1 | //
|
---|
2 | // Cforall Version 1.0.0 Copyright (C) 2020 University of Waterloo
|
---|
3 | //
|
---|
4 | // The contents of this file are covered under the licence agreement in the
|
---|
5 | // file "LICENCE" distributed with Cforall.
|
---|
6 | //
|
---|
7 | // io.cfa --
|
---|
8 | //
|
---|
9 | // Author : Thierry Delisle
|
---|
10 | // Created On : Thu Apr 23 17:31:00 2020
|
---|
11 | // Last Modified By :
|
---|
12 | // Last Modified On :
|
---|
13 | // Update Count :
|
---|
14 | //
|
---|
15 |
|
---|
16 | #define __cforall_thread__
|
---|
17 |
|
---|
18 | #if defined(__CFA_DEBUG__)
|
---|
19 | // #define __CFA_DEBUG_PRINT_IO__
|
---|
20 | // #define __CFA_DEBUG_PRINT_IO_CORE__
|
---|
21 | #endif
|
---|
22 |
|
---|
23 |
|
---|
24 | #if defined(CFA_HAVE_LINUX_IO_URING_H)
|
---|
25 | #include <errno.h>
|
---|
26 | #include <signal.h>
|
---|
27 | #include <stdint.h>
|
---|
28 | #include <string.h>
|
---|
29 | #include <unistd.h>
|
---|
30 |
|
---|
31 | extern "C" {
|
---|
32 | #include <sys/syscall.h>
|
---|
33 | #include <sys/eventfd.h>
|
---|
34 | #include <sys/uio.h>
|
---|
35 |
|
---|
36 | #include <linux/io_uring.h>
|
---|
37 | }
|
---|
38 |
|
---|
39 | #include "stats.hfa"
|
---|
40 | #include "kernel.hfa"
|
---|
41 | #include "kernel/fwd.hfa"
|
---|
42 | #include "kernel/private.hfa"
|
---|
43 | #include "kernel/cluster.hfa"
|
---|
44 | #include "io/types.hfa"
|
---|
45 |
|
---|
46 | __attribute__((unused)) static const char * opcodes[] = {
|
---|
47 | "OP_NOP",
|
---|
48 | "OP_READV",
|
---|
49 | "OP_WRITEV",
|
---|
50 | "OP_FSYNC",
|
---|
51 | "OP_READ_FIXED",
|
---|
52 | "OP_WRITE_FIXED",
|
---|
53 | "OP_POLL_ADD",
|
---|
54 | "OP_POLL_REMOVE",
|
---|
55 | "OP_SYNC_FILE_RANGE",
|
---|
56 | "OP_SENDMSG",
|
---|
57 | "OP_RECVMSG",
|
---|
58 | "OP_TIMEOUT",
|
---|
59 | "OP_TIMEOUT_REMOVE",
|
---|
60 | "OP_ACCEPT",
|
---|
61 | "OP_ASYNC_CANCEL",
|
---|
62 | "OP_LINK_TIMEOUT",
|
---|
63 | "OP_CONNECT",
|
---|
64 | "OP_FALLOCATE",
|
---|
65 | "OP_OPENAT",
|
---|
66 | "OP_CLOSE",
|
---|
67 | "OP_FILES_UPDATE",
|
---|
68 | "OP_STATX",
|
---|
69 | "OP_READ",
|
---|
70 | "OP_WRITE",
|
---|
71 | "OP_FADVISE",
|
---|
72 | "OP_MADVISE",
|
---|
73 | "OP_SEND",
|
---|
74 | "OP_RECV",
|
---|
75 | "OP_OPENAT2",
|
---|
76 | "OP_EPOLL_CTL",
|
---|
77 | "OP_SPLICE",
|
---|
78 | "OP_PROVIDE_BUFFERS",
|
---|
79 | "OP_REMOVE_BUFFERS",
|
---|
80 | "OP_TEE",
|
---|
81 | "INVALID_OP"
|
---|
82 | };
|
---|
83 |
|
---|
84 | static io_context$ * __ioarbiter_allocate( io_arbiter$ & this, __u32 idxs[], __u32 want );
|
---|
85 | static void __ioarbiter_submit( io_context$ * , __u32 idxs[], __u32 have, bool lazy );
|
---|
86 | static void __ioarbiter_flush ( io_context$ &, bool kernel );
|
---|
87 | static inline void __ioarbiter_notify( io_context$ & ctx );
|
---|
88 | //=============================================================================================
|
---|
89 | // I/O Polling
|
---|
90 | //=============================================================================================
|
---|
91 | static inline unsigned __flush( struct io_context$ & );
|
---|
92 | static inline __u32 __release_sqes( struct io_context$ & );
|
---|
93 | extern void __kernel_unpark( thread$ * thrd, unpark_hint );
|
---|
94 |
|
---|
95 | static inline void __post(oneshot & this, bool kernel, unpark_hint hint) {
|
---|
96 | thread$ * t = post( this, false );
|
---|
97 | if(kernel) __kernel_unpark( t, hint );
|
---|
98 | else unpark( t, hint );
|
---|
99 | }
|
---|
100 |
|
---|
101 | // actual system call of io uring
|
---|
102 | // wrap so everything that needs to happen around it is always done
|
---|
103 | // i.e., stats, book keeping, sqe reclamation, etc.
