source: libcfa/src/concurrency/io.cfa@ a8367eb

ADT ast-experimental enum forall-pointer-decay pthread-emulation qualifiedEnum
Last change on this file since a8367eb was e84ab3d, checked in by Thierry Delisle <tdelisle@…>, 4 years ago

Step 1 of changing $thread to thread$

  • Property mode set to 100644
File size: 15.5 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2020 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// io.cfa --
8//
9// Author : Thierry Delisle
10// Created On : Thu Apr 23 17:31:00 2020
11// Last Modified By :
12// Last Modified On :
13// Update Count :
14//
15
16#define __cforall_thread__
17#define _GNU_SOURCE
18
19#if defined(__CFA_DEBUG__)
20 // #define __CFA_DEBUG_PRINT_IO__
21 // #define __CFA_DEBUG_PRINT_IO_CORE__
22#endif
23
24
25#if defined(CFA_HAVE_LINUX_IO_URING_H)
26 #include <errno.h>
27 #include <signal.h>
28 #include <stdint.h>
29 #include <string.h>
30 #include <unistd.h>
31
32 extern "C" {
33 #include <sys/syscall.h>
34 #include <sys/eventfd.h>
35
36 #include <linux/io_uring.h>
37 }
38
39 #include "stats.hfa"
40 #include "kernel.hfa"
41 #include "kernel/fwd.hfa"
42 #include "kernel_private.hfa"
43 #include "io/types.hfa"
44
45 __attribute__((unused)) static const char * opcodes[] = {
46 "OP_NOP",
47 "OP_READV",
48 "OP_WRITEV",
49 "OP_FSYNC",
50 "OP_READ_FIXED",
51 "OP_WRITE_FIXED",
52 "OP_POLL_ADD",
53 "OP_POLL_REMOVE",
54 "OP_SYNC_FILE_RANGE",
55 "OP_SENDMSG",
56 "OP_RECVMSG",
57 "OP_TIMEOUT",
58 "OP_TIMEOUT_REMOVE",
59 "OP_ACCEPT",
60 "OP_ASYNC_CANCEL",
61 "OP_LINK_TIMEOUT",
62 "OP_CONNECT",
63 "OP_FALLOCATE",
64 "OP_OPENAT",
65 "OP_CLOSE",
66 "OP_FILES_UPDATE",
67 "OP_STATX",
68 "OP_READ",
69 "OP_WRITE",
70 "OP_FADVISE",
71 "OP_MADVISE",
72 "OP_SEND",
73 "OP_RECV",
74 "OP_OPENAT2",
75 "OP_EPOLL_CTL",
76 "OP_SPLICE",
77 "OP_PROVIDE_BUFFERS",
78 "OP_REMOVE_BUFFERS",
79 "OP_TEE",
80 "INVALID_OP"
81 };
82
83 static $io_context * __ioarbiter_allocate( $io_arbiter & this, __u32 idxs[], __u32 want );
84 static void __ioarbiter_submit( $io_context * , __u32 idxs[], __u32 have, bool lazy );
85 static void __ioarbiter_flush ( $io_context & );
86 static inline void __ioarbiter_notify( $io_context & ctx );
87//=============================================================================================
88// I/O Polling
89//=============================================================================================
90 static inline unsigned __flush( struct $io_context & );
91 static inline __u32 __release_sqes( struct $io_context & );
92 extern void __kernel_unpark( thread$ * thrd );
93
94 bool __cfa_io_drain( processor * proc ) {
95 /* paranoid */ verify( ! __preemption_enabled() );
96 /* paranoid */ verify( ready_schedule_islocked() );
97 /* paranoid */ verify( proc );
98 /* paranoid */ verify( proc->io.ctx );
99
100 // Drain the queue
101 $io_context * ctx = proc->io.ctx;
102 unsigned head = *ctx->cq.head;
103 unsigned tail = *ctx->cq.tail;
104 const __u32 mask = *ctx->cq.mask;
105
106 __u32 count = tail - head;
107 __STATS__( false, io.calls.drain++; io.calls.completed += count; )
108
109 if(count == 0) return false;
110
111 for(i; count) {
112 unsigned idx = (head + i) & mask;
113 volatile struct io_uring_cqe & cqe = ctx->cq.cqes[idx];
114
115 /* paranoid */ verify(&cqe);
116
117 struct io_future_t * future = (struct io_future_t *)(uintptr_t)cqe.user_data;
118 __cfadbg_print_safe( io, "Kernel I/O : Syscall completed : cqe %p, result %d for %p\n", &cqe, cqe.res, future );
119
120 __kernel_unpark( fulfil( *future, cqe.res, false ) );
121 }
122
123 __cfadbg_print_safe(io, "Kernel I/O : %u completed\n", count);
124
125 // Mark to the kernel that the cqe has been seen
126 // Ensure that the kernel only sees the new value of the head index after the CQEs have been read.
