source: libcfa/src/concurrency/io.cfa@ 919a6b2

ADT ast-experimental enum forall-pointer-decay pthread-emulation qualifiedEnum
Last change on this file since 919a6b2 was 078fb05, checked in by Thierry Delisle <tdelisle@…>, 4 years ago

Fixed a few warnings

  • Property mode set to 100644
File size: 16.7 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2020 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// io.cfa --
8//
9// Author : Thierry Delisle
10// Created On : Thu Apr 23 17:31:00 2020
11// Last Modified By :
12// Last Modified On :
13// Update Count :
14//
15
16#define __cforall_thread__
17#define _GNU_SOURCE
18
19#if defined(__CFA_DEBUG__)
20 // #define __CFA_DEBUG_PRINT_IO__
21 // #define __CFA_DEBUG_PRINT_IO_CORE__
22#endif
23
24
25#if defined(CFA_HAVE_LINUX_IO_URING_H)
26 #include <errno.h>
27 #include <signal.h>
28 #include <stdint.h>
29 #include <string.h>
30 #include <unistd.h>
31
32 extern "C" {
33 #include <sys/syscall.h>
34 #include <sys/eventfd.h>
35 #include <sys/uio.h>
36
37 #include <linux/io_uring.h>
38 }
39
40 #include "stats.hfa"
41 #include "kernel.hfa"
42 #include "kernel/fwd.hfa"
43 #include "kernel_private.hfa"
44 #include "io/types.hfa"
45
46 __attribute__((unused)) static const char * opcodes[] = {
47 "OP_NOP",
48 "OP_READV",
49 "OP_WRITEV",
50 "OP_FSYNC",
51 "OP_READ_FIXED",
52 "OP_WRITE_FIXED",
53 "OP_POLL_ADD",
54 "OP_POLL_REMOVE",
55 "OP_SYNC_FILE_RANGE",
56 "OP_SENDMSG",
57 "OP_RECVMSG",
58 "OP_TIMEOUT",
59 "OP_TIMEOUT_REMOVE",
60 "OP_ACCEPT",
61 "OP_ASYNC_CANCEL",
62 "OP_LINK_TIMEOUT",
63 "OP_CONNECT",
64 "OP_FALLOCATE",
65 "OP_OPENAT",
66 "OP_CLOSE",
67 "OP_FILES_UPDATE",
68 "OP_STATX",
69 "OP_READ",
70 "OP_WRITE",
71 "OP_FADVISE",
72 "OP_MADVISE",
73 "OP_SEND",
74 "OP_RECV",
75 "OP_OPENAT2",
76 "OP_EPOLL_CTL",
77 "OP_SPLICE",
78 "OP_PROVIDE_BUFFERS",
79 "OP_REMOVE_BUFFERS",
80 "OP_TEE",
81 "INVALID_OP"
82 };
83
84 static $io_context * __ioarbiter_allocate( $io_arbiter & this, __u32 idxs[], __u32 want );
85 static void __ioarbiter_submit( $io_context * , __u32 idxs[], __u32 have, bool lazy );
86 static void __ioarbiter_flush ( $io_context & );
87 static inline void __ioarbiter_notify( $io_context & ctx );
88//=============================================================================================
89// I/O Polling
90//=============================================================================================
91 static inline unsigned __flush( struct $io_context & );
92 static inline __u32 __release_sqes( struct $io_context & );
93 extern void __kernel_unpark( thread$ * thrd, unpark_hint );
94
95 bool __cfa_io_drain( processor * proc ) {
96 /* paranoid */ verify( ! __preemption_enabled() );
97 /* paranoid */ verify( ready_schedule_islocked() );
98 /* paranoid */ verify( proc );
99 /* paranoid */ verify( proc->io.ctx );
100
101 // Drain the queue
102 $io_context * ctx = proc->io.ctx;
103 unsigned head = *ctx->cq.head;
104 unsigned tail = *ctx->cq.tail;
105 const __u32 mask = *ctx->cq.mask;
106
107 __u32 count = tail - head;
108 __STATS__( false, io.calls.drain++; io.calls.completed += count; )
109
110 if(count == 0) return false;
111
112 for(i; count) {
113 unsigned idx = (head + i) & mask;
114 volatile struct io_uring_cqe & cqe = ctx->cq.cqes[idx];
115
116 /* paranoid */ verify(&cqe);
117
118 struct io_future_t * future = (struct io_future_t *)(uintptr_t)cqe.user_data;
119 __cfadbg_print_safe( io, "Kernel I/O : Syscall completed : cqe %p, result %d for %p\n", &cqe, cqe.res, future );
120
121 __kernel_unpark( fulfil( *future, cqe.res, false ), UNPARK_LOCAL );
122 }
123
124 __cfadbg_print_safe(io, "Kernel I/O : %u completed\n", count);
125
126 // Mark to the kernel that the cqe has been seen
127 // Ensure that the kernel only sees the new value of the head index after the CQEs have been read.
