source: libcfa/src/concurrency/io.cfa@ 5416b44

ADT ast-experimental pthread-emulation qualifiedEnum
Last change on this file since 5416b44 was b035046, checked in by Thierry Delisle <tdelisle@…>, 3 years ago

changed some MAX to ULLONG_MAX to avoid the memory access where possible and removed some -1u I missed last time

  • Property mode set to 100644
File size: 21.4 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2020 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// io.cfa --
8//
9// Author : Thierry Delisle
10// Created On : Thu Apr 23 17:31:00 2020
11// Last Modified By :
12// Last Modified On :
13// Update Count :
14//
15
16#define __cforall_thread__
17#define _GNU_SOURCE
18
19#if defined(__CFA_DEBUG__)
20 // #define __CFA_DEBUG_PRINT_IO__
21 // #define __CFA_DEBUG_PRINT_IO_CORE__
22#endif
23
24
25#if defined(CFA_HAVE_LINUX_IO_URING_H)
26 #include <errno.h>
27 #include <signal.h>
28 #include <stdint.h>
29 #include <string.h>
30 #include <unistd.h>
31
32 extern "C" {
33 #include <sys/syscall.h>
34 #include <sys/eventfd.h>
35 #include <sys/uio.h>
36
37 #include <linux/io_uring.h>
38 }
39
40 #include "stats.hfa"
41 #include "kernel.hfa"
42 #include "kernel/fwd.hfa"
43 #include "kernel/private.hfa"
44 #include "kernel/cluster.hfa"
45 #include "io/types.hfa"
46
47 __attribute__((unused)) static const char * opcodes[] = {
48 "OP_NOP",
49 "OP_READV",
50 "OP_WRITEV",
51 "OP_FSYNC",
52 "OP_READ_FIXED",
53 "OP_WRITE_FIXED",
54 "OP_POLL_ADD",
55 "OP_POLL_REMOVE",
56 "OP_SYNC_FILE_RANGE",
57 "OP_SENDMSG",
58 "OP_RECVMSG",
59 "OP_TIMEOUT",
60 "OP_TIMEOUT_REMOVE",
61 "OP_ACCEPT",
62 "OP_ASYNC_CANCEL",
63 "OP_LINK_TIMEOUT",
64 "OP_CONNECT",
65 "OP_FALLOCATE",
66 "OP_OPENAT",
67 "OP_CLOSE",
68 "OP_FILES_UPDATE",
69 "OP_STATX",
70 "OP_READ",
71 "OP_WRITE",
72 "OP_FADVISE",
73 "OP_MADVISE",
74 "OP_SEND",
75 "OP_RECV",
76 "OP_OPENAT2",
77 "OP_EPOLL_CTL",
78 "OP_SPLICE",
79 "OP_PROVIDE_BUFFERS",
80 "OP_REMOVE_BUFFERS",
81 "OP_TEE",
82 "INVALID_OP"
83 };
84
85 static $io_context * __ioarbiter_allocate( $io_arbiter & this, __u32 idxs[], __u32 want );
86 static void __ioarbiter_submit( $io_context * , __u32 idxs[], __u32 have, bool lazy );
87 static void __ioarbiter_flush ( $io_context & );
88 static inline void __ioarbiter_notify( $io_context & ctx );
89//=============================================================================================
90// I/O Polling
91//=============================================================================================
92 static inline unsigned __flush( struct $io_context & );
93 static inline __u32 __release_sqes( struct $io_context & );
94 extern void __kernel_unpark( thread$ * thrd, unpark_hint );
95
96 static void ioring_syscsll( struct $io_context & ctx, unsigned int min_comp, unsigned int flags ) {
