1 | // |
---|
2 | // Cforall Version 1.0.0 Copyright (C) 2020 University of Waterloo |
---|
3 | // |
---|
4 | // The contents of this file are covered under the licence agreement in the |
---|
5 | // file "LICENCE" distributed with Cforall. |
---|
6 | // |
---|
7 | // io.cfa -- |
---|
8 | // |
---|
9 | // Author : Thierry Delisle |
---|
10 | // Created On : Thu Apr 23 17:31:00 2020 |
---|
11 | // Last Modified By : |
---|
12 | // Last Modified On : |
---|
13 | // Update Count : |
---|
14 | // |
---|
15 | |
---|
16 | #define __cforall_thread__ |
---|
17 | |
---|
18 | #if defined(__CFA_DEBUG__) |
---|
19 | // #define __CFA_DEBUG_PRINT_IO__ |
---|
20 | // #define __CFA_DEBUG_PRINT_IO_CORE__ |
---|
21 | #endif |
---|
22 | |
---|
23 | |
---|
24 | #if defined(CFA_HAVE_LINUX_IO_URING_H) |
---|
25 | #include <errno.h> |
---|
26 | #include <signal.h> |
---|
27 | #include <stdint.h> |
---|
28 | #include <string.h> |
---|
29 | #include <unistd.h> |
---|
30 | |
---|
31 | extern "C" { |
---|
32 | #include <sys/syscall.h> |
---|
33 | #include <sys/eventfd.h> |
---|
34 | #include <sys/uio.h> |
---|
35 | |
---|
36 | #include <linux/io_uring.h> |
---|
37 | } |
---|
38 | |
---|
39 | #include "stats.hfa" |
---|
40 | #include "kernel.hfa" |
---|
41 | #include "kernel/fwd.hfa" |
---|
42 | #include "kernel/private.hfa" |
---|
43 | #include "kernel/cluster.hfa" |
---|
44 | #include "io/types.hfa" |
---|
45 | |
---|
46 | __attribute__((unused)) static const char * opcodes[] = { |
---|
47 | "OP_NOP", |
---|
48 | "OP_READV", |
---|
49 | "OP_WRITEV", |
---|
50 | "OP_FSYNC", |
---|
51 | "OP_READ_FIXED", |
---|
52 | "OP_WRITE_FIXED", |
---|
53 | "OP_POLL_ADD", |
---|
54 | "OP_POLL_REMOVE", |
---|
55 | "OP_SYNC_FILE_RANGE", |
---|
56 | "OP_SENDMSG", |
---|
57 | "OP_RECVMSG", |
---|
58 | "OP_TIMEOUT", |
---|
59 | "OP_TIMEOUT_REMOVE", |
---|
60 | "OP_ACCEPT", |
---|
61 | "OP_ASYNC_CANCEL", |
---|
62 | "OP_LINK_TIMEOUT", |
---|
63 | "OP_CONNECT", |
---|
64 | "OP_FALLOCATE", |
---|
65 | "OP_OPENAT", |
---|
66 | "OP_CLOSE", |
---|
67 | "OP_FILES_UPDATE", |
---|
68 | "OP_STATX", |
---|
69 | "OP_READ", |
---|
70 | "OP_WRITE", |
---|
71 | "OP_FADVISE", |
---|
72 | "OP_MADVISE", |
---|
73 | "OP_SEND", |
---|
74 | "OP_RECV", |
---|
75 | "OP_OPENAT2", |
---|
76 | "OP_EPOLL_CTL", |
---|
77 | "OP_SPLICE", |
---|
78 | "OP_PROVIDE_BUFFERS", |
---|
79 | "OP_REMOVE_BUFFERS", |
---|
80 | "OP_TEE", |
---|
81 | "INVALID_OP" |
---|
82 | }; |
---|
83 | |
---|
84 | static io_context$ * __ioarbiter_allocate( io_arbiter$ & this, __u32 idxs[], __u32 want ); |
---|
85 | static void __ioarbiter_submit( io_context$ * , __u32 idxs[], __u32 have, bool lazy ); |
---|
86 | static void __ioarbiter_flush ( io_context$ &, bool kernel ); |
---|
87 | static inline void __ioarbiter_notify( io_context$ & ctx ); |
---|
88 | //============================================================================================= |
---|
89 | // I/O Polling |
---|
90 | //============================================================================================= |
---|
91 | static inline unsigned __flush( struct io_context$ & ); |
---|
92 | static inline __u32 __release_sqes( struct io_context$ & ); |
---|
93 | extern void __kernel_unpark( thread$ * thrd, unpark_hint ); |
---|
94 | |
---|
95 | static inline void __post(oneshot & this, bool kernel, unpark_hint hint) { |
---|
96 | thread$ * t = post( this, false ); |
---|
97 | if(kernel) __kernel_unpark( t, hint ); |
---|
98 | else unpark( t, hint ); |
---|
99 | } |
---|
100 | |
---|
101 | // actual system call of io uring |
---|