|
---|
104 | static void ioring_syscsll( struct io_context$ & ctx, unsigned int min_comp, unsigned int flags ) {
|
---|
105 | __STATS__( true, io.calls.flush++; )
|
---|
106 | int ret;
|
---|
107 | for() {
|
---|
108 | // do the system call in a loop, repeat on interrupts
|
---|
109 | ret = syscall( __NR_io_uring_enter, ctx.fd, ctx.sq.to_submit, min_comp, flags, (sigset_t *)0p, _NSIG / 8);
|
---|
110 | if( ret < 0 ) {
|
---|
111 | switch((int)errno) {
|
---|
112 | case EINTR:
|
---|
113 | continue;
|
---|
114 | case EAGAIN:
|
---|
115 | case EBUSY:
|
---|
116 | // Update statistics
|
---|
117 | __STATS__( false, io.calls.errors.busy ++; )
|
---|
118 | return false;
|
---|
119 | default:
|
---|
120 | abort( "KERNEL ERROR: IO_URING SYSCALL - (%d) %s\n", (int)errno, strerror(errno) );
|
---|
121 | }
|
---|
122 | }
|
---|
123 | break;
|
---|
124 | }
|
---|
125 |
|
---|
126 | __cfadbg_print_safe(io, "Kernel I/O : %u submitted to io_uring %d\n", ret, ctx.fd);
|
---|
127 | __STATS__( true, io.calls.submitted += ret; )
|
---|
128 | /* paranoid */ verify( ctx.sq.to_submit <= *ctx.sq.num );
|
---|
129 | /* paranoid */ verify( ctx.sq.to_submit >= ret );
|
---|
130 |
|
---|
131 | // keep track of how many still need submitting
|
---|
132 | __atomic_fetch_sub(&ctx.sq.to_submit, ret, __ATOMIC_SEQ_CST);
|
---|
133 |
|
---|
134 | /* paranoid */ verify( ctx.sq.to_submit <= *ctx.sq.num );
|
---|
135 |
|
---|
136 | // Release the consumed SQEs
|
---|
137 | __release_sqes( ctx );
|
---|
138 |
|
---|
139 | /* paranoid */ verify( ! __preemption_enabled() );
|
---|
140 |
|
---|
141 | // mark that there is no pending io left
|
---|
142 | __atomic_store_n(&ctx.proc->io.pending, false, __ATOMIC_RELAXED);
|
---|
143 | }
|
---|
144 |
|
---|
145 | // try to acquire an io context for draining, helping means we never *need* to drain, we can always do it later
|
---|
146 | static bool try_acquire( io_context$ * ctx ) __attribute__((nonnull(1))) {
|
---|
147 | /* paranoid */ verify( ! __preemption_enabled() );
|
---|
148 | /* paranoid */ verify( ready_schedule_islocked() );
|
---|
149 |
|
---|
150 |
|
---|
151 | {
|
---|
152 | // if there is nothing to drain there is no point in acquiring anything
|
---|
153 | const __u32 head = *ctx->cq.head;
|
---|
154 | const __u32 tail = *ctx->cq.tail;
|
---|
155 |
|
---|
156 | if(head == tail) return false;
|
---|
157 | }
|
---|
158 |
|
---|
159 | // try a simple spinlock acquire, it's likely there are completions to drain
|
---|
160 | if(!__atomic_try_acquire(&ctx->cq.try_lock)) {
|
---|
161 | // some other processor already has it
|
---|
162 | __STATS__( false, io.calls.locked++; )
|
---|
163 | return false;
|
---|
164 | }
|
---|
165 |
|
---|
166 | // acquired!!
|
---|
167 | return true;
|
---|
168 | }
|
---|
169 |
|
---|
170 | // actually drain the completion
|
---|
171 | static bool __cfa_do_drain( io_context$ * ctx, cluster * cltr ) __attribute__((nonnull(1, 2))) {
|
---|
172 | /* paranoid */ verify( ! __preemption_enabled() );
|
---|
173 | /* paranoid */ verify( ready_schedule_islocked() );
|
---|
174 | /* paranoid */ verify( ctx->cq.try_lock == true );
|
---|
175 |
|
---|
176 | // get all the invariants and initial state
|
---|
177 | const __u32 mask = *ctx->cq.mask;
|
---|
178 | const __u32 num = *ctx->cq.num;
|
---|
179 | unsigned long long ts_prev = ctx->cq.ts;
|
---|
180 | unsigned long long ts_next;
|
---|
181 |
|
---|
182 | // We might need to do this multiple times if more events completed than can fit in the queue.
|
---|
183 | for() {
|
---|
184 | // re-read the head and tail in case it already changed.
|
---|
185 | // count the difference between the two
|
---|
186 | const __u32 head = *ctx->cq.head;
|
---|
187 | const __u32 tail = *ctx->cq.tail;
|
---|
188 | const __u32 count = tail - head;
|
---|
189 | __STATS__( false, io.calls.drain++; io.calls.completed += count; )
|
---|
190 |
|
---|
191 | // for everything between head and tail, drain it
|
---|
192 | for(i; count) {
|
---|
193 | unsigned idx = (head + i) & mask;
|
---|
194 | volatile struct io_uring_cqe & cqe = ctx->cq.cqes[idx];
|
---|
195 |
|
---|
196 | /* paranoid */ verify(&cqe);
|
---|
197 |
|
---|
198 | // find the future in the completion
|
---|
199 | struct io_future_t * future = (struct io_future_t *)(uintptr_t)cqe.user_data;
|
---|
200 | // __cfadbg_print_safe( io, "Kernel I/O : Syscall completed : cqe %p, result %d for %p\n", &cqe, cqe.res, future );
|
---|
201 |
|
---|
202 | // don't directly fulfill the future, preemption is disabled so we need to use kernel_unpark
|
---|
203 | __kernel_unpark( fulfil( *future, cqe.res, false ), UNPARK_LOCAL );
|
---|
204 | }
|
---|
205 |
|
---|
206 | // update the timestamps accordingly
|
---|
207 | // keep a local copy so we can update the relaxed copy
|
---|
208 | ts_next = ctx->cq.ts = rdtscl();
|
---|
209 |
|
---|
210 | // Mark to the kernel that the cqe has been seen
|
---|
211 | // Ensure that the kernel only sees the new value of the head index after the CQEs have been read.