127 __atomic_store_n( ctx->cq.head, head + count, __ATOMIC_SEQ_CST );
128
129 /* paranoid */ verify( ready_schedule_islocked() );
130 /* paranoid */ verify( ! __preemption_enabled() );
131
132 return true;
133 }
134
135 void __cfa_io_flush( processor * proc ) {
136 /* paranoid */ verify( ! __preemption_enabled() );
137 /* paranoid */ verify( proc );
138 /* paranoid */ verify( proc->io.ctx );
139
140 __attribute__((unused)) cluster * cltr = proc->cltr;
141 $io_context & ctx = *proc->io.ctx;
142
143 // for(i; 2) {
144 // unsigned idx = proc->rdq.id + i;
145 // cltr->ready_queue.lanes.tscs[idx].tv = -1ull;
146 // }
147
148 __ioarbiter_flush( ctx );
149
150 __STATS__( true, io.calls.flush++; )
151 int ret = syscall( __NR_io_uring_enter, ctx.fd, ctx.sq.to_submit, 0, 0, (sigset_t *)0p, _NSIG / 8);
152 if( ret < 0 ) {
153 switch((int)errno) {
154 case EAGAIN:
155 case EINTR:
156 case EBUSY:
157 // Update statistics
158 __STATS__( false, io.calls.errors.busy ++; )
159 // for(i; 2) {
160 // unsigned idx = proc->rdq.id + i;
161 // cltr->ready_queue.lanes.tscs[idx].tv = rdtscl();
162 // }
163 return;
164 default:
165 abort( "KERNEL ERROR: IO_URING SYSCALL - (%d) %s\n", (int)errno, strerror(errno) );
166 }
167 }
168
169 __cfadbg_print_safe(io, "Kernel I/O : %u submitted to io_uring %d\n", ret, ctx.fd);
170 __STATS__( true, io.calls.submitted += ret; )
171 /* paranoid */ verify( ctx.sq.to_submit <= *ctx.sq.num );
172 /* paranoid */ verify( ctx.sq.to_submit >= ret );
173
174 ctx.sq.to_submit -= ret;
175
176 /* paranoid */ verify( ctx.sq.to_submit <= *ctx.sq.num );
177
178 // Release the consumed SQEs
179 __release_sqes( ctx );
180
181 /* paranoid */ verify( ! __preemption_enabled() );
182
183 ctx.proc->io.pending = false;
184
185 ready_schedule_lock();
186 __cfa_io_drain( proc );
187 ready_schedule_unlock();
188 // for(i; 2) {
189 // unsigned idx = proc->rdq.id + i;
190 // cltr->ready_queue.lanes.tscs[idx].tv = rdtscl();
191 // }
192 }
193
194//=============================================================================================
195// I/O Submissions
196//=============================================================================================
197
198// Submition steps :
199// 1 - Allocate a queue entry. The ring already has memory for all entries but only the ones
200// listed in sq.array are visible by the kernel. For those not listed, the kernel does not
201// offer any assurance that an entry is not being filled by multiple flags. Therefore, we
202// need to write an allocator that allows allocating concurrently.
203//
204// 2 - Actually fill the submit entry, this is the only simple and straightforward step.