128 __atomic_store_n( ctx->cq.head, head + count, __ATOMIC_SEQ_CST );
129
130 /* paranoid */ verify( ready_schedule_islocked() );
131 /* paranoid */ verify( ! __preemption_enabled() );
132
133 return true;
134 }
135
136 bool __cfa_io_flush( processor * proc, int min_comp ) {
137 /* paranoid */ verify( ! __preemption_enabled() );
138 /* paranoid */ verify( proc );
139 /* paranoid */ verify( proc->io.ctx );
140
141 __attribute__((unused)) cluster * cltr = proc->cltr;
142 $io_context & ctx = *proc->io.ctx;
143
144 __ioarbiter_flush( ctx );
145
146 __STATS__( true, io.calls.flush++; )
147 int ret = syscall( __NR_io_uring_enter, ctx.fd, ctx.sq.to_submit, min_comp, min_comp > 0 ? IORING_ENTER_GETEVENTS : 0, (sigset_t *)0p, _NSIG / 8);
148 if( ret < 0 ) {
149 switch((int)errno) {
150 case EAGAIN:
151 case EINTR:
152 case EBUSY:
153 // Update statistics
154 __STATS__( false, io.calls.errors.busy ++; )
155 return false;
156 default:
157 abort( "KERNEL ERROR: IO_URING SYSCALL - (%d) %s\n", (int)errno, strerror(errno) );
158 }
159 }
160
161 __cfadbg_print_safe(io, "Kernel I/O : %u submitted to io_uring %d\n", ret, ctx.fd);
162 __STATS__( true, io.calls.submitted += ret; )
163 /* paranoid */ verify( ctx.sq.to_submit <= *ctx.sq.num );
164 /* paranoid */ verify( ctx.sq.to_submit >= ret );
165
166 ctx.sq.to_submit -= ret;
167
168 /* paranoid */ verify( ctx.sq.to_submit <= *ctx.sq.num );
169
170 // Release the consumed SQEs
171 __release_sqes( ctx );
172
173 /* paranoid */ verify( ! __preemption_enabled() );
174
175 ctx.proc->io.pending = false;
176 ready_schedule_lock();
177 bool ret = __cfa_io_drain( proc );
178 ready_schedule_unlock();
179 return ret;
180 }
181
182//=============================================================================================
183// I/O Submissions
184//=============================================================================================
185
186// Submition steps :
187// 1 - Allocate a queue entry. The ring already has memory for all entries but only the ones
188// listed in sq.array are visible by the kernel. For those not listed, the kernel does not
189// offer any assurance that an entry is not being filled by multiple flags. Therefore, we
190// need to write an allocator that allows allocating concurrently.
191//
192// 2 - Actually fill the submit entry, this is the only simple and straightforward step.
193//
194// 3 - Append the entry index to the array and adjust the tail accordingly. This operation
195// needs to arrive to two concensus at the same time:
196// A - The order in which entries are listed in the array: no two threads must pick the
197// same index for their entries
198// B - When can the tail be update for the kernel. EVERY entries in the array between
199// head and tail must be fully filled and shouldn't ever be touched again.
200//
201 //=============================================================================================
202 // Allocation
203 // for user's convenience fill the sqes from the indexes
204 static inline void __fill(struct io_uring_sqe * out_sqes[], __u32 want, __u32 idxs[], struct $io_context * ctx) {
205 struct io_uring_sqe * sqes = ctx->sq.sqes;
206 for(i; want) {
207 __cfadbg_print_safe(io, "Kernel I/O : filling loop\n");
208 out_sqes[i] = &sqes[idxs[i]];
209 }
210 }
211
212 // Try to directly allocate from the a given context
213 // Not thread-safe
214 static inline bool __alloc(struct $io_context * ctx, __u32 idxs[], __u32 want) {
215 __sub_ring_t & sq = ctx->sq;
216 const __u32 mask = *sq.mask;
217 __u32 fhead = sq.free_ring.head; // get the current head of the queue
218 __u32 ftail = sq.free_ring.tail; // get the current tail of the queue
219
220 // If we don't have enough sqes, fail
221 if((ftail - fhead) < want) { return false; }
222
223 // copy all the indexes we want from the available list
224 for(i; want) {
225 __cfadbg_print_safe(io, "Kernel I/O : allocating loop\n");
226 idxs[i] = sq.free_ring.array[(fhead + i) & mask];
227 }
228
229 // Advance the head to mark the indexes as consumed
230 __atomic_store_n(&sq.free_ring.head, fhead + want, __ATOMIC_RELEASE);
231
232 // return success
233 return true;
234 }
235
236 // Allocate an submit queue entry.