|
---|
212 | __atomic_store_n( ctx->cq.head, head + count, __ATOMIC_SEQ_CST );
|
---|
213 | ctx->proc->idle_wctx.drain_time = ts_next;
|
---|
214 |
|
---|
215 | // we finished draining the completions... unless the ring buffer was full and there are more secret completions in the kernel.
|
---|
216 | if(likely(count < num)) break;
|
---|
217 |
|
---|
218 | // the ring buffer was full, there could be more stuff in the kernel.
|
---|
219 | ioring_syscsll( *ctx, 0, IORING_ENTER_GETEVENTS);
|
---|
220 | }
|
---|
221 |
|
---|
222 | __cfadbg_print_safe(io, "Kernel I/O : %u completed age %llu\n", count, ts_next);
|
---|
223 | /* paranoid */ verify( ready_schedule_islocked() );
|
---|
224 | /* paranoid */ verify( ! __preemption_enabled() );
|
---|
225 |
|
---|
226 | // everything is drained, we can release the lock
|
---|
227 | __atomic_unlock(&ctx->cq.try_lock);
|
---|
228 |
|
---|
229 | // update the relaxed timestamp
|
---|
230 | touch_tsc( cltr->sched.io.tscs, ctx->cq.id, ts_prev, ts_next, false );
|
---|
231 |
|
---|
232 | return true;
|
---|
233 | }
|
---|
234 |
|
---|
235 | // call from a processor to flush
|
---|
236 | // contains all the bookkeeping a proc must do, not just the barebones flushing logic
|
---|
237 | void __cfa_do_flush( io_context$ & ctx, bool kernel ) {
|
---|
238 | /* paranoid */ verify( ! __preemption_enabled() );
|
---|
239 |
|
---|
240 | // flush any external requests
|
---|
241 | ctx.sq.last_external = false; // clear the external bit, the arbiter will reset it if needed
|
---|
242 | __ioarbiter_flush( ctx, kernel );
|
---|
243 |
|
---|
244 | // if submitting must be submitted, do the system call
|
---|
245 | if(ctx.sq.to_submit != 0) {
|
---|
246 | ioring_syscsll(ctx, 0, 0);
|
---|
247 | }
|
---|
248 | }
|
---|
249 |
|
---|
250 | // call from a processor to drain
|
---|
251 | // contains all the bookkeeping a proc must do, not just the barebones draining logic
|
---|
252 | bool __cfa_io_drain( struct processor * proc ) {
|
---|
253 | bool local = false;
|
---|
254 | bool remote = false;
|
---|
255 |
|
---|
256 | // make sure no ones creates/destroys io contexts
|
---|
257 | ready_schedule_lock();
|
---|
258 |
|
---|
259 | cluster * const cltr = proc->cltr;
|
---|
260 | io_context$ * const ctx = proc->io.ctx;
|
---|
261 | /* paranoid */ verify( cltr );
|
---|
262 | /* paranoid */ verify( ctx );
|
---|
263 |
|
---|
264 | // Help if needed
|
---|
265 | with(cltr->sched) {
|
---|
266 | const size_t ctxs_count = io.count;
|
---|
267 |
|
---|
268 | /* paranoid */ verify( ready_schedule_islocked() );
|
---|
269 | /* paranoid */ verify( ! __preemption_enabled() );
|
---|
270 | /* paranoid */ verify( active_processor() == proc );
|
---|
271 | /* paranoid */ verify( __shard_factor.io > 0 );
|
---|
272 | /* paranoid */ verify( ctxs_count > 0 );
|
---|
273 | /* paranoid */ verify( ctx->cq.id < ctxs_count );
|
---|
274 |
|
---|
275 | const unsigned this_cache = cache_id(cltr, ctx->cq.id / __shard_factor.io);
|
---|
276 | const unsigned long long ctsc = rdtscl();
|
---|
277 |
|
---|
278 | // only help once every other time
|
---|
279 | // pick a target when not helping
|
---|
280 | if(proc->io.target == UINT_MAX) {
|
---|
281 | uint64_t chaos = __tls_rand();
|
---|
282 | // choose who to help and whether to accept helping far processors
|
---|
283 | unsigned ext = chaos & 0xff;
|
---|
284 | unsigned other = (chaos >> 8) % (ctxs_count);
|
---|
285 |
|
---|
286 | // if the processor is on the same cache line or is lucky ( 3 out of 256 odds ) help it
|
---|
287 | if(ext < 3 || __atomic_load_n(&caches[other / __shard_factor.io].id, __ATOMIC_RELAXED) == this_cache) {
|
---|
288 | proc->io.target = other;
|
---|
289 | }
|
---|
290 | }
|
---|
291 | else {
|
---|
292 | // a target was picked last time, help it
|
---|
293 | const unsigned target = proc->io.target;
|
---|
294 | /* paranoid */ verify( io.tscs[target].t.tv != ULLONG_MAX );
|
---|