205//
206// 3 - Append the entry index to the array and adjust the tail accordingly. This operation
207// needs to arrive to two concensus at the same time:
208// A - The order in which entries are listed in the array: no two threads must pick the
209// same index for their entries
210// B - When can the tail be update for the kernel. EVERY entries in the array between
211// head and tail must be fully filled and shouldn't ever be touched again.
212//
213 //=============================================================================================
214 // Allocation
215 // for user's convenience fill the sqes from the indexes
216 static inline void __fill(struct io_uring_sqe * out_sqes[], __u32 want, __u32 idxs[], struct $io_context * ctx) {
217 struct io_uring_sqe * sqes = ctx->sq.sqes;
218 for(i; want) {
219 __cfadbg_print_safe(io, "Kernel I/O : filling loop\n");
220 out_sqes[i] = &sqes[idxs[i]];
221 }
222 }
223
224 // Try to directly allocate from the a given context
225 // Not thread-safe
226 static inline bool __alloc(struct $io_context * ctx, __u32 idxs[], __u32 want) {
227 __sub_ring_t & sq = ctx->sq;
228 const __u32 mask = *sq.mask;
229 __u32 fhead = sq.free_ring.head; // get the current head of the queue
230 __u32 ftail = sq.free_ring.tail; // get the current tail of the queue
231
232 // If we don't have enough sqes, fail
233 if((ftail - fhead) < want) { return false; }
234
235 // copy all the indexes we want from the available list
236 for(i; want) {
237 __cfadbg_print_safe(io, "Kernel I/O : allocating loop\n");
238 idxs[i] = sq.free_ring.array[(fhead + i) & mask];
239 }
240
241 // Advance the head to mark the indexes as consumed
242 __atomic_store_n(&sq.free_ring.head, fhead + want, __ATOMIC_RELEASE);
243
244 // return success
245 return true;
246 }
247
248 // Allocate an submit queue entry.
249 // The kernel cannot see these entries until they are submitted, but other threads must be
250 // able to see which entries can be used and which are already un used by an other thread
251 // for convenience, return both the index and the pointer to the sqe
252 // sqe == &sqes[idx]
253 struct $io_context * cfa_io_allocate(struct io_uring_sqe * sqes[], __u32 idxs[], __u32 want) {
254 __cfadbg_print_safe(io, "Kernel I/O : attempting to allocate %u\n", want);
255
256 disable_interrupts();
257 processor * proc = __cfaabi_tls.this_processor;
258 $io_context * ctx = proc->io.ctx;
259 /* paranoid */ verify( __cfaabi_tls.this_processor );
260 /* paranoid */ verify( ctx );
261
262 __cfadbg_print_safe(io, "Kernel I/O : attempting to fast allocation\n");
263
264 // We can proceed to the fast path
265 if( __alloc(ctx, idxs, want) ) {
266 // Allocation was successful
267 __STATS__( true, io.alloc.fast += 1; )
268 enable_interrupts();
269
270 __cfadbg_print_safe(io, "Kernel I/O : fast allocation successful from ring %d\n", ctx->fd);
271
272 __fill( sqes, want, idxs, ctx );
273 return ctx;
274 }
275 // The fast path failed, fallback
276 __STATS__( true, io.alloc.fail += 1; )
277
278 // Fast path failed, fallback on arbitration
279 __STATS__( true, io.alloc.slow += 1; )
280 enable_interrupts();
281
282 $io_arbiter * ioarb = proc->cltr->io.arbiter;
283 /* paranoid */ verify( ioarb );
284
285 __cfadbg_print_safe(io, "Kernel I/O : falling back on arbiter for allocation\n");
286
287 struct $io_context * ret = __ioarbiter_allocate(*ioarb, idxs, want);
288
289 __cfadbg_print_safe(io, "Kernel I/O : slow allocation completed from ring %d\n", ret->fd);
290
291 __fill( sqes, want, idxs,ret );
292 return ret;