97 __STATS__( true, io.calls.flush++; )
98 int ret;
99 for() {
100 ret = syscall( __NR_io_uring_enter, ctx.fd, ctx.sq.to_submit, min_comp, flags, (sigset_t *)0p, _NSIG / 8);
101 if( ret < 0 ) {
102 switch((int)errno) {
103 case EINTR:
104 continue;
105 case EAGAIN:
106 case EBUSY:
107 // Update statistics
108 __STATS__( false, io.calls.errors.busy ++; )
109 return false;
110 default:
111 abort( "KERNEL ERROR: IO_URING SYSCALL - (%d) %s\n", (int)errno, strerror(errno) );
112 }
113 }
114 break;
115 }
116
117 __cfadbg_print_safe(io, "Kernel I/O : %u submitted to io_uring %d\n", ret, ctx.fd);
118 __STATS__( true, io.calls.submitted += ret; )
119 /* paranoid */ verify( ctx.sq.to_submit <= *ctx.sq.num );
120 /* paranoid */ verify( ctx.sq.to_submit >= ret );
121
122 ctx.sq.to_submit -= ret;
123
124 /* paranoid */ verify( ctx.sq.to_submit <= *ctx.sq.num );
125
126 // Release the consumed SQEs
127 __release_sqes( ctx );
128
129 /* paranoid */ verify( ! __preemption_enabled() );
130
131 __atomic_store_n(&ctx.proc->io.pending, false, __ATOMIC_RELAXED);
132 }
133
134 static bool try_acquire( $io_context * ctx ) __attribute__((nonnull(1))) {
135 /* paranoid */ verify( ! __preemption_enabled() );
136 /* paranoid */ verify( ready_schedule_islocked() );
137
138
139 {
140 const __u32 head = *ctx->cq.head;
141 const __u32 tail = *ctx->cq.tail;
142
143 if(head == tail) return false;
144 }
145
146 // Drain the queue
147 if(!__atomic_try_acquire(&ctx->cq.lock)) {
148 __STATS__( false, io.calls.locked++; )
149 return false;
150 }
151
152 return true;
153 }
154
155 static bool __cfa_do_drain( $io_context * ctx, cluster * cltr ) __attribute__((nonnull(1, 2))) {
156 /* paranoid */ verify( ! __preemption_enabled() );
157 /* paranoid */ verify( ready_schedule_islocked() );
158 /* paranoid */ verify( ctx->cq.lock == true );
159
160 const __u32 mask = *ctx->cq.mask;
161 unsigned long long ts_prev = ctx->cq.ts;
162
163 // re-read the head and tail in case it already changed.
164 const __u32 head = *ctx->cq.head;
165 const __u32 tail = *ctx->cq.tail;
166 const __u32 count = tail - head;
167 __STATS__( false, io.calls.drain++; io.calls.completed += count; )
168
169 for(i; count) {
170 unsigned idx = (head + i) & mask;
171 volatile struct io_uring_cqe & cqe = ctx->cq.cqes[idx];
172
173 /* paranoid */ verify(&cqe);
174
175 struct io_future_t * future = (struct io_future_t *)(uintptr_t)cqe.user_data;
176 // __cfadbg_print_safe( io, "Kernel I/O : Syscall completed : cqe %p, result %d for %p\n", &cqe, cqe.res, future );
177
178 __kernel_unpark( fulfil( *future, cqe.res, false ), UNPARK_LOCAL );
179 }
180
181 unsigned long long ts_next = ctx->cq.ts = rdtscl();
182
183 // Mark to the kernel that the cqe has been seen
184 // Ensure that the kernel only sees the new value of the head index after the CQEs have been read.