295 | // make sure the target hasn't stopped existing since last time
|
---|
296 | HELP: if(target < ctxs_count) {
|
---|
297 | // calculate it's age and how young it could be before we give up on helping
|
---|
298 | const __readyQ_avg_t cutoff = calc_cutoff(ctsc, ctx->cq.id, ctxs_count, io.data, io.tscs, __shard_factor.io, false);
|
---|
299 | const __readyQ_avg_t age = moving_average(ctsc, io.tscs[target].t.tv, io.tscs[target].t.ma, false);
|
---|
300 | __cfadbg_print_safe(io, "Kernel I/O: Help attempt on %u from %u, age %'llu vs cutoff %'llu, %s\n", target, ctx->cq.id, age, cutoff, age > cutoff ? "yes" : "no");
|
---|
301 | // is the target older than the cutoff, recall 0 is oldest and bigger ints are younger
|
---|
302 | if(age <= cutoff) break HELP;
|
---|
303 |
|
---|
304 | // attempt to help the submission side
|
---|
305 | __cfa_do_flush( *io.data[target], true );
|
---|
306 |
|
---|
307 | // attempt to help the completion side
|
---|
308 | if(!try_acquire(io.data[target])) break HELP; // already acquire no help needed
|
---|
309 |
|
---|
310 | // actually help
|
---|
311 | if(!__cfa_do_drain( io.data[target], cltr )) break HELP;
|
---|
312 |
|
---|
313 | // track we did help someone
|
---|
314 | remote = true;
|
---|
315 | __STATS__( true, io.calls.helped++; )
|
---|
316 | }
|
---|
317 |
|
---|
318 | // reset the target
|
---|
319 | proc->io.target = UINT_MAX;
|
---|
320 | }
|
---|
321 | }
|
---|
322 |
|
---|
323 | // Drain the local queue
|
---|
324 | if(try_acquire( proc->io.ctx )) {
|
---|
325 | local = __cfa_do_drain( proc->io.ctx, cltr );
|
---|
326 | }
|
---|
327 |
|
---|
328 | /* paranoid */ verify( ready_schedule_islocked() );
|
---|
329 | /* paranoid */ verify( ! __preemption_enabled() );
|
---|
330 | /* paranoid */ verify( active_processor() == proc );
|
---|
331 |
|
---|
332 | ready_schedule_unlock();
|
---|
333 |
|
---|
334 | // return true if some completion entry, local or remote, was drained
|
---|
335 | return local || remote;
|
---|
336 | }
|
---|
337 |
|
---|
338 |
|
---|
339 |
|
---|
340 | // call from a processor to flush
|
---|
341 | // contains all the bookkeeping a proc must do, not just the barebones flushing logic
|
---|
342 | bool __cfa_io_flush( struct processor * proc ) {
|
---|
343 | /* paranoid */ verify( ! __preemption_enabled() );
|
---|
344 | /* paranoid */ verify( proc );
|
---|
345 | /* paranoid */ verify( proc->io.ctx );
|
---|
346 |
|
---|
347 | __cfa_do_flush( *proc->io.ctx, false );
|
---|
348 |
|
---|
349 | // also drain since some stuff will immediately complete
|
---|
350 | return __cfa_io_drain( proc );
|
---|
351 | }
|
---|
352 |
|
---|
353 | //=============================================================================================
|
---|
354 | // I/O Submissions
|
---|
355 | //=============================================================================================
|
---|
356 |
|
---|
357 | // Submition steps :
|
---|
358 | // 1 - Allocate a queue entry. The ring already has memory for all entries but only the ones
|
---|
359 | // listed in sq.array are visible by the kernel. For those not listed, the kernel does not
|
---|
360 | // offer any assurance that an entry is not being filled by multiple flags. Therefore, we
|
---|
361 | // need to write an allocator that allows allocating concurrently.
|
---|
362 | //
|
---|
363 | // 2 - Actually fill the submit entry, this is the only simple and straightforward step.
|
---|
364 | //
|
---|
365 | // 3 - Append the entry index to the array and adjust the tail accordingly. This operation
|
---|
366 | // needs to arrive to two concensus at the same time:
|
---|
367 | // A - The order in which entries are listed in the array: no two threads must pick the
|
---|
368 | // same index for their entries
|
---|
369 | // B - When can the tail be update for the kernel. EVERY entries in the array between
|
---|
370 | // head and tail must be fully filled and shouldn't ever be touched again.