102 | // wrap so everything that needs to happen around it is always done |
---|
103 | // i.e., stats, book keeping, sqe reclamation, etc. |
---|
104 | static void ioring_syscsll( struct io_context$ & ctx, unsigned int min_comp, unsigned int flags ) { |
---|
105 | __STATS__( true, io.calls.flush++; ) |
---|
106 | int ret; |
---|
107 | for() { |
---|
108 | // do the system call in a loop, repeat on interrupts |
---|
109 | ret = syscall( __NR_io_uring_enter, ctx.fd, ctx.sq.to_submit, min_comp, flags, (sigset_t *)0p, _NSIG / 8); |
---|
110 | if( ret < 0 ) { |
---|
111 | switch((int)errno) { |
---|
112 | case EINTR: |
---|
113 | continue; |
---|
114 | case EAGAIN: |
---|
115 | case EBUSY: |
---|
116 | // Update statistics |
---|
117 | __STATS__( false, io.calls.errors.busy ++; ) |
---|
118 | return false; |
---|
119 | default: |
---|
120 | abort( "KERNEL ERROR: IO_URING SYSCALL - (%d) %s\n", (int)errno, strerror(errno) ); |
---|
121 | } |
---|
122 | } |
---|
123 | break; |
---|
124 | } |
---|
125 | |
---|
126 | __cfadbg_print_safe(io, "Kernel I/O : %u submitted to io_uring %d\n", ret, ctx.fd); |
---|
127 | __STATS__( true, io.calls.submitted += ret; ) |
---|
128 | /* paranoid */ verify( ctx.sq.to_submit <= *ctx.sq.num ); |
---|
129 | /* paranoid */ verify( ctx.sq.to_submit >= ret ); |
---|
130 | |
---|
131 | // keep track of how many still need submitting |
---|
132 | __atomic_fetch_sub(&ctx.sq.to_submit, ret, __ATOMIC_SEQ_CST); |
---|
133 | |
---|
134 | /* paranoid */ verify( ctx.sq.to_submit <= *ctx.sq.num ); |
---|
135 | |
---|
136 | // Release the consumed SQEs |
---|
137 | __release_sqes( ctx ); |
---|
138 | |
---|
139 | /* paranoid */ verify( ! __preemption_enabled() ); |
---|
140 | |
---|
141 | // mark that there is no pending io left |
---|
142 | __atomic_store_n(&ctx.proc->io.pending, false, __ATOMIC_RELAXED); |
---|
143 | } |
---|
144 | |
---|
145 | // try to acquire an io context for draining, helping means we never *need* to drain, we can always do it later |
---|
146 | static bool try_acquire( io_context$ * ctx ) __attribute__((nonnull(1))) { |
---|
147 | /* paranoid */ verify( ! __preemption_enabled() ); |
---|
148 | /* paranoid */ verify( ready_schedule_islocked() ); |
---|
149 | |
---|
150 | |
---|
151 | { |
---|
152 | // if there is nothing to drain there is no point in acquiring anything |
---|
153 | const __u32 head = *ctx->cq.head; |
---|
154 | const __u32 tail = *ctx->cq.tail; |
---|
155 | |
---|
156 | if(head == tail) return false; |
---|
157 | } |
---|
158 | |
---|
159 | // try a simple spinlock acquire, it's likely there are completions to drain |
---|
160 | if(!__atomic_try_acquire(&ctx->cq.try_lock)) { |
---|
161 | // some other processor already has it |
---|
162 | __STATS__( false, io.calls.locked++; ) |
---|
163 | return false; |
---|
164 | } |
---|
165 | |
---|
166 | // acquired!! |
---|
167 | return true; |
---|
168 | } |
---|
169 | |
---|
170 | // actually drain the completion |
---|
171 | static bool __cfa_do_drain( io_context$ * ctx, cluster * cltr ) __attribute__((nonnull(1, 2))) { |
---|
172 | /* paranoid */ verify( ! __preemption_enabled() ); |
---|
173 | /* paranoid */ verify( ready_schedule_islocked() ); |
---|
174 | /* paranoid */ verify( ctx->cq.try_lock == true ); |
---|
175 | |
---|
176 | // get all the invariants and initial state |
---|
177 | const __u32 mask = *ctx->cq.mask; |
---|
178 | const __u32 num = *ctx->cq.num; |
---|
179 | unsigned long long ts_prev = ctx->cq.ts; |
---|
180 | unsigned long long ts_next; |
---|
181 | |
---|