293 }
294
295
296 //=============================================================================================
297 // submission
298 static inline void __submit( struct $io_context * ctx, __u32 idxs[], __u32 have, bool lazy) {
299 // We can proceed to the fast path
300 // Get the right objects
301 __sub_ring_t & sq = ctx->sq;
302 const __u32 mask = *sq.mask;
303 __u32 tail = *sq.kring.tail;
304
305 // Add the sqes to the array
306 for( i; have ) {
307 __cfadbg_print_safe(io, "Kernel I/O : __submit loop\n");
308 sq.kring.array[ (tail + i) & mask ] = idxs[i];
309 }
310
311 // Make the sqes visible to the submitter
312 __atomic_store_n(sq.kring.tail, tail + have, __ATOMIC_RELEASE);
313 sq.to_submit++;
314
315 ctx->proc->io.pending = true;
316 ctx->proc->io.dirty = true;
317 if(sq.to_submit > 30 || !lazy) {
318 __cfa_io_flush( ctx->proc );
319 }
320 }
321
322 void cfa_io_submit( struct $io_context * inctx, __u32 idxs[], __u32 have, bool lazy ) __attribute__((nonnull (1))) {
323 __cfadbg_print_safe(io, "Kernel I/O : attempting to submit %u (%s)\n", have, lazy ? "lazy" : "eager");
324
325 disable_interrupts();
326 processor * proc = __cfaabi_tls.this_processor;
327 $io_context * ctx = proc->io.ctx;
328 /* paranoid */ verify( __cfaabi_tls.this_processor );
329 /* paranoid */ verify( ctx );
330
331 // Can we proceed to the fast path
332 if( ctx == inctx ) // We have the right instance?
333 {
334 __submit(ctx, idxs, have, lazy);
335
336 // Mark the instance as no longer in-use, re-enable interrupts and return
337 __STATS__( true, io.submit.fast += 1; )
338 enable_interrupts();
339
340 __cfadbg_print_safe(io, "Kernel I/O : submitted on fast path\n");
341 return;
342 }
343
344 // Fast path failed, fallback on arbitration
345 __STATS__( true, io.submit.slow += 1; )
346 enable_interrupts();
347
348 __cfadbg_print_safe(io, "Kernel I/O : falling back on arbiter for submission\n");
349
350 __ioarbiter_submit(inctx, idxs, have, lazy);
351 }
352
353 //=============================================================================================
354 // Flushing
355 // Go through the ring's submit queue and release everything that has already been consumed
356 // by io_uring
357 // This cannot be done by multiple threads
358 static __u32 __release_sqes( struct $io_context & ctx ) {
359 const __u32 mask = *ctx.sq.mask;
360
361 __attribute__((unused))
362 __u32 ctail = *ctx.sq.kring.tail; // get the current tail of the queue
363 __u32 chead = *ctx.sq.kring.head; // get the current head of the queue
364 __u32 phead = ctx.sq.kring.released; // get the head the last time we were here
365
366 __u32 ftail = ctx.sq.free_ring.tail; // get the current tail of the queue
367
368 // the 3 fields are organized like this diagram
369 // except it's are ring
370 // ---+--------+--------+----
371 // ---+--------+--------+----
372 // ^ ^ ^
373 // phead chead ctail
374
375 // make sure ctail doesn't wrap around and reach phead
376 /* paranoid */ verify(
377 (ctail >= chead && chead >= phead)
378 || (chead >= phead && phead >= ctail)
379 || (phead >= ctail && ctail >= chead)
380 );
381
382 // find the range we need to clear
383 __u32 count = chead - phead;
384
385 if(count == 0) {
386 return 0;
387 }
388
389 // We acquired an previous-head/current-head range
390 // go through the range and release the sqes
391 for( i; count ) {
392 __cfadbg_print_safe(io, "Kernel I/O : release loop\n");
393 __u32 idx = ctx.sq.kring.array[ (phead + i) & mask ];
394 ctx.sq.free_ring.array[ (ftail + i) & mask ] = idx;
395 }
396