|
---|
371 | //
|
---|
372 | //=============================================================================================
|
---|
373 | // Allocation
|
---|
374 | // for user's convenience fill the sqes from the indexes
|
---|
375 | static inline void __fill(struct io_uring_sqe * out_sqes[], __u32 want, __u32 idxs[], struct io_context$ * ctx) {
|
---|
376 | struct io_uring_sqe * sqes = ctx->sq.sqes;
|
---|
377 | for(i; want) {
|
---|
378 | // __cfadbg_print_safe(io, "Kernel I/O : filling loop\n");
|
---|
379 | out_sqes[i] = &sqes[idxs[i]];
|
---|
380 | }
|
---|
381 | }
|
---|
382 |
|
---|
383 | // Try to directly allocate from the a given context
|
---|
384 | // Not thread-safe
|
---|
385 | static inline bool __alloc(struct io_context$ * ctx, __u32 idxs[], __u32 want) {
|
---|
386 | __sub_ring_t & sq = ctx->sq;
|
---|
387 | const __u32 mask = *sq.mask;
|
---|
388 | __u32 fhead = sq.free_ring.head; // get the current head of the queue
|
---|
389 | __u32 ftail = sq.free_ring.tail; // get the current tail of the queue
|
---|
390 |
|
---|
391 | // If we don't have enough sqes, fail
|
---|
392 | if((ftail - fhead) < want) { return false; }
|
---|
393 |
|
---|
394 | // copy all the indexes we want from the available list
|
---|
395 | for(i; want) {
|
---|
396 | // __cfadbg_print_safe(io, "Kernel I/O : allocating loop\n");
|
---|
397 | idxs[i] = sq.free_ring.array[(fhead + i) & mask];
|
---|
398 | }
|
---|
399 |
|
---|
400 | // Advance the head to mark the indexes as consumed
|
---|
401 | __atomic_store_n(&sq.free_ring.head, fhead + want, __ATOMIC_RELEASE);
|
---|
402 |
|
---|
403 | // return success
|
---|
404 | return true;
|
---|
405 | }
|
---|
406 |
|
---|
407 | // Allocate an submit queue entry.
|
---|
408 | // The kernel cannot see these entries until they are submitted, but other threads must be
|
---|
409 | // able to see which entries can be used and which are already un used by an other thread
|
---|
410 | // for convenience, return both the index and the pointer to the sqe
|
---|
411 | // sqe == &sqes[idx]
|
---|
412 | struct io_context$ * cfa_io_allocate(struct io_uring_sqe * sqes[], __u32 idxs[], __u32 want) libcfa_public {
|
---|
413 | // __cfadbg_print_safe(io, "Kernel I/O : attempting to allocate %u\n", want);
|
---|
414 |
|
---|
415 | disable_interrupts();
|
---|
416 | struct processor * proc = __cfaabi_tls.this_processor;
|
---|
417 | io_context$ * ctx = proc->io.ctx;
|
---|
418 | /* paranoid */ verify( __cfaabi_tls.this_processor );
|
---|
419 | /* paranoid */ verify( ctx );
|
---|
420 |
|
---|
421 | // __cfadbg_print_safe(io, "Kernel I/O : attempting to fast allocation\n");
|
---|
422 |
|
---|
423 | // We can proceed to the fast path
|
---|
424 | if( __alloc(ctx, idxs, want) ) {
|
---|
425 | // Allocation was successful
|
---|
426 | __STATS__( true, io.alloc.fast += 1; )
|
---|
427 | enable_interrupts();
|
---|
428 |
|
---|
429 | // __cfadbg_print_safe(io, "Kernel I/O : fast allocation successful from ring %d\n", ctx->fd);
|
---|
430 |
|
---|
431 | __fill( sqes, want, idxs, ctx );
|
---|
432 | return ctx;
|
---|
433 | }
|
---|
434 | // The fast path failed, fallback
|
---|
435 | __STATS__( true, io.alloc.fail += 1; )
|
---|
436 |
|
---|
437 | // Fast path failed, fallback on arbitration
|
---|
438 | __STATS__( true, io.alloc.slow += 1; )
|
---|
439 | enable_interrupts();
|
---|
440 |
|
---|
441 | io_arbiter$ * ioarb = proc->cltr->io.arbiter;
|
---|
442 | /* paranoid */ verify( ioarb );
|
---|
443 |
|
---|
444 | // __cfadbg_print_safe(io, "Kernel I/O : falling back on arbiter for allocation\n");
|
---|
445 |
|
---|
446 | struct io_context$ * ret = __ioarbiter_allocate(*ioarb, idxs, want);
|
---|
447 |
|
---|
448 | // __cfadbg_print_safe(io, "Kernel I/O : slow allocation completed from ring %d\n", ret->fd);
|
---|
449 |
|
---|
450 | __fill( sqes, want, idxs,ret );
|
---|
451 | return ret;
|
---|
452 | }
|
---|
453 |
|
---|
454 | //=============================================================================================
|
---|
455 | // submission
|
---|
456 | // barebones logic to submit a group of sqes
|
---|
457 | static inline void __submit_only( struct io_context$ * ctx, __u32 idxs[], __u32 have, bool lock) {
|
---|
458 | if(!lock)
|
---|
459 | lock( ctx->ext_sq.lock __cfaabi_dbg_ctx2 );
|
---|
460 | // We can proceed to the fast path
|
---|
461 | // Get the right objects
|
---|
462 | __sub_ring_t & sq = ctx->sq;
|
---|
463 | const __u32 mask = *sq.mask;
|
---|
464 | __u32 tail = *sq.kring.tail;
|
---|
465 |
|
---|
466 | // Add the sqes to the array