182 | // We might need to do this multiple times if more events completed than can fit in the queue. |
---|
183 | for() { |
---|
184 | // re-read the head and tail in case it already changed. |
---|
185 | // count the difference between the two |
---|
186 | const __u32 head = *ctx->cq.head; |
---|
187 | const __u32 tail = *ctx->cq.tail; |
---|
188 | const __u32 count = tail - head; |
---|
189 | __STATS__( false, io.calls.drain++; io.calls.completed += count; ) |
---|
190 | |
---|
191 | // for everything between head and tail, drain it |
---|
192 | for(i; count) { |
---|
193 | unsigned idx = (head + i) & mask; |
---|
194 | volatile struct io_uring_cqe & cqe = ctx->cq.cqes[idx]; |
---|
195 | |
---|
196 | /* paranoid */ verify(&cqe); |
---|
197 | |
---|
198 | // find the future in the completion |
---|
199 | struct io_future_t * future = (struct io_future_t *)(uintptr_t)cqe.user_data; |
---|
200 | // __cfadbg_print_safe( io, "Kernel I/O : Syscall completed : cqe %p, result %d for %p\n", &cqe, cqe.res, future ); |
---|
201 | |
---|
202 | // don't directly fulfill the future, preemption is disabled so we need to use kernel_unpark |
---|
203 | __kernel_unpark( fulfil( *future, cqe.res, false ), UNPARK_LOCAL ); |
---|
204 | } |
---|
205 | |
---|
206 | // update the timestamps accordingly |
---|
207 | // keep a local copy so we can update the relaxed copy |
---|
208 | ts_next = ctx->cq.ts = rdtscl(); |
---|
209 | |
---|
210 | // Mark to the kernel that the cqe has been seen |
---|
211 | // Ensure that the kernel only sees the new value of the head index after the CQEs have been read. |
---|
212 | __atomic_store_n( ctx->cq.head, head + count, __ATOMIC_SEQ_CST ); |
---|
213 | ctx->proc->idle_wctx.drain_time = ts_next; |
---|
214 | |
---|
215 | // we finished draining the completions... unless the ring buffer was full and there are more secret completions in the kernel. |
---|
216 | if(likely(count < num)) break; |
---|
217 | |
---|
218 | // the ring buffer was full, there could be more stuff in the kernel. |
---|
219 | ioring_syscsll( *ctx, 0, IORING_ENTER_GETEVENTS); |
---|
220 | } |
---|
221 | |
---|
222 | __cfadbg_print_safe(io, "Kernel I/O : %u completed age %llu\n", count, ts_next); |
---|
223 | /* paranoid */ verify( ready_schedule_islocked() ); |
---|
224 | /* paranoid */ verify( ! __preemption_enabled() ); |
---|
225 | |
---|
226 | // everything is drained, we can release the lock |
---|
227 | __atomic_unlock(&ctx->cq.try_lock); |
---|
228 | |
---|
229 | // update the relaxed timestamp |
---|
230 | touch_tsc( cltr->sched.io.tscs, ctx->cq.id, ts_prev, ts_next, false ); |
---|
231 | |
---|
232 | return true; |
---|
233 | } |
---|
234 | |
---|
235 | // call from a processor to flush |
---|
236 | // contains all the bookkeeping a proc must do, not just the barebones flushing logic |
---|
237 | void __cfa_do_flush( io_context$ & ctx, bool kernel ) { |
---|
238 | /* paranoid */ verify( ! __preemption_enabled() ); |
---|
239 | |
---|
240 | // flush any external requests |
---|
241 | ctx.sq.last_external = false; // clear the external bit, the arbiter will reset it if needed |
---|
242 | __ioarbiter_flush( ctx, kernel ); |
---|
243 | |
---|
244 | // if submitting must be submitted, do the system call |
---|
245 | if(ctx.sq.to_submit != 0) { |
---|
246 | ioring_syscsll(ctx, 0, 0); |
---|
247 | } |
---|
248 | } |
---|
249 | |
---|
250 | // call from a processor to drain |
---|
251 | // contains all the bookkeeping a proc must do, not just the barebones draining logic |
---|
252 | bool __cfa_io_drain( struct processor * proc ) { |