397 ctx.sq.kring.released = chead; // note up to were we processed
398 __atomic_store_n(&ctx.sq.free_ring.tail, ftail + count, __ATOMIC_SEQ_CST);
399
400 __ioarbiter_notify(ctx);
401
402 return count;
403 }
404
405//=============================================================================================
406// I/O Arbiter
407//=============================================================================================
408 static inline void block(__outstanding_io_queue & queue, __outstanding_io & item) {
409 // Lock the list, it's not thread safe
410 lock( queue.lock __cfaabi_dbg_ctx2 );
411 {
412 // Add our request to the list
413 add( queue.queue, item );
414
415 // Mark as pending
416 __atomic_store_n( &queue.empty, false, __ATOMIC_SEQ_CST );
417 }
418 unlock( queue.lock );
419
420 wait( item.sem );
421 }
422
423 static inline bool empty(__outstanding_io_queue & queue ) {
424 return __atomic_load_n( &queue.empty, __ATOMIC_SEQ_CST);
425 }
426
427 static $io_context * __ioarbiter_allocate( $io_arbiter & this, __u32 idxs[], __u32 want ) {
428 __cfadbg_print_safe(io, "Kernel I/O : arbiter allocating\n");
429
430 __STATS__( false, io.alloc.block += 1; )
431
432 // No one has any resources left, wait for something to finish
433 // We need to add ourself to a list of pending allocs and wait for an answer
434 __pending_alloc pa;
435 pa.idxs = idxs;
436 pa.want = want;
437
438 block(this.pending, (__outstanding_io&)pa);
439
440 return pa.ctx;
441
442 }
443
444 static void __ioarbiter_notify( $io_arbiter & this, $io_context * ctx ) {
445 /* paranoid */ verify( !empty(this.pending.queue) );
446
447 lock( this.pending.lock __cfaabi_dbg_ctx2 );
448 {
449 while( !empty(this.pending.queue) ) {
450 __cfadbg_print_safe(io, "Kernel I/O : notifying\n");
451 __u32 have = ctx->sq.free_ring.tail - ctx->sq.free_ring.head;
452 __pending_alloc & pa = (__pending_alloc&)head( this.pending.queue );
453
454 if( have > pa.want ) goto DONE;
455 drop( this.pending.queue );
456
457 /* paranoid */__attribute__((unused)) bool ret =
458
459 __alloc(ctx, pa.idxs, pa.want);
460
461 /* paranoid */ verify( ret );
462
463 pa.ctx = ctx;
464
465 post( pa.sem );
466 }
467
468 this.pending.empty = true;
469 DONE:;
470 }
471 unlock( this.pending.lock );
472 }
473
474 static void __ioarbiter_notify( $io_context & ctx ) {
475 if(!empty( ctx.arbiter->pending )) {
476 __ioarbiter_notify( *ctx.arbiter, &ctx );
477 }
478 }
479
480 // Simply append to the pending
481 static void __ioarbiter_submit( $io_context * ctx, __u32 idxs[], __u32 have, bool lazy ) {
482 __cfadbg_print_safe(io, "Kernel I/O : submitting %u from the arbiter to context %u\n", have, ctx->fd);
483
484 __cfadbg_print_safe(io, "Kernel I/O : waiting to submit %u\n", have);
485
486 __external_io ei;
487 ei.idxs = idxs;
488 ei.have = have;
489 ei.lazy = lazy;
490
491 block(ctx->ext_sq, (__outstanding_io&)ei);
492
493 __cfadbg_print_safe(io, "Kernel I/O : %u submitted from arbiter\n", have);
494 }
495
496 static void __ioarbiter_flush( $io_context & ctx ) {
497 if(!empty( ctx.ext_sq )) {
498 __STATS__( false, io.flush.external += 1; )
499
500 __cfadbg_print_safe(io, "Kernel I/O : arbiter flushing\n");
501
502 lock( ctx.ext_sq.lock __cfaabi_dbg_ctx2 );
503 {
504 while( !empty(ctx.ext_sq.queue) ) {
505 __external_io & ei = (__external_io&)drop( ctx.ext_sq.queue );
506
507 __submit(&ctx, ei.idxs, ei.have, ei.lazy);
508
509 post( ei.sem );
510 }
511
512 ctx.ext_sq.empty = true;
513 }
514 unlock(ctx.ext_sq.lock );
515 }
516 }
517#endif
Note: See TracBrowser for help on using the repository browser.