|
---|
467 | for( i; have ) {
|
---|
468 | // __cfadbg_print_safe(io, "Kernel I/O : __submit loop\n");
|
---|
469 | sq.kring.array[ (tail + i) & mask ] = idxs[i];
|
---|
470 | }
|
---|
471 |
|
---|
472 | // Make the sqes visible to the submitter
|
---|
473 | __atomic_store_n(sq.kring.tail, tail + have, __ATOMIC_RELEASE);
|
---|
474 | __atomic_fetch_add(&sq.to_submit, have, __ATOMIC_SEQ_CST);
|
---|
475 |
|
---|
476 | // set the bit to mark things need to be flushed
|
---|
477 | __atomic_store_n(&ctx->proc->io.pending, true, __ATOMIC_RELAXED);
|
---|
478 | __atomic_store_n(&ctx->proc->io.dirty , true, __ATOMIC_RELAXED);
|
---|
479 |
|
---|
480 | if(!lock)
|
---|
481 | unlock( ctx->ext_sq.lock );
|
---|
482 | }
|
---|
483 |
|
---|
484 | // submission logic + maybe flushing
|
---|
485 | static inline void __submit( struct io_context$ * ctx, __u32 idxs[], __u32 have, bool lazy) {
|
---|
486 | __sub_ring_t & sq = ctx->sq;
|
---|
487 | __submit_only(ctx, idxs, have, false);
|
---|
488 |
|
---|
489 | if(sq.to_submit > 30) {
|
---|
490 | __tls_stats()->io.flush.full++;
|
---|
491 | __cfa_io_flush( ctx->proc );
|
---|
492 | }
|
---|
493 | if(!lazy) {
|
---|
494 | __tls_stats()->io.flush.eager++;
|
---|
495 | __cfa_io_flush( ctx->proc );
|
---|
496 | }
|
---|
497 | }
|
---|
498 |
|
---|
499 | // call from a processor to flush
|
---|
500 | // might require arbitration if the thread was migrated after the allocation
|
---|
501 | void cfa_io_submit( struct io_context$ * inctx, __u32 idxs[], __u32 have, bool lazy ) __attribute__((nonnull (1))) libcfa_public {
|
---|
502 | // __cfadbg_print_safe(io, "Kernel I/O : attempting to submit %u (%s)\n", have, lazy ? "lazy" : "eager");
|
---|
503 |
|
---|
504 | disable_interrupts();
|
---|
505 | __STATS__( true, if(!lazy) io.submit.eagr += 1; )
|
---|
506 | struct processor * proc = __cfaabi_tls.this_processor;
|
---|
507 | io_context$ * ctx = proc->io.ctx;
|
---|
508 | /* paranoid */ verify( __cfaabi_tls.this_processor );
|
---|
509 | /* paranoid */ verify( ctx );
|
---|
510 |
|
---|
511 | // Can we proceed to the fast path
|
---|
512 | if( ctx == inctx ) // We have the right instance?
|
---|
513 | {
|
---|
514 | // yes! fast submit
|
---|
515 | __submit(ctx, idxs, have, lazy);
|
---|
516 |
|
---|
517 | // Mark the instance as no longer in-use, re-enable interrupts and return
|
---|
518 | __STATS__( true, io.submit.fast += 1; )
|
---|
519 | enable_interrupts();
|
---|
520 |
|
---|
521 | // __cfadbg_print_safe(io, "Kernel I/O : submitted on fast path\n");
|
---|
522 | return;
|
---|
523 | }
|
---|
524 |
|
---|
525 | // Fast path failed, fallback on arbitration
|
---|
526 | __STATS__( true, io.submit.slow += 1; )
|
---|
527 | enable_interrupts();
|
---|
528 |
|
---|
529 | // __cfadbg_print_safe(io, "Kernel I/O : falling back on arbiter for submission\n");
|
---|
530 |
|
---|
531 | __ioarbiter_submit(inctx, idxs, have, lazy);
|
---|
532 | }
|
---|
533 |
|
---|
534 | //=============================================================================================
|
---|
535 | // Flushing
|
---|
536 | // Go through the ring's submit queue and release everything that has already been consumed
|
---|
537 | // by io_uring
|
---|
538 | // This cannot be done by multiple threads
|
---|
539 | static __u32 __release_sqes( struct io_context$ & ctx ) {
|
---|
540 | const __u32 mask = *ctx.sq.mask;
|
---|
541 |
|
---|
542 | __attribute__((unused))
|
---|
543 | __u32 ctail = *ctx.sq.kring.tail; // get the current tail of the queue
|
---|
544 | __u32 chead = *ctx.sq.kring.head; // get the current head of the queue
|
---|
545 | __u32 phead = ctx.sq.kring.released; // get the head the last time we were here
|
---|
546 |
|
---|
547 | __u32 ftail = ctx.sq.free_ring.tail; // get the current tail of the queue
|
---|
548 |
|
---|
549 | // the 3 fields are organized like this diagram
|
---|
550 | // except it's are ring
|
---|
551 | // ---+--------+--------+----
|
---|
552 | // ---+--------+--------+----
|
---|
553 | // ^ ^ ^
|
---|
554 | // phead chead ctail
|
---|
555 |
|
---|
556 | // make sure ctail doesn't wrap around and reach phead
|
---|
557 | /* paranoid */ verify(
|
---|
558 | (ctail >= chead && chead >= phead)
|
---|
559 | || (chead >= phead && phead >= ctail)
|
---|
560 | || (phead >= ctail && ctail >= chead)
|
---|
561 | );
|
---|
562 |
|
---|
563 | // find the range we need to clear
|
---|
564 | __u32 count = chead - phead;
|
---|
565 |
|
---|
566 | if(count == 0) {
|
---|
567 | return 0;
|
---|
568 | }
|
---|
569 |
|
---|