237 // The kernel cannot see these entries until they are submitted, but other threads must be
238 // able to see which entries can be used and which are already un used by an other thread
239 // for convenience, return both the index and the pointer to the sqe
240 // sqe == &sqes[idx]
241 struct $io_context * cfa_io_allocate(struct io_uring_sqe * sqes[], __u32 idxs[], __u32 want) {
242 __cfadbg_print_safe(io, "Kernel I/O : attempting to allocate %u\n", want);
243
244 disable_interrupts();
245 processor * proc = __cfaabi_tls.this_processor;
246 $io_context * ctx = proc->io.ctx;
247 /* paranoid */ verify( __cfaabi_tls.this_processor );
248 /* paranoid */ verify( ctx );
249
250 __cfadbg_print_safe(io, "Kernel I/O : attempting to fast allocation\n");
251
252 // We can proceed to the fast path
253 if( __alloc(ctx, idxs, want) ) {
254 // Allocation was successful
255 __STATS__( true, io.alloc.fast += 1; )
256 enable_interrupts();
257
258 __cfadbg_print_safe(io, "Kernel I/O : fast allocation successful from ring %d\n", ctx->fd);
259
260 __fill( sqes, want, idxs, ctx );
261 return ctx;
262 }
263 // The fast path failed, fallback
264 __STATS__( true, io.alloc.fail += 1; )
265
266 // Fast path failed, fallback on arbitration
267 __STATS__( true, io.alloc.slow += 1; )
268 enable_interrupts();
269
270 $io_arbiter * ioarb = proc->cltr->io.arbiter;
271 /* paranoid */ verify( ioarb );
272
273 __cfadbg_print_safe(io, "Kernel I/O : falling back on arbiter for allocation\n");
274
275 struct $io_context * ret = __ioarbiter_allocate(*ioarb, idxs, want);
276
277 __cfadbg_print_safe(io, "Kernel I/O : slow allocation completed from ring %d\n", ret->fd);
278
279 __fill( sqes, want, idxs,ret );
280 return ret;
281 }
282
283 //=============================================================================================
284 // submission
285 static inline void __submit( struct $io_context * ctx, __u32 idxs[], __u32 have, bool lazy) {
286 // We can proceed to the fast path
287 // Get the right objects
288 __sub_ring_t & sq = ctx->sq;
289 const __u32 mask = *sq.mask;
290 __u32 tail = *sq.kring.tail;
291
292 // Add the sqes to the array
293 for( i; have ) {
294 __cfadbg_print_safe(io, "Kernel I/O : __submit loop\n");
295 sq.kring.array[ (tail + i) & mask ] = idxs[i];
296 }
297
298 // Make the sqes visible to the submitter
299 __atomic_store_n(sq.kring.tail, tail + have, __ATOMIC_RELEASE);
300 sq.to_submit += have;
301
302 ctx->proc->io.pending = true;
303 ctx->proc->io.dirty = true;
304 if(sq.to_submit > 30 || !lazy) {
305 __cfa_io_flush( ctx->proc, 0 );
306 }
307 }
308
309 void cfa_io_submit( struct $io_context * inctx, __u32 idxs[], __u32 have, bool lazy ) __attribute__((nonnull (1))) {
310 __cfadbg_print_safe(io, "Kernel I/O : attempting to submit %u (%s)\n", have, lazy ? "lazy" : "eager");
311
312 disable_interrupts();
313 processor * proc = __cfaabi_tls.this_processor;
314 $io_context * ctx = proc->io.ctx;
315 /* paranoid */ verify( __cfaabi_tls.this_processor );
316 /* paranoid */ verify( ctx );
317
318 // Can we proceed to the fast path
319 if( ctx == inctx ) // We have the right instance?
