.sq.kring.head;        // get the current head of the queue
545                __u32 phead = ctx.sq.kring.released; // get the head the last time we were here
546
547                __u32 ftail = ctx.sq.free_ring.tail;  // get the current tail of the queue
548
549                // the 3 fields are organized like this diagram
550                // except it's are ring
551                // ---+--------+--------+----
552                // ---+--------+--------+----
553                //    ^        ^        ^
554                // phead    chead    ctail
555
556                // make sure ctail doesn't wrap around and reach phead
557                /* paranoid */ verify(
558                           (ctail >= chead && chead >= phead)
559                        || (chead >= phead && phead >= ctail)
560                        || (phead >= ctail && ctail >= chead)
561                );
562
563                // find the range we need to clear
564                __u32 count = chead - phead;
565
566                if(count == 0) {
567                        return 0;
568                }
569
570                // We acquired an previous-head/current-head range
571                // go through the range and release the sqes
572                for( i; count ) {
573                        // __cfadbg_print_safe(io, "Kernel I/O : release loop\n");
574                        __u32 idx = ctx.sq.kring.array[ (phead + i) & mask ];
575                        ctx.sq.free_ring.array[ (ftail + i) & mask ] = idx;
576                }
577
578                ctx.sq.kring.released = chead;          // note up to were we processed
579                __atomic_store_n(&ctx.sq.free_ring.tail, ftail + count, __ATOMIC_SEQ_CST);
580
581                // notify the allocator that new allocations can be made
582                __ioarbiter_notify(ctx);
583
584                return count;
585        }
586
587//=============================================================================================
588// I/O Arbiter
589//=============================================================================================
590        static inline bool enqueue(__outstanding_io_queue & queue, __outstanding_io & item) {
591                bool was_empty;
592
593                // Lock the list, it's not thread safe
594                lock( queue.lock __cfaabi_dbg_ctx2 );
595                {
596                        was_empty = queue.queue`isEmpty;
597
598                        // Add our request to the list
599                        insert_last( queue.queue, item );
600
601                        // Mark as pending
602                        __atomic_store_n( &queue.empty, false, __ATOMIC_SEQ_CST );
603                }
604                unlock( queue.lock );
605
606                return was_empty;
607        }
608
609        static inline bool empty(__outstanding_io_queue & queue ) {
610                return __atomic_load_n( &queue.empty, __ATOMIC_SEQ_CST);
611        }
612
613        static io_context$ * __ioarbiter_allocate( io_arbiter$ & this, __u32 idxs[], __u32 want ) {
614                // __cfadbg_print_safe(io, "Kernel I/O : arbiter allocating\n");
615
616                __STATS__( false, io.alloc.block += 1; )
617
618                // No one has any resources left, wait for something to finish
619                // We need to add ourself to a list of pending allocs and wait for an answer
620                __pending_alloc pa;
621                pa.idxs = idxs;
622                pa.want = want;
623
624                enqueue(this.pending, (__outstanding_io&)pa);
625
626                wait( pa.waitctx );
627
628                return pa.ctx;
629
630        }
631
632        // notify the arbiter that new allocations are available
633        static void __ioarbiter_notify( io_arbiter$ & this, io_context$ * ctx ) {
634                /* paranoid */ verify( !this.pending.queue`isEmpty );
635                /* paranoid */ verify( __preemption_enabled() );
636
637                // mutual exclusion is needed
638                lock( this.pending.lock __cfaabi_dbg_ctx2 );
639                {
640                        __cfadbg_print_safe(io, "Kernel I/O : notifying\n");
641
642                        // as long as there are pending allocations try to satisfy them
643                        // for simplicity do it in FIFO order
644                        while( !this.pending.queue`isEmpty ) {
645                                // get first pending allocs
646                                __u32 have = ctx->sq.free_ring.tail - ctx->sq.free_ring.head;
647                                __pending_alloc & pa = (__pending_alloc&)(this.pending.queue`first);
648
649                                // check if we have enough to satisfy the request
650                                if( have > pa.want ) goto DONE;
651
652                                // if there are enough allocations it means we can drop the request
653                                try_pop_front( this.pending.queue );
654
655                                /* paranoid */__attribute__((unused)) bool ret =
656
657                                // actually do the alloc
658                                __alloc(ctx, pa.idxs, pa.want);
659
660                                /* paranoid */ verify( ret );
661
662                                // write out which context statisfied the request and post
663                                // this
664                                pa.ctx = ctx;
665                                post( pa.waitctx );
