source: libcfa/src/concurrency/io.cfa@ 2caed18

ADT arm-eh ast-experimental enum forall-pointer-decay jacob/cs343-translation new-ast-unique-expr pthread-emulation qualifiedEnum
Last change on this file since 2caed18 was 150d21a, checked in by Thierry Delisle <tdelisle@…>, 5 years ago

Fixed clashing stat counter.

  • Property mode set to 100644
File size: 19.8 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2020 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// io.cfa --
8//
9// Author : Thierry Delisle
10// Created On : Thu Apr 23 17:31:00 2020
11// Last Modified By :
12// Last Modified On :
13// Update Count :
14//
15
16#define __cforall_thread__
17
18#if defined(__CFA_DEBUG__)
19 // #define __CFA_DEBUG_PRINT_IO__
20 // #define __CFA_DEBUG_PRINT_IO_CORE__
21#endif
22
23
24#if defined(CFA_HAVE_LINUX_IO_URING_H)
25 #define _GNU_SOURCE /* See feature_test_macros(7) */
26 #include <errno.h>
27 #include <signal.h>
28 #include <stdint.h>
29 #include <string.h>
30 #include <unistd.h>
31
32 extern "C" {
33 #include <sys/syscall.h>
34
35 #include <linux/io_uring.h>
36 }
37
38 #include "stats.hfa"
39 #include "kernel.hfa"
40 #include "kernel/fwd.hfa"
41 #include "io/types.hfa"
42
43 __attribute__((unused)) static const char * opcodes[] = {
44 "OP_NOP",
45 "OP_READV",
46 "OP_WRITEV",
47 "OP_FSYNC",
48 "OP_READ_FIXED",
49 "OP_WRITE_FIXED",
50 "OP_POLL_ADD",
51 "OP_POLL_REMOVE",
52 "OP_SYNC_FILE_RANGE",
53 "OP_SENDMSG",
54 "OP_RECVMSG",
55 "OP_TIMEOUT",
56 "OP_TIMEOUT_REMOVE",
57 "OP_ACCEPT",
58 "OP_ASYNC_CANCEL",
59 "OP_LINK_TIMEOUT",
60 "OP_CONNECT",
61 "OP_FALLOCATE",
62 "OP_OPENAT",
63 "OP_CLOSE",
64 "OP_FILES_UPDATE",
65 "OP_STATX",
66 "OP_READ",
67 "OP_WRITE",
68 "OP_FADVISE",
69 "OP_MADVISE",
70 "OP_SEND",
71 "OP_RECV",
72 "OP_OPENAT2",
73 "OP_EPOLL_CTL",
74 "OP_SPLICE",
75 "OP_PROVIDE_BUFFERS",
76 "OP_REMOVE_BUFFERS",
77 "OP_TEE",
78 "INVALID_OP"
79 };
80
81//=============================================================================================
82// I/O Syscall
83//=============================================================================================
84 static int __io_uring_enter( struct $io_context & ctx, unsigned to_submit, bool get ) {
85 __STATS__( false, io.calls.count++; )
86 bool need_sys_to_submit = false;
87 bool need_sys_to_complete = false;
88 unsigned flags = 0;
89
90 TO_SUBMIT:
91 if( to_submit > 0 ) {
92 if( !(ctx.ring_flags & IORING_SETUP_SQPOLL) ) {
93 need_sys_to_submit = true;
94 break TO_SUBMIT;
95 }
96 if( (*ctx.sq.flags) & IORING_SQ_NEED_WAKEUP ) {
97 need_sys_to_submit = true;
98 flags |= IORING_ENTER_SQ_WAKEUP;
99 }
100 }
101
102 if( get && !(ctx.ring_flags & IORING_SETUP_SQPOLL) ) {
103 flags |= IORING_ENTER_GETEVENTS;
104 if( (ctx.ring_flags & IORING_SETUP_IOPOLL) ) {
105 need_sys_to_complete = true;
106 }
107 }
108
109 int ret = 0;
110 if( need_sys_to_submit || need_sys_to_complete ) {
111 __cfadbg_print_safe(io_core, "Kernel I/O : IO_URING enter %d %u %u\n", ctx.fd, to_submit, flags);
112 __STATS__( false, io.calls.blocks++; )
113 ret = syscall( __NR_io_uring_enter, ctx.fd, to_submit, 0, flags, (sigset_t *)0p, _NSIG / 8);
114 __cfadbg_print_safe(io_core, "Kernel I/O : IO_URING %d returned %d\n", ctx.fd, ret);