185 __atomic_store_n( ctx->cq.head, head + count, __ATOMIC_SEQ_CST );
186 ctx->proc->idle_wctx.drain_time = ts_next;
187
188 __cfadbg_print_safe(io, "Kernel I/O : %u completed age %llu\n", count, ts_next);
189 /* paranoid */ verify( ready_schedule_islocked() );
190 /* paranoid */ verify( ! __preemption_enabled() );
191
192 __atomic_unlock(&ctx->cq.lock);
193
194 touch_tsc( cltr->sched.io.tscs, ctx->cq.id, ts_prev, ts_next );
195
196 return true;
197 }
198
199 bool __cfa_io_drain( processor * proc ) {
200 bool local = false;
201 bool remote = false;
202
203 ready_schedule_lock();
204
205 cluster * const cltr = proc->cltr;
206 $io_context * const ctx = proc->io.ctx;
207 /* paranoid */ verify( cltr );
208 /* paranoid */ verify( ctx );
209
210 with(cltr->sched) {
211 const size_t ctxs_count = io.count;
212
213 /* paranoid */ verify( ready_schedule_islocked() );
214 /* paranoid */ verify( ! __preemption_enabled() );
215 /* paranoid */ verify( active_processor() == proc );
216 /* paranoid */ verify( __shard_factor.io > 0 );
217 /* paranoid */ verify( ctxs_count > 0 );
218 /* paranoid */ verify( ctx->cq.id < ctxs_count );
219
220 const unsigned this_cache = cache_id(cltr, ctx->cq.id / __shard_factor.io);
221 const unsigned long long ctsc = rdtscl();
222
223 if(proc->io.target == UINT_MAX) {
224 uint64_t chaos = __tls_rand();
225 unsigned ext = chaos & 0xff;
226 unsigned other = (chaos >> 8) % (ctxs_count);
227
228 if(ext < 3 || __atomic_load_n(&caches[other / __shard_factor.io].id, __ATOMIC_RELAXED) == this_cache) {
229 proc->io.target = other;
230 }
231 }
232 else {
233 const unsigned target = proc->io.target;
234 /* paranoid */ verify( io.tscs[target].tv != ULLONG_MAX );
235 HELP: if(target < ctxs_count) {
236 const unsigned long long cutoff = calc_cutoff(ctsc, ctx->cq.id, ctxs_count, io.data, io.tscs, __shard_factor.io);
237 const unsigned long long age = moving_average(ctsc, io.tscs[target].tv, io.tscs[target].ma);
238 __cfadbg_print_safe(io, "Kernel I/O: Help attempt on %u from %u, age %'llu vs cutoff %'llu, %s\n", target, ctx->cq.id, age, cutoff, age > cutoff ? "yes" : "no");
239 if(age <= cutoff) break HELP;
240
241 if(!try_acquire(io.data[target])) break HELP;
242
243 if(!__cfa_do_drain( io.data[target], cltr )) break HELP;
244
245 remote = true;
246 __STATS__( true, io.calls.helped++; )
247 }
248 proc->io.target = UINT_MAX;
249 }
250 }
251
252
253 // Drain the local queue
254 if(try_acquire( proc->io.ctx )) {
255 local = __cfa_do_drain( proc->io.ctx, cltr );
256 }
257
258 /* paranoid */ verify( ready_schedule_islocked() );
259 /* paranoid */ verify( ! __preemption_enabled() );
260 /* paranoid */ verify( active_processor() == proc );
261
262 ready_schedule_unlock();
263 return local || remote;
264 }
265
266 bool __cfa_io_flush( processor * proc ) {
267 /* paranoid */ verify( ! __preemption_enabled() );
268 /* paranoid */ verify( proc );
269 /* paranoid */ verify( proc->io.ctx );
270
271 $io_context & ctx = *proc->io.ctx;
272
273 __ioarbiter_flush( ctx );
274
275 if(ctx.sq.to_submit != 0) {
276 ioring_syscsll(ctx, 0, 0);
277
278 }
279
280 return __cfa_io_drain( proc );
281 }
282
283//=============================================================================================
284// I/O Submissions
285//=============================================================================================
286
287// Submition steps :
288// 1 - Allocate a queue entry. The ring already has memory for all entries but only the ones
289// listed in sq.array are visible by the kernel. For those not listed, the kernel does not
290// offer any assurance that an entry is not being filled by multiple flags. Therefore, we
291// need to write an allocator that allows allocating concurrently.
292//
293// 2 - Actually fill the submit entry, this is the only simple and straightforward step.
294//
295// 3 - Append the entry index to the array and adjust the tail accordingly. This operation
296// needs to arrive to two concensus at the same time:
297// A - The order in which entries are listed in the array: no two threads must pick the
298// same index for their entries
299// B - When can the tail be update for the kernel. EVERY entries in the array between
300// head and tail must be fully filled and shouldn't ever be touched again.