320 {
321 __submit(ctx, idxs, have, lazy);
322
323 // Mark the instance as no longer in-use, re-enable interrupts and return
324 __STATS__( true, io.submit.fast += 1; )
325 enable_interrupts();
326
327 __cfadbg_print_safe(io, "Kernel I/O : submitted on fast path\n");
328 return;
329 }
330
331 // Fast path failed, fallback on arbitration
332 __STATS__( true, io.submit.slow += 1; )
333 enable_interrupts();
334
335 __cfadbg_print_safe(io, "Kernel I/O : falling back on arbiter for submission\n");
336
337 __ioarbiter_submit(inctx, idxs, have, lazy);
338 }
339
340 //=============================================================================================
341 // Flushing
342 // Go through the ring's submit queue and release everything that has already been consumed
343 // by io_uring
344 // This cannot be done by multiple threads
345 static __u32 __release_sqes( struct $io_context & ctx ) {
346 const __u32 mask = *ctx.sq.mask;
347
348 __attribute__((unused))
349 __u32 ctail = *ctx.sq.kring.tail; // get the current tail of the queue
350 __u32 chead = *ctx.sq.kring.head; // get the current head of the queue
351 __u32 phead = ctx.sq.kring.released; // get the head the last time we were here
352
353 __u32 ftail = ctx.sq.free_ring.tail; // get the current tail of the queue
354
355 // the 3 fields are organized like this diagram
356 // except it's are ring
357 // ---+--------+--------+----
358 // ---+--------+--------+----
359 // ^ ^ ^
360 // phead chead ctail
361
362 // make sure ctail doesn't wrap around and reach phead
363 /* paranoid */ verify(
364 (ctail >= chead && chead >= phead)
365 || (chead >= phead && phead >= ctail)
366 || (phead >= ctail && ctail >= chead)
367 );
368
369 // find the range we need to clear
370 __u32 count = chead - phead;
371
372 if(count == 0) {
373 return 0;
374 }
375
376 // We acquired an previous-head/current-head range
377 // go through the range and release the sqes
378 for( i; count ) {
379 __cfadbg_print_safe(io, "Kernel I/O : release loop\n");
380 __u32 idx = ctx.sq.kring.array[ (phead + i) & mask ];
381 ctx.sq.free_ring.array[ (ftail + i) & mask ] = idx;
382 }
383
384 ctx.sq.kring.released = chead; // note up to were we processed
385 __atomic_store_n(&ctx.sq.free_ring.tail, ftail + count, __ATOMIC_SEQ_CST);
386
387 __ioarbiter_notify(ctx);
388
389 return count;
390 }
391
392//=============================================================================================
393// I/O Arbiter
394//=============================================================================================
395 static inline void block(__outstanding_io_queue & queue, __outstanding_io & item) {
396 // Lock the list, it's not thread safe
397 lock( queue.lock __cfaabi_dbg_ctx2 );
398 {
399 // Add our request to the list
400 add( queue.queue, item );
401
402 // Mark as pending
403 __atomic_store_n( &queue.empty, false, __ATOMIC_SEQ_CST );
404 }
405 unlock( queue.lock );
406
407 wait( item.sem );
408 }
409
410 static inline bool empty(__outstanding_io_queue & queue ) {
411 return __atomic_load_n( &queue.empty, __ATOMIC_SEQ_CST);
412 }
413
414 static $io_context * __ioarbiter_allocate( $io_arbiter & this, __u32 idxs[], __u32 want ) {
415 __cfadbg_print_safe(io, "Kernel I/O : arbiter allocating\n");
416
417 __STATS__( false, io.alloc.block += 1; )
418
419 // No one has any resources left, wait for something to finish
420 // We need to add ourself to a list of pending allocs and wait for an answer
421 __pending_alloc pa;
422 pa.idxs = idxs;
423 pa.want = want;
424
425 block(this.pending, (__outstanding_io&)pa);
426
427 return pa.ctx;
428
429 }