115 }
116
117 // Memory barrier
118 __atomic_thread_fence( __ATOMIC_SEQ_CST );
119 return ret;
120 }
121
122//=============================================================================================
123// I/O Polling
124//=============================================================================================
125 static inline unsigned __flush( struct $io_context & );
126 static inline __u32 __release_sqes( struct $io_context & );
127
128 static bool __drain_io( struct $io_context & ctx ) {
129 unsigned to_submit = __flush( ctx );
130 int ret = __io_uring_enter( ctx, to_submit, true );
131 if( ret < 0 ) {
132 switch((int)errno) {
133 case EAGAIN:
134 case EINTR:
135 case EBUSY:
136 // Update statistics
137 __STATS__( false, io.calls.errors.busy ++; )
138 return true;
139 break;
140 default:
141 abort( "KERNEL ERROR: IO_URING SYSCALL - (%d) %s\n", (int)errno, strerror(errno) );
142 }
143 }
144
145 // update statistics
146 if (to_submit > 0) {
147 __STATS__( false, io.calls.submitted += ret; )
148 /* paranoid */ verify( ctx.sq.to_submit <= *ctx.sq.num );
149
150 /* paranoid */ verify( ctx.sq.to_submit >= ret );
151 ctx.sq.to_submit -= ret;
152
153 /* paranoid */ verify( ctx.sq.to_submit <= *ctx.sq.num );
154
155 if(ret) {
156 __cfadbg_print_safe(io, "Kernel I/O : %u submitted to io_uring\n", ret);
157 }
158 }
159
160 // Release the consumed SQEs
161 __release_sqes( ctx );
162
163 // Drain the queue
164 unsigned head = *ctx.cq.head;
165 unsigned tail = *ctx.cq.tail;
166 const __u32 mask = *ctx.cq.mask;
167
168 // Nothing was new return 0
169 if (head == tail) {
170 return ctx.sq.to_submit > 0;
171 }
172
173 __u32 count = tail - head;
174 /* paranoid */ verify( count != 0 );
175 __STATS__( false, io.calls.completed += count; )
176
177 for(i; count) {
178 unsigned idx = (head + i) & mask;
179 volatile struct io_uring_cqe & cqe = ctx.cq.cqes[idx];
180
181 /* paranoid */ verify(&cqe);
182
183 struct io_future_t * future = (struct io_future_t *)(uintptr_t)cqe.user_data;
184 __cfadbg_print_safe( io, "Kernel I/O : Syscall completed : cqe %p, result %d for %p\n", &cqe, cqe.res, future );
185
186 fulfil( *future, cqe.res );
187 }
188
189 if(count) {
190 __cfadbg_print_safe(io, "Kernel I/O : %u completed\n", count);
191 }
192
193 // Mark to the kernel that the cqe has been seen
194 // Ensure that the kernel only sees the new value of the head index after the CQEs have been read.
195 __atomic_store_n( ctx.cq.head, head + count, __ATOMIC_SEQ_CST );
196
197 return count > 0 || to_submit > 0;
198 }
199
200 void main( $io_context & this ) {
201 __cfadbg_print_safe(io_core, "Kernel I/O : IO poller %d (%p) ready\n", this.fd, &this);
202
203 const int reset_cnt = 5;
204 int reset = reset_cnt;
205 // Then loop until we need to start
206 LOOP:
207 while() {
208 waitfor( ^?{} : this) {
209 break LOOP;
210 }
211 or else {}
212
213 // Drain the io
214 bool again = __drain_io( this );
215
216 if(!again) reset--;
217
218 // If we got something, just yield and check again
219 if(reset > 1) {
220 yield();
221 continue LOOP;
222 }
223
224 // We alread failed to find completed entries a few time.