301//
302 //=============================================================================================
303 // Allocation
304 // for user's convenience fill the sqes from the indexes
305 static inline void __fill(struct io_uring_sqe * out_sqes[], __u32 want, __u32 idxs[], struct $io_context * ctx) {
306 struct io_uring_sqe * sqes = ctx->sq.sqes;
307 for(i; want) {
308 // __cfadbg_print_safe(io, "Kernel I/O : filling loop\n");
309 out_sqes[i] = &sqes[idxs[i]];
310 }
311 }
312
313 // Try to directly allocate from the a given context
314 // Not thread-safe
315 static inline bool __alloc(struct $io_context * ctx, __u32 idxs[], __u32 want) {
316 __sub_ring_t & sq = ctx->sq;
317 const __u32 mask = *sq.mask;
318 __u32 fhead = sq.free_ring.head; // get the current head of the queue
319 __u32 ftail = sq.free_ring.tail; // get the current tail of the queue
320
321 // If we don't have enough sqes, fail
322 if((ftail - fhead) < want) { return false; }
323
324 // copy all the indexes we want from the available list
325 for(i; want) {
326 // __cfadbg_print_safe(io, "Kernel I/O : allocating loop\n");
327 idxs[i] = sq.free_ring.array[(fhead + i) & mask];
328 }
329
330 // Advance the head to mark the indexes as consumed
331 __atomic_store_n(&sq.free_ring.head, fhead + want, __ATOMIC_RELEASE);
332
333 // return success
334 return true;
335 }
336
337 // Allocate an submit queue entry.
338 // The kernel cannot see these entries until they are submitted, but other threads must be
339 // able to see which entries can be used and which are already un used by an other thread
340 // for convenience, return both the index and the pointer to the sqe
341 // sqe == &sqes[idx]
342 struct $io_context * cfa_io_allocate(struct io_uring_sqe * sqes[], __u32 idxs[], __u32 want) libcfa_public {
343 // __cfadbg_print_safe(io, "Kernel I/O : attempting to allocate %u\n", want);
344
345 disable_interrupts();
346 processor * proc = __cfaabi_tls.this_processor;
347 $io_context * ctx = proc->io.ctx;
348 /* paranoid */ verify( __cfaabi_tls.this_processor );
349 /* paranoid */ verify( ctx );
350
351 // __cfadbg_print_safe(io, "Kernel I/O : attempting to fast allocation\n");
352
353 // We can proceed to the fast path
354 if( __alloc(ctx, idxs, want) ) {
355 // Allocation was successful
356 __STATS__( true, io.alloc.fast += 1; )
357 enable_interrupts();
358
359 // __cfadbg_print_safe(io, "Kernel I/O : fast allocation successful from ring %d\n", ctx->fd);
360
361 __fill( sqes, want, idxs, ctx );
362 return ctx;
363 }
364 // The fast path failed, fallback
365 __STATS__( true, io.alloc.fail += 1; )
366
367 // Fast path failed, fallback on arbitration
368 __STATS__( true, io.alloc.slow += 1; )
369 enable_interrupts();
370
371 $io_arbiter * ioarb = proc->cltr->io.arbiter;
372 /* paranoid */ verify( ioarb );
373
374 // __cfadbg_print_safe(io, "Kernel I/O : falling back on arbiter for allocation\n");
375
376 struct $io_context * ret = __ioarbiter_allocate(*ioarb, idxs, want);
377
378 // __cfadbg_print_safe(io, "Kernel I/O : slow allocation completed from ring %d\n", ret->fd);
379
380 __fill( sqes, want, idxs,ret );
381 return ret;
382 }
383
384 //=============================================================================================
385 // submission
386 static inline void __submit_only( struct $io_context * ctx, __u32 idxs[], __u32 have) {
387 // We can proceed to the fast path
388 // Get the right objects
389 __sub_ring_t & sq = ctx->sq;
390 const __u32 mask = *sq.mask;
391 __u32 tail = *sq.kring.tail;
392
393 // Add the sqes to the array
394 for( i; have ) {
395 // __cfadbg_print_safe(io, "Kernel I/O : __submit loop\n");
396 sq.kring.array[ (tail + i) & mask ] = idxs[i];
397 }
398
399 // Make the sqes visible to the submitter
400 __atomic_store_n(sq.kring.tail, tail + have, __ATOMIC_RELEASE);