430
431 static void __ioarbiter_notify( $io_arbiter & this, $io_context * ctx ) {
432 /* paranoid */ verify( !empty(this.pending.queue) );
433
434 lock( this.pending.lock __cfaabi_dbg_ctx2 );
435 {
436 while( !empty(this.pending.queue) ) {
437 __cfadbg_print_safe(io, "Kernel I/O : notifying\n");
438 __u32 have = ctx->sq.free_ring.tail - ctx->sq.free_ring.head;
439 __pending_alloc & pa = (__pending_alloc&)head( this.pending.queue );
440
441 if( have > pa.want ) goto DONE;
442 drop( this.pending.queue );
443
444 /* paranoid */__attribute__((unused)) bool ret =
445
446 __alloc(ctx, pa.idxs, pa.want);
447
448 /* paranoid */ verify( ret );
449
450 pa.ctx = ctx;
451
452 post( pa.sem );
453 }
454
455 this.pending.empty = true;
456 DONE:;
457 }
458 unlock( this.pending.lock );
459 }
460
461 static void __ioarbiter_notify( $io_context & ctx ) {
462 if(!empty( ctx.arbiter->pending )) {
463 __ioarbiter_notify( *ctx.arbiter, &ctx );
464 }
465 }
466
467 // Simply append to the pending
468 static void __ioarbiter_submit( $io_context * ctx, __u32 idxs[], __u32 have, bool lazy ) {
469 __cfadbg_print_safe(io, "Kernel I/O : submitting %u from the arbiter to context %u\n", have, ctx->fd);
470
471 __cfadbg_print_safe(io, "Kernel I/O : waiting to submit %u\n", have);
472
473 __external_io ei;
474 ei.idxs = idxs;
475 ei.have = have;
476 ei.lazy = lazy;
477
478 block(ctx->ext_sq, (__outstanding_io&)ei);
479
480 __cfadbg_print_safe(io, "Kernel I/O : %u submitted from arbiter\n", have);
481 }
482
483 static void __ioarbiter_flush( $io_context & ctx ) {
484 if(!empty( ctx.ext_sq )) {
485 __STATS__( false, io.flush.external += 1; )
486
487 __cfadbg_print_safe(io, "Kernel I/O : arbiter flushing\n");
488
489 lock( ctx.ext_sq.lock __cfaabi_dbg_ctx2 );
490 {
491 while( !empty(ctx.ext_sq.queue) ) {
492 __external_io & ei = (__external_io&)drop( ctx.ext_sq.queue );
493
494 __submit(&ctx, ei.idxs, ei.have, ei.lazy);
495
496 post( ei.sem );
497 }
498
499 ctx.ext_sq.empty = true;
500 }
501 unlock(ctx.ext_sq.lock );
502 }
503 }
504
505 #if defined(CFA_WITH_IO_URING_IDLE)
506 bool __kernel_read(processor * proc, io_future_t & future, iovec & iov, int fd) {
507 $io_context * ctx = proc->io.ctx;
508 /* paranoid */ verify( ! __preemption_enabled() );
509 /* paranoid */ verify( proc == __cfaabi_tls.this_processor );
510 /* paranoid */ verify( ctx );
511
512 __u32 idx;
513 struct io_uring_sqe * sqe;
514
515 // We can proceed to the fast path
516 if( !__alloc(ctx, &idx, 1) ) return false;
517
518 // Allocation was successful
519 __fill( &sqe, 1, &idx, ctx );
520
521 sqe->user_data = (uintptr_t)&future;
522 sqe->flags = 0;
523 sqe->fd = fd;
524 sqe->off = 0;
525 sqe->ioprio = 0;
526 sqe->fsync_flags = 0;
527 sqe->__pad2[0] = 0;
528 sqe->__pad2[1] = 0;
529 sqe->__pad2[2] = 0;
530
531 #if defined(CFA_HAVE_IORING_OP_READ)
532 sqe->opcode = IORING_OP_READ;
533 sqe->addr = (uint64_t)iov.iov_base;
534 sqe->len = iov.iov_len;
535 #elif defined(CFA_HAVE_READV) && defined(CFA_HAVE_IORING_OP_READV)
536 sqe->opcode = IORING_OP_READV;
537 sqe->addr = (uintptr_t)&iov;
538 sqe->len = 1;
539 #else
540 #error CFA_WITH_IO_URING_IDLE but none of CFA_HAVE_READV, CFA_HAVE_IORING_OP_READV or CFA_HAVE_IORING_OP_READ defined
541 #endif
542
543 asm volatile("": : :"memory");
544
545 /* paranoid */ verify( sqe->user_data == (uintptr_t)&future );
546 __submit( ctx, &idx, 1, true );
547
548 /* paranoid */ verify( proc == __cfaabi_tls.this_processor );
549 /* paranoid */ verify( ! __preemption_enabled() );
550
551 return true;
552 }
553 #endif
554#endif
Note: See TracBrowser for help on using the repository browser.