225 if(reset == 1) {
226 // Rearm the context so it can block
227 // but don't block right away
228 // we need to retry one last time in case
229 // something completed *just now*
230 __ioctx_prepare_block( this );
231 continue LOOP;
232 }
233
234 __STATS__( false,
235 io.poller.sleeps += 1;
236 )
237 __cfadbg_print_safe(io_core, "Kernel I/O : Parking io poller %d (%p)\n", this.fd, &this);
238
239 // block this thread
240 wait( this.sem );
241
242 // restore counter
243 reset = reset_cnt;
244 }
245
246 __cfadbg_print_safe(io_core, "Kernel I/O : Fast poller %d (%p) stopping\n", this.fd, &this);
247 }
248
249//=============================================================================================
250// I/O Submissions
251//=============================================================================================
252
253// Submition steps :
254// 1 - Allocate a queue entry. The ring already has memory for all entries but only the ones
255// listed in sq.array are visible by the kernel. For those not listed, the kernel does not
256// offer any assurance that an entry is not being filled by multiple flags. Therefore, we
257// need to write an allocator that allows allocating concurrently.
258//
259// 2 - Actually fill the submit entry, this is the only simple and straightforward step.
260//
261// 3 - Append the entry index to the array and adjust the tail accordingly. This operation
262// needs to arrive to two concensus at the same time:
263// A - The order in which entries are listed in the array: no two threads must pick the
264// same index for their entries
265// B - When can the tail be update for the kernel. EVERY entries in the array between
266// head and tail must be fully filled and shouldn't ever be touched again.
267//
268
269 static $io_context * __ioarbiter_allocate( $io_arbiter & mutex this, processor *, __u32 idxs[], __u32 want );
270 static void __ioarbiter_submit ( $io_arbiter & mutex this, $io_context * , __u32 idxs[], __u32 have );
271 static void __ioarbiter_flush ( $io_arbiter & mutex this, $io_context * );
272 static inline void __ioarbiter_notify( $io_context & ctx );
273
274 //=============================================================================================
275 // Allocation
276 // for user's convenience fill the sqes from the indexes
277 static inline void __fill(struct io_uring_sqe * out_sqes[], __u32 want, __u32 idxs[], struct $io_context * ctx) {
278 struct io_uring_sqe * sqes = ctx->sq.sqes;
279 for(i; want) {
280 out_sqes[i] = &sqes[idxs[i]];
281 }
282 }
283
284 // Try to directly allocate from the a given context
285 // Not thread-safe
286 static inline bool __alloc(struct $io_context * ctx, __u32 idxs[], __u32 want) {
287 __sub_ring_t & sq = ctx->sq;
288 const __u32 mask = *sq.mask;
289 __u32 fhead = sq.free_ring.head; // get the current head of the queue
290 __u32 ftail = sq.free_ring.tail; // get the current tail of the queue
291
292 // If we don't have enough sqes, fail
293 if((ftail - fhead) < want) { return false; }
294
295 // copy all the indexes we want from the available list
296 for(i; want) {
297 idxs[i] = sq.free_ring.array[(fhead + i) & mask];
298 }
299
300 // Advance the head to mark the indexes as consumed
301 __atomic_store_n(&sq.free_ring.head, fhead + want, __ATOMIC_RELEASE);
302
303 // return success
304 return true;
305 }
306
307 // Allocate an submit queue entry.
308 // The kernel cannot see these entries until they are submitted, but other threads must be
309 // able to see which entries can be used and which are already un used by an other thread
310 // for convenience, return both the index and the pointer to the sqe
311 // sqe == &sqes[idx]
312 struct $io_context * cfa_io_allocate(struct io_uring_sqe * sqes[], __u32 idxs[], __u32 want) {
313 __cfadbg_print_safe(io, "Kernel I/O : attempting to allocate %u\n", want);
314
315 disable_interrupts();
316 processor * proc = __cfaabi_tls.this_processor;
317 /* paranoid */ verify( __cfaabi_tls.this_processor );
318 /* paranoid */ verify( proc->io.lock == false );
319
320 __atomic_store_n( &proc->io.lock, true, __ATOMIC_SEQ_CST );
321 $io_context * ctx = proc->io.ctx;
322 $io_arbiter * ioarb = proc->cltr->io.arbiter;
323 /* paranoid */ verify( ioarb );
324
325 // Can we proceed to the fast path
326 if( ctx // We alreay have an instance?
327 && !ctx->revoked ) // Our instance is still valid?