570 | // We acquired an previous-head/current-head range
|
---|
571 | // go through the range and release the sqes
|
---|
572 | for( i; count ) {
|
---|
573 | // __cfadbg_print_safe(io, "Kernel I/O : release loop\n");
|
---|
574 | __u32 idx = ctx.sq.kring.array[ (phead + i) & mask ];
|
---|
575 | ctx.sq.free_ring.array[ (ftail + i) & mask ] = idx;
|
---|
576 | }
|
---|
577 |
|
---|
578 | ctx.sq.kring.released = chead; // note up to were we processed
|
---|
579 | __atomic_store_n(&ctx.sq.free_ring.tail, ftail + count, __ATOMIC_SEQ_CST);
|
---|
580 |
|
---|
581 | // notify the allocator that new allocations can be made
|
---|
582 | __ioarbiter_notify(ctx);
|
---|
583 |
|
---|
584 | return count;
|
---|
585 | }
|
---|
586 |
|
---|
587 | //=============================================================================================
|
---|
588 | // I/O Arbiter
|
---|
589 | //=============================================================================================
|
---|
590 | static inline bool enqueue(__outstanding_io_queue & queue, __outstanding_io & item) {
|
---|
591 | bool was_empty;
|
---|
592 |
|
---|
593 | // Lock the list, it's not thread safe
|
---|
594 | lock( queue.lock __cfaabi_dbg_ctx2 );
|
---|
595 | {
|
---|
596 | was_empty = empty(queue.queue);
|
---|
597 |
|
---|
598 | // Add our request to the list
|
---|
599 | add( queue.queue, item );
|
---|
600 |
|
---|
601 | // Mark as pending
|
---|
602 | __atomic_store_n( &queue.empty, false, __ATOMIC_SEQ_CST );
|
---|
603 | }
|
---|
604 | unlock( queue.lock );
|
---|
605 |
|
---|
606 | return was_empty;
|
---|
607 | }
|
---|
608 |
|
---|
609 | static inline bool empty(__outstanding_io_queue & queue ) {
|
---|
610 | return __atomic_load_n( &queue.empty, __ATOMIC_SEQ_CST);
|
---|
611 | }
|
---|
612 |
|
---|
613 | static io_context$ * __ioarbiter_allocate( io_arbiter$ & this, __u32 idxs[], __u32 want ) {
|
---|
614 | // __cfadbg_print_safe(io, "Kernel I/O : arbiter allocating\n");
|
---|
615 |
|
---|
616 | __STATS__( false, io.alloc.block += 1; )
|
---|
617 |
|
---|
618 | // No one has any resources left, wait for something to finish
|
---|
619 | // We need to add ourself to a list of pending allocs and wait for an answer
|
---|
620 | __pending_alloc pa;
|
---|
621 | pa.idxs = idxs;
|
---|
622 | pa.want = want;
|
---|
623 |
|
---|
624 | enqueue(this.pending, (__outstanding_io&)pa);
|
---|
625 |
|
---|
626 | wait( pa.waitctx );
|
---|
627 |
|
---|
628 | return pa.ctx;
|
---|
629 |
|
---|
630 | }
|
---|
631 |
|
---|
632 | // notify the arbiter that new allocations are available
|
---|
633 | static void __ioarbiter_notify( io_arbiter$ & this, io_context$ * ctx ) {
|
---|
634 | /* paranoid */ verify( !empty(this.pending.queue) );
|
---|
635 | /* paranoid */ verify( __preemption_enabled() );
|
---|
636 |
|
---|
637 | // mutual exclusion is needed
|
---|
638 | lock( this.pending.lock __cfaabi_dbg_ctx2 );
|
---|
639 | {
|
---|
640 | __cfadbg_print_safe(io, "Kernel I/O : notifying\n");
|
---|
641 |
|
---|
642 | // as long as there are pending allocations try to satisfy them
|
---|
643 | // for simplicity do it in FIFO order
|
---|
644 | while( !empty(this.pending.queue) ) {
|
---|
645 | // get first pending allocs
|
---|
646 | __u32 have = ctx->sq.free_ring.tail - ctx->sq.free_ring.head;
|
---|
647 | __pending_alloc & pa = (__pending_alloc&)head( this.pending.queue );
|
---|
648 |
|
---|
649 | // check if we have enough to satisfy the request
|
---|
650 | if( have > pa.want ) goto DONE;
|
---|
651 |
|
---|
652 | // if there are enough allocations it means we can drop the request
|
---|
653 | drop( this.pending.queue );
|
---|
654 |
|
---|
655 | /* paranoid */__attribute__((unused)) bool ret =
|
---|
656 |
|
---|
657 | // actually do the alloc
|
---|
658 | __alloc(ctx, pa.idxs, pa.want);
|
---|
659 |
|
---|
660 | /* paranoid */ verify( ret );
|
---|
661 |
|
---|
662 | // write out which context statisfied the request and post
|
---|
663 | // this
|
---|
664 | pa.ctx = ctx;
|
---|
665 | post( pa.waitctx );
|
---|
666 | }
|
---|
667 |
|
---|
668 | this.pending.empty = true;
|
---|
669 | DONE:;
|
---|
670 | }
|
---|
671 | unlock( this.pending.lock );
|
---|
672 |
|
---|
673 | /* paranoid */ verify( __preemption_enabled() );
|
---|
674 | }
|
---|
675 |
|
---|
676 | // short hand to avoid the mutual exclusion of the pending is empty regardless
|
---|
677 | static void __ioarbiter_notify( io_context$ & ctx ) {
|
---|
678 | if(empty( ctx.arbiter->pending )) return;
|
---|
679 | __ioarbiter_notify( *ctx.arbiter, &ctx );
|
---|
680 | }
|
---|