666                        }
667
668                        this.pending.empty = true;
669                        DONE:;
670                }
671                unlock( this.pending.lock );
672
673                /* paranoid */ verify( __preemption_enabled() );
674        }
675
676        // short hand to avoid the mutual exclusion of the pending is empty regardless
677        static void __ioarbiter_notify( io_context$ & ctx ) {
678                if(empty( ctx.arbiter->pending )) return;
679                __ioarbiter_notify( *ctx.arbiter, &ctx );
680        }
681
682        // Submit from outside the local processor: append to the outstanding list
683        static void __ioarbiter_submit( io_context$ * ctx, __u32 idxs[], __u32 have, bool lazy ) {
684                __cfadbg_print_safe(io, "Kernel I/O : submitting %u from the arbiter to context %u\n", have, ctx->fd);
685
686                __cfadbg_print_safe(io, "Kernel I/O : waiting to submit %u\n", have);
687
688                // create the intrusive object to append
689                __external_io ei;
690                ei.idxs = idxs;
691                ei.have = have;
692                ei.lazy = lazy;
693
694                // enqueue the io
695                bool we = enqueue(ctx->ext_sq, (__outstanding_io&)ei);
696
697                // mark pending
698                __atomic_store_n(&ctx->proc->io.pending, true, __ATOMIC_SEQ_CST);
699
700                // if this is the first to be enqueued, signal the processor in an attempt to speed up flushing
701                // if it's not the first enqueue, a signal is already in transit
702                if( we ) {
703                        sigval_t value = { PREEMPT_IO };
704                        __cfaabi_pthread_sigqueue(ctx->proc->kernel_thread, SIGUSR1, value);
705                        __STATS__( false, io.flush.signal += 1; )
706                }
707                __STATS__( false, io.submit.extr += 1; )
708
709                // to avoid dynamic allocation/memory reclamation headaches, wait for it to have been submitted
710                wait( ei.waitctx );
711
712                __cfadbg_print_safe(io, "Kernel I/O : %u submitted from arbiter\n", have);
713        }
714
715        // flush the io arbiter: move all external io operations to the submission ring
716        static void __ioarbiter_flush( io_context$ & ctx, bool kernel ) {
717                // if there are no external operations just return
718                if(empty( ctx.ext_sq )) return;
719
720                // stats and logs
721                __STATS__( false, io.flush.external += 1; )
722                __cfadbg_print_safe(io, "Kernel I/O : arbiter flushing\n");
723
724                // this can happen from multiple processors, mutual exclusion is needed
725                lock( ctx.ext_sq.lock __cfaabi_dbg_ctx2 );
726                {
727                        // pop each operation one at a time.
728                        // There is no wait morphing because of the io sq ring
729                        while( !ctx.ext_sq.queue`isEmpty ) {
730                                // drop the element from the queue
731                                __external_io & ei = (__external_io&)try_pop_front( ctx.ext_sq.queue );
732
733                                // submit it
734                                __submit_only(&ctx, ei.idxs, ei.have, true);
735
736                                // wake the thread that was waiting on it
737                                // since this can both be called from kernel and user, check the flag before posting
738                                __post( ei.waitctx, kernel, UNPARK_LOCAL );
739                        }
740
741                        // mark the queue as empty
742                        ctx.ext_sq.empty = true;
743                        ctx.sq.last_external = true;
744                }
745                unlock(ctx.ext_sq.lock );
746        }
747
748        extern "C" {
749                // debug functions used for gdb
750                // io_uring doesn't yet support gdb soe the kernel-shared data structures aren't viewable in gdb
751                // these functions read the data that gdb can't and should be removed once the support is added
752                static __u32 __cfagdb_cq_head( io_context$ * ctx ) __attribute__((nonnull(1),used,noinline)) { return *ctx->cq.head; }
753                static __u32 __cfagdb_cq_tail( io_context$ * ctx ) __attribute__((nonnull(1),used,noinline)) { return *ctx->cq.tail; }
754                static __u32 __cfagdb_cq_mask( io_context$ * ctx ) __attribute__((nonnull(1),used,noinline)) { return *ctx->cq.mask; }
755                static __u32 __cfagdb_sq_head( io_context$ * ctx ) __attribute__((nonnull(1),used,noinline)) { return *ctx->sq.kring.head; }
756                static __u32 __cfagdb_sq_tail( io_context$ * ctx ) __attribute__((nonnull(1),used,noinline)) { return *ctx->sq.kring.tail; }
757                static __u32 __cfagdb_sq_mask( io_context$ * ctx ) __attribute__((nonnull(1),used,noinline)) { return *ctx->sq.mask; }
758
759                // fancier version that reads an sqe and copies it out.
760                static struct io_uring_sqe __cfagdb_sq_at( io_context$ * ctx, __u32 at ) __attribute__((nonnull(1),used,noinline)) {
761                        __u32 ax = at & *ctx->sq.mask;
762                        __u32 ix = ctx->sq.kring.array[ax];
763                        return ctx->sq.sqes[ix];
764                }
765        }
766#endif
Note: See TracBrowser for help on using the repository browser.