328 {
329 __cfadbg_print_safe(io, "Kernel I/O : attempting to fast allocation\n");
330
331 // We can proceed to the fast path
332 if( __alloc(ctx, idxs, want) ) {
333 // Allocation was successful
334 // Mark the instance as no longer in-use and re-enable interrupts
335 __atomic_store_n( &proc->io.lock, false, __ATOMIC_RELEASE );
336 __STATS__( true, io.alloc.fast += 1; )
337 enable_interrupts( __cfaabi_dbg_ctx );
338
339 __cfadbg_print_safe(io, "Kernel I/O : fast allocation successful\n");
340
341 __fill( sqes, want, idxs, ctx );
342 return ctx;
343 }
344 // The fast path failed, fallback
345 __STATS__( true, io.alloc.fail += 1; )
346 }
347
348 // Fast path failed, fallback on arbitration
349 __atomic_store_n( &proc->io.lock, false, __ATOMIC_RELEASE );
350 __STATS__( true, io.alloc.slow += 1; )
351 enable_interrupts( __cfaabi_dbg_ctx );
352
353 __cfadbg_print_safe(io, "Kernel I/O : falling back on arbiter for allocation\n");
354
355 struct $io_context * ret = __ioarbiter_allocate(*ioarb, proc, idxs, want);
356
357 __cfadbg_print_safe(io, "Kernel I/O : slow allocation completed\n");
358
359 __fill( sqes, want, idxs,ret );
360 return ret;
361 }
362
363
364 //=============================================================================================
365 // submission
366 static inline void __submit( struct $io_context * ctx, __u32 idxs[], __u32 have) {
367 // We can proceed to the fast path
368 // Get the right objects
369 __sub_ring_t & sq = ctx->sq;
370 const __u32 mask = *sq.mask;
371 __u32 tail = sq.kring.ready;
372
373 // Add the sqes to the array
374 for( i; have ) {
375 sq.kring.array[ (tail + i) & mask ] = idxs[i];
376 }
377
378 // Make the sqes visible to the submitter
379 __atomic_store_n(&sq.kring.ready, tail + have, __ATOMIC_RELEASE);
380
381 // Make sure the poller is awake
382 __cfadbg_print_safe(io, "Kernel I/O : waking the poller\n");
383 post( ctx->sem );
384 }
385
386 void cfa_io_submit( struct $io_context * inctx, __u32 idxs[], __u32 have ) __attribute__((nonnull (1))) {
387 __cfadbg_print_safe(io, "Kernel I/O : attempting to submit %u\n", have);
388
389 disable_interrupts();
390 processor * proc = __cfaabi_tls.this_processor;
391 /* paranoid */ verify( __cfaabi_tls.this_processor );
392 /* paranoid */ verify( proc->io.lock == false );
393
394 __atomic_store_n( &proc->io.lock, true, __ATOMIC_SEQ_CST );
395 $io_context * ctx = proc->io.ctx;
396
397 // Can we proceed to the fast path
398 if( ctx // We alreay have an instance?
399 && !ctx->revoked // Our instance is still valid?
400 && ctx == inctx ) // We have the right instance?
401 {
402 __submit(ctx, idxs, have);
403
404 // Mark the instance as no longer in-use, re-enable interrupts and return
405 __atomic_store_n( &proc->io.lock, false, __ATOMIC_RELEASE );
406 __STATS__( true, io.submit.fast += 1; )
407 enable_interrupts( __cfaabi_dbg_ctx );
408
409 __cfadbg_print_safe(io, "Kernel I/O : submitted on fast path\n");
410 return;
411 }
412
413 // Fast path failed, fallback on arbitration
414 __atomic_store_n( &proc->io.lock, false, __ATOMIC_RELEASE );
415 __STATS__( true, io.submit.slow += 1; )
416 enable_interrupts( __cfaabi_dbg_ctx );
417
418 __cfadbg_print_safe(io, "Kernel I/O : falling back on arbiter for submission\n");
419
420 __ioarbiter_submit(*inctx->arbiter, inctx, idxs, have);
421 }
422
423 //=============================================================================================
424 // Flushing
425 static unsigned __flush( struct $io_context & ctx ) {
426 // First check for external
427 if( !__atomic_load_n(&ctx.ext_sq.empty, __ATOMIC_SEQ_CST) ) {