401 sq.to_submit += have;
402
403 __atomic_store_n(&ctx->proc->io.pending, true, __ATOMIC_RELAXED);
404 __atomic_store_n(&ctx->proc->io.dirty , true, __ATOMIC_RELAXED);
405 }
406
407 static inline void __submit( struct $io_context * ctx, __u32 idxs[], __u32 have, bool lazy) {
408 __sub_ring_t & sq = ctx->sq;
409 __submit_only(ctx, idxs, have);
410
411 if(sq.to_submit > 30) {
412 __tls_stats()->io.flush.full++;
413 __cfa_io_flush( ctx->proc );
414 }
415 if(!lazy) {
416 __tls_stats()->io.flush.eager++;
417 __cfa_io_flush( ctx->proc );
418 }
419 }
420
421 void cfa_io_submit( struct $io_context * inctx, __u32 idxs[], __u32 have, bool lazy ) __attribute__((nonnull (1))) libcfa_public {
422 // __cfadbg_print_safe(io, "Kernel I/O : attempting to submit %u (%s)\n", have, lazy ? "lazy" : "eager");
423
424 disable_interrupts();
425 processor * proc = __cfaabi_tls.this_processor;
426 $io_context * ctx = proc->io.ctx;
427 /* paranoid */ verify( __cfaabi_tls.this_processor );
428 /* paranoid */ verify( ctx );
429
430 // Can we proceed to the fast path
431 if( ctx == inctx ) // We have the right instance?
432 {
433 __submit(ctx, idxs, have, lazy);
434
435 // Mark the instance as no longer in-use, re-enable interrupts and return
436 __STATS__( true, io.submit.fast += 1; )
437 enable_interrupts();
438
439 // __cfadbg_print_safe(io, "Kernel I/O : submitted on fast path\n");
440 return;
441 }
442
443 // Fast path failed, fallback on arbitration
444 __STATS__( true, io.submit.slow += 1; )
445 enable_interrupts();
446
447 // __cfadbg_print_safe(io, "Kernel I/O : falling back on arbiter for submission\n");
448
449 __ioarbiter_submit(inctx, idxs, have, lazy);
450 }
451
452 //=============================================================================================
453 // Flushing
454 // Go through the ring's submit queue and release everything that has already been consumed
455 // by io_uring
456 // This cannot be done by multiple threads
457 static __u32 __release_sqes( struct $io_context & ctx ) {
458 const __u32 mask = *ctx.sq.mask;
459
460 __attribute__((unused))
461 __u32 ctail = *ctx.sq.kring.tail; // get the current tail of the queue
462 __u32 chead = *ctx.sq.kring.head; // get the current head of the queue
463 __u32 phead = ctx.sq.kring.released; // get the head the last time we were here
464
465 __u32 ftail = ctx.sq.free_ring.tail; // get the current tail of the queue
466
467 // the 3 fields are organized like this diagram
468 // except it's are ring
469 // ---+--------+--------+----
470 // ---+--------+--------+----
471 // ^ ^ ^
472 // phead chead ctail
473
474 // make sure ctail doesn't wrap around and reach phead
475 /* paranoid */ verify(
476 (ctail >= chead && chead >= phead)
477 || (chead >= phead && phead >= ctail)
478 || (phead >= ctail && ctail >= chead)
479 );
480
481 // find the range we need to clear
482 __u32 count = chead - phead;
483
484 if(count == 0) {
485 return 0;
486 }
487
488 // We acquired an previous-head/current-head range
489 // go through the range and release the sqes
490 for( i; count ) {
491 // __cfadbg_print_safe(io, "Kernel I/O : release loop\n");
492 __u32 idx = ctx.sq.kring.array[ (phead + i) & mask ];
493 ctx.sq.free_ring.array[ (ftail + i) & mask ] = idx;
494 }
495
496 ctx.sq.kring.released = chead; // note up to were we processed
497 __atomic_store_n(&ctx.sq.free_ring.tail, ftail + count, __ATOMIC_SEQ_CST);
498
499 __ioarbiter_notify(ctx);
500
501 return count;
502 }
503
504//=============================================================================================
505// I/O Arbiter
506//=============================================================================================
507 static inline bool enqueue(__outstanding_io_queue & queue, __outstanding_io & item) {
508 bool was_empty;
509
510 // Lock the list, it's not thread safe