681 |
|
---|
682 | // Submit from outside the local processor: append to the outstanding list
|
---|
683 | static void __ioarbiter_submit( io_context$ * ctx, __u32 idxs[], __u32 have, bool lazy ) {
|
---|
684 | __cfadbg_print_safe(io, "Kernel I/O : submitting %u from the arbiter to context %u\n", have, ctx->fd);
|
---|
685 |
|
---|
686 | __cfadbg_print_safe(io, "Kernel I/O : waiting to submit %u\n", have);
|
---|
687 |
|
---|
688 | // create the intrusive object to append
|
---|
689 | __external_io ei;
|
---|
690 | ei.idxs = idxs;
|
---|
691 | ei.have = have;
|
---|
692 | ei.lazy = lazy;
|
---|
693 |
|
---|
694 | // enqueue the io
|
---|
695 | bool we = enqueue(ctx->ext_sq, (__outstanding_io&)ei);
|
---|
696 |
|
---|
697 | // mark pending
|
---|
698 | __atomic_store_n(&ctx->proc->io.pending, true, __ATOMIC_SEQ_CST);
|
---|
699 |
|
---|
700 | // if this is the first to be enqueued, signal the processor in an attempt to speed up flushing
|
---|
701 | // if it's not the first enqueue, a signal is already in transit
|
---|
702 | if( we ) {
|
---|
703 | sigval_t value = { PREEMPT_IO };
|
---|
704 | __cfaabi_pthread_sigqueue(ctx->proc->kernel_thread, SIGUSR1, value);
|
---|
705 | __STATS__( false, io.flush.signal += 1; )
|
---|
706 | }
|
---|
707 | __STATS__( false, io.submit.extr += 1; )
|
---|
708 |
|
---|
709 | // to avoid dynamic allocation/memory reclamation headaches, wait for it to have been submitted
|
---|
710 | wait( ei.waitctx );
|
---|
711 |
|
---|
712 | __cfadbg_print_safe(io, "Kernel I/O : %u submitted from arbiter\n", have);
|
---|
713 | }
|
---|
714 |
|
---|
715 | // flush the io arbiter: move all external io operations to the submission ring
|
---|
716 | static void __ioarbiter_flush( io_context$ & ctx, bool kernel ) {
|
---|
717 | // if there are no external operations just return
|
---|
718 | if(empty( ctx.ext_sq )) return;
|
---|
719 |
|
---|
720 | // stats and logs
|
---|
721 | __STATS__( false, io.flush.external += 1; )
|
---|
722 | __cfadbg_print_safe(io, "Kernel I/O : arbiter flushing\n");
|
---|
723 |
|
---|
724 | // this can happen from multiple processors, mutual exclusion is needed
|
---|
725 | lock( ctx.ext_sq.lock __cfaabi_dbg_ctx2 );
|
---|
726 | {
|
---|
727 | // pop each operation one at a time.
|
---|
728 | // There is no wait morphing because of the io sq ring
|
---|
729 | while( !empty(ctx.ext_sq.queue) ) {
|
---|
730 | // drop the element from the queue
|
---|
731 | __external_io & ei = (__external_io&)drop( ctx.ext_sq.queue );
|
---|
732 |
|
---|
733 | // submit it
|
---|
734 | __submit_only(&ctx, ei.idxs, ei.have, true);
|
---|
735 |
|
---|
736 | // wake the thread that was waiting on it
|
---|
737 | // since this can both be called from kernel and user, check the flag before posting
|
---|
738 | __post( ei.waitctx, kernel, UNPARK_LOCAL );
|
---|
739 | }
|
---|
740 |
|
---|
741 | // mark the queue as empty
|
---|
742 | ctx.ext_sq.empty = true;
|
---|
743 | ctx.sq.last_external = true;
|
---|
744 | }
|
---|
745 | unlock(ctx.ext_sq.lock );
|
---|
746 | }
|
---|
747 |
|
---|
748 | extern "C" {
|
---|
749 | // debug functions used for gdb
|
---|
750 | // io_uring doesn't yet support gdb soe the kernel-shared data structures aren't viewable in gdb
|
---|
751 | // these functions read the data that gdb can't and should be removed once the support is added
|
---|
752 | static __u32 __cfagdb_cq_head( io_context$ * ctx ) __attribute__((nonnull(1),used,noinline)) { return *ctx->cq.head; }
|
---|
753 | static __u32 __cfagdb_cq_tail( io_context$ * ctx ) __attribute__((nonnull(1),used,noinline)) { return *ctx->cq.tail; }
|
---|
754 | static __u32 __cfagdb_cq_mask( io_context$ * ctx ) __attribute__((nonnull(1),used,noinline)) { return *ctx->cq.mask; }
|
---|
755 | static __u32 __cfagdb_sq_head( io_context$ * ctx ) __attribute__((nonnull(1),used,noinline)) { return *ctx->sq.kring.head; }
|
---|
756 | static __u32 __cfagdb_sq_tail( io_context$ * ctx ) __attribute__((nonnull(1),used,noinline)) { return *ctx->sq.kring.tail; }
|
---|
757 | static __u32 __cfagdb_sq_mask( io_context$ * ctx ) __attribute__((nonnull(1),used,noinline)) { return *ctx->sq.mask; }
|
---|
758 |
|
---|
759 | // fancier version that reads an sqe and copies it out.
|
---|
760 | static struct io_uring_sqe __cfagdb_sq_at( io_context$ * ctx, __u32 at ) __attribute__((nonnull(1),used,noinline)) {
|
---|
761 | __u32 ax = at & *ctx->sq.mask;
|
---|
762 | __u32 ix = ctx->sq.kring.array[ax];
|
---|
763 | return ctx->sq.sqes[ix];
|
---|
764 | }
|
---|
765 | }
|
---|
766 | #endif
|
---|