428 // We have external submissions, delegate to the arbiter
429 __ioarbiter_flush( *ctx.arbiter, &ctx );
430 }
431
432 __u32 tail = *ctx.sq.kring.tail;
433 __u32 ready = ctx.sq.kring.ready;
434
435 /* paranoid */ verify( ctx.sq.to_submit <= *ctx.sq.num );
436 ctx.sq.to_submit += (ready - tail);
437 /* paranoid */ verify( ctx.sq.to_submit <= *ctx.sq.num );
438
439 if(ctx.sq.to_submit) {
440 __cfadbg_print_safe(io, "Kernel I/O : %u ready to submit\n", ctx.sq.to_submit);
441 }
442
443 __atomic_store_n(ctx.sq.kring.tail, ready, __ATOMIC_RELEASE);
444
445 return ctx.sq.to_submit;
446 }
447
448
449 // Go through the ring's submit queue and release everything that has already been consumed
450 // by io_uring
451 // This cannot be done by multiple threads
452 static __u32 __release_sqes( struct $io_context & ctx ) {
453 const __u32 mask = *ctx.sq.mask;
454
455 __attribute__((unused))
456 __u32 ctail = *ctx.sq.kring.tail; // get the current tail of the queue
457 __u32 chead = *ctx.sq.kring.head; // get the current head of the queue
458 __u32 phead = ctx.sq.kring.released; // get the head the last time we were here
459
460 __u32 ftail = ctx.sq.free_ring.tail; // get the current tail of the queue
461
462 // the 3 fields are organized like this diagram
463 // except it's are ring
464 // ---+--------+--------+----
465 // ---+--------+--------+----
466 // ^ ^ ^
467 // phead chead ctail
468
469 // make sure ctail doesn't wrap around and reach phead
470 /* paranoid */ verify(
471 (ctail >= chead && chead >= phead)
472 || (chead >= phead && phead >= ctail)
473 || (phead >= ctail && ctail >= chead)
474 );
475
476 // find the range we need to clear
477 __u32 count = chead - phead;
478
479 if(count == 0) {
480 return 0;
481 }
482
483 // We acquired an previous-head/current-head range
484 // go through the range and release the sqes
485 for( i; count ) {
486 __u32 idx = ctx.sq.kring.array[ (phead + i) & mask ];
487 ctx.sq.free_ring.array[ (ftail + i) & mask ] = idx;
488 }
489
490 ctx.sq.kring.released = chead; // note up to were we processed
491 __atomic_store_n(&ctx.sq.free_ring.tail, ftail + count, __ATOMIC_SEQ_CST);
492
493 __ioarbiter_notify(ctx);
494
495 return count;
496 }
497
498//=============================================================================================
499// I/O Arbiter
500//=============================================================================================
501 static inline void __revoke( $io_arbiter & this, $io_context * ctx ) {
502 if(ctx->revoked) return;
503
504 /* paranoid */ verify( ctx->proc );
505 remove( this.assigned, *ctx );
506
507 // Mark as revoked
508 __atomic_store_n(&ctx->revoked, true, __ATOMIC_SEQ_CST);
509
510 // Wait for the processor to no longer use it
511 while(ctx->proc->io.lock) Pause();
512
513 // Remove the coupling with the processor
514 ctx->proc->io.ctx = 0p;
515 ctx->proc = 0p;
516
517 // add to available contexts
518 addHead( this.available, *ctx );
519 }
520
521 static inline void __assign( $io_arbiter & this, $io_context * ctx, processor * proc ) {
522 remove( this.available, *ctx );
523
524 ctx->revoked = false;
525 ctx->proc = proc;
526 __atomic_store_n(&proc->io.ctx, ctx, __ATOMIC_SEQ_CST);
527
528 // add to assigned contexts
529 addTail( this.assigned, *ctx );
530 }
531
532 static $io_context * __ioarbiter_allocate( $io_arbiter & mutex this, processor * proc, __u32 idxs[], __u32 want ) {
533 __cfadbg_print_safe(io, "Kernel I/O : arbiter allocating\n");
534
535 SeqIter($io_context) iter;
536 $io_context & ci;
537 // Do we already have something available?