511 lock( queue.lock __cfaabi_dbg_ctx2 );
512 {
513 was_empty = empty(queue.queue);
514
515 // Add our request to the list
516 add( queue.queue, item );
517
518 // Mark as pending
519 __atomic_store_n( &queue.empty, false, __ATOMIC_SEQ_CST );
520 }
521 unlock( queue.lock );
522
523 return was_empty;
524 }
525
526 static inline bool empty(__outstanding_io_queue & queue ) {
527 return __atomic_load_n( &queue.empty, __ATOMIC_SEQ_CST);
528 }
529
530 static $io_context * __ioarbiter_allocate( $io_arbiter & this, __u32 idxs[], __u32 want ) {
531 // __cfadbg_print_safe(io, "Kernel I/O : arbiter allocating\n");
532
533 __STATS__( false, io.alloc.block += 1; )
534
535 // No one has any resources left, wait for something to finish
536 // We need to add ourself to a list of pending allocs and wait for an answer
537 __pending_alloc pa;
538 pa.idxs = idxs;
539 pa.want = want;
540
541 enqueue(this.pending, (__outstanding_io&)pa);
542
543 wait( pa.sem );
544
545 return pa.ctx;
546
547 }
548
549 static void __ioarbiter_notify( $io_arbiter & this, $io_context * ctx ) {
550 /* paranoid */ verify( !empty(this.pending.queue) );
551
552 lock( this.pending.lock __cfaabi_dbg_ctx2 );
553 {
554 while( !empty(this.pending.queue) ) {
555 __cfadbg_print_safe(io, "Kernel I/O : notifying\n");
556 __u32 have = ctx->sq.free_ring.tail - ctx->sq.free_ring.head;
557 __pending_alloc & pa = (__pending_alloc&)head( this.pending.queue );
558
559 if( have > pa.want ) goto DONE;
560 drop( this.pending.queue );
561
562 /* paranoid */__attribute__((unused)) bool ret =
563
564 __alloc(ctx, pa.idxs, pa.want);
565
566 /* paranoid */ verify( ret );
567
568 pa.ctx = ctx;
569
570 post( pa.sem );
571 }
572
573 this.pending.empty = true;
574 DONE:;
575 }
576 unlock( this.pending.lock );
577 }
578
579 static void __ioarbiter_notify( $io_context & ctx ) {
580 if(!empty( ctx.arbiter->pending )) {
581 __ioarbiter_notify( *ctx.arbiter, &ctx );
582 }
583 }
584
585 // Simply append to the pending
586 static void __ioarbiter_submit( $io_context * ctx, __u32 idxs[], __u32 have, bool lazy ) {
587 __cfadbg_print_safe(io, "Kernel I/O : submitting %u from the arbiter to context %u\n", have, ctx->fd);
588
589 __cfadbg_print_safe(io, "Kernel I/O : waiting to submit %u\n", have);
590
591 __external_io ei;
592 ei.idxs = idxs;
593 ei.have = have;
594 ei.lazy = lazy;
595
596 bool we = enqueue(ctx->ext_sq, (__outstanding_io&)ei);
597
598 __atomic_store_n(&ctx->proc->io.pending, true, __ATOMIC_SEQ_CST);
599
600 if( we ) {
601 sigval_t value = { PREEMPT_IO };
602 pthread_sigqueue(ctx->proc->kernel_thread, SIGUSR1, value);
603 }
604
605 wait( ei.sem );
606
607 __cfadbg_print_safe(io, "Kernel I/O : %u submitted from arbiter\n", have);
608 }
609
610 static void __ioarbiter_flush( $io_context & ctx ) {
611 if(!empty( ctx.ext_sq )) {
612 __STATS__( false, io.flush.external += 1; )
613
614 __cfadbg_print_safe(io, "Kernel I/O : arbiter flushing\n");
615
616 lock( ctx.ext_sq.lock __cfaabi_dbg_ctx2 );
617 {
618 while( !empty(ctx.ext_sq.queue) ) {
619 __external_io & ei = (__external_io&)drop( ctx.ext_sq.queue );
620
621 __submit_only(&ctx, ei.idxs, ei.have);
622
623 post( ei.sem );
624 }
625
626 ctx.ext_sq.empty = true;
627 }
628 unlock(ctx.ext_sq.lock );
629 }
630 }
631
632 #if defined(CFA_WITH_IO_URING_IDLE)
633 bool __kernel_read(processor * proc, io_future_t & future, iovec & iov, int fd) {
634 $io_context * ctx = proc->io.ctx;
635 /* paranoid */ verify( ! __preemption_enabled() );
636 /* paranoid */ verify( proc == __cfaabi_tls.this_processor );
637 /* paranoid */ verify( ctx );
638
639 __u32 idx;
640 struct io_uring_sqe * sqe;
641
642 // We can proceed to the fast path
643 if( !__alloc(ctx, &idx, 1) ) {
644 /* paranoid */ verify( false ); // for now check if this happens, next time just abort the sleep.