538 for( over( iter, this.available ); iter | ci;) {
539 __cfadbg_print_safe(io, "Kernel I/O : attempting available context\n");
540
541 $io_context * c = &ci;
542 if(__alloc(c, idxs, want)) {
543 __assign( this, c, proc);
544 return c;
545 }
546 }
547
548
549 // Otherwise, we have no choice but to revoke everyone to check if other instance have available data
550 for( over( iter, this.assigned ); iter | ci; ) {
551 __cfadbg_print_safe(io, "Kernel I/O : revoking context for allocation\n");
552
553 $io_context * c = &ci;
554 __revoke( this, c );
555
556 __STATS__( false, io.alloc.revoke += 1; )
557
558 if(__alloc(c, idxs, want)) {
559 __assign( this, c, proc);
560 return c;
561 }
562 }
563
564 __cfadbg_print_safe(io, "Kernel I/O : waiting for available resources\n");
565
566 __STATS__( false, io.alloc.block += 1; )
567
568 // No one has any resources left, wait for something to finish
569 // Mark as pending
570 __atomic_store_n( &this.pending.flag, true, __ATOMIC_SEQ_CST );
571
572 // Wait for our turn to submit
573 wait( this.pending.blocked, want );
574
575 __attribute((unused)) bool ret =
576 __alloc( this.pending.ctx, idxs, want);
577 /* paranoid */ verify( ret );
578
579 __assign( this, this.pending.ctx, proc);
580 return this.pending.ctx;
581 }
582
583 static void __ioarbiter_notify( $io_arbiter & mutex this, $io_context * ctx ) {
584 /* paranoid */ verify( !is_empty(this.pending.blocked) );
585 this.pending.ctx = ctx;
586
587 while( !is_empty(this.pending.blocked) ) {
588 __u32 have = ctx->sq.free_ring.tail - ctx->sq.free_ring.head;
589 __u32 want = front( this.pending.blocked );
590
591 if( have > want ) return;
592
593 signal_block( this.pending.blocked );
594 }
595
596 this.pending.flag = false;
597 }
598
599 static void __ioarbiter_notify( $io_context & ctx ) {
600 if(__atomic_load_n( &ctx.arbiter->pending.flag, __ATOMIC_SEQ_CST)) {
601 __ioarbiter_notify( *ctx.arbiter, &ctx );
602 }
603 }
604
605 // Simply append to the pending
606 static void __ioarbiter_submit( $io_arbiter & mutex this, $io_context * ctx, __u32 idxs[], __u32 have ) {
607 __cfadbg_print_safe(io, "Kernel I/O : submitting %u from the arbiter to context %u\n", have, ctx->fd);
608
609 /* paranoid */ verify( &this == ctx->arbiter );
610
611 // Mark as pending
612 __atomic_store_n( &ctx->ext_sq.empty, false, __ATOMIC_SEQ_CST );
613
614 // Wake-up the poller
615 post( ctx->sem );
616
617 __cfadbg_print_safe(io, "Kernel I/O : waiting to submit %u\n", have);
618
619 // Wait for our turn to submit
620 wait( ctx->ext_sq.blocked );
621
622 // Submit our indexes
623 __submit(ctx, idxs, have);
624
625 __cfadbg_print_safe(io, "Kernel I/O : %u submitted from arbiter\n", have);
626 }
627
628 static void __ioarbiter_flush( $io_arbiter & mutex this, $io_context * ctx ) {
629 /* paranoid */ verify( &this == ctx->arbiter );
630
631 __STATS__( false, io.flush.external += 1; )
632
633 __revoke( this, ctx );
634
635 __cfadbg_print_safe(io, "Kernel I/O : arbiter flushing\n");
636
637 condition & blcked = ctx->ext_sq.blocked;
638 /* paranoid */ verify( ctx->ext_sq.empty == is_empty( blcked ) );
639 while(!is_empty( blcked )) {
640 signal_block( blcked );
641 }
642
643 ctx->ext_sq.empty = true;
644 }
645
646 void __ioarbiter_register( $io_arbiter & mutex this, $io_context & ctx ) {
647 __cfadbg_print_safe(io, "Kernel I/O : registering new context\n");
648
649 ctx.arbiter = &this;
650
651 // add to available contexts
652 addHead( this.available, ctx );
653
654 // Check if this solves pending allocations
655 if(this.pending.flag) {
656 __ioarbiter_notify( ctx );
657 }
658 }
659
660 void __ioarbiter_unregister( $io_arbiter & mutex this, $io_context & ctx ) {
661 /* paranoid */ verify( &this == ctx.arbiter );
662
663 __revoke( this, &ctx );
664
665 remove( this.available, ctx );
666 }
667#endif
Note: See TracBrowser for help on using the repository browser.