645 return false;
646 }
647
648 // Allocation was successful
649 __fill( &sqe, 1, &idx, ctx );
650
651 sqe->user_data = (uintptr_t)&future;
652 sqe->flags = 0;
653 sqe->fd = fd;
654 sqe->off = 0;
655 sqe->ioprio = 0;
656 sqe->fsync_flags = 0;
657 sqe->__pad2[0] = 0;
658 sqe->__pad2[1] = 0;
659 sqe->__pad2[2] = 0;
660
661 #if defined(CFA_HAVE_IORING_OP_READ)
662 sqe->opcode = IORING_OP_READ;
663 sqe->addr = (uint64_t)iov.iov_base;
664 sqe->len = iov.iov_len;
665 #elif defined(CFA_HAVE_READV) && defined(CFA_HAVE_IORING_OP_READV)
666 sqe->opcode = IORING_OP_READV;
667 sqe->addr = (uintptr_t)&iov;
668 sqe->len = 1;
669 #else
670 #error CFA_WITH_IO_URING_IDLE but none of CFA_HAVE_READV, CFA_HAVE_IORING_OP_READV or CFA_HAVE_IORING_OP_READ defined
671 #endif
672
673 asm volatile("": : :"memory");
674
675 /* paranoid */ verify( sqe->user_data == (uintptr_t)&future );
676 __submit_only( ctx, &idx, 1 );
677
678 /* paranoid */ verify( proc == __cfaabi_tls.this_processor );
679 /* paranoid */ verify( ! __preemption_enabled() );
680
681 return true;
682 }
683
684 void __cfa_io_idle( processor * proc ) {
685 iovec iov;
686 __atomic_acquire( &proc->io.ctx->cq.lock );
687
688 __attribute__((used)) volatile bool was_reset = false;
689
690 with( proc->idle_wctx) {
691
692 // Do we already have a pending read
693 if(available(*ftr)) {
694 // There is no pending read, we need to add one
695 reset(*ftr);
696
697 iov.iov_base = rdbuf;
698 iov.iov_len = sizeof(eventfd_t);
699 __kernel_read(proc, *ftr, iov, evfd );
700 ftr->result = 0xDEADDEAD;
701 *((eventfd_t *)rdbuf) = 0xDEADDEADDEADDEAD;
702 was_reset = true;
703 }
704 }
705
706 if( !__atomic_load_n( &proc->do_terminate, __ATOMIC_SEQ_CST ) ) {
707 __ioarbiter_flush( *proc->io.ctx );
708 proc->idle_wctx.sleep_time = rdtscl();
709 ioring_syscsll( *proc->io.ctx, 1, IORING_ENTER_GETEVENTS);
710 }
711
712 ready_schedule_lock();
713 __cfa_do_drain( proc->io.ctx, proc->cltr );
714 ready_schedule_unlock();
715
716 asm volatile ("" :: "m" (was_reset));
717 }
718 #endif
719#endif
Note: See TracBrowser for help on using the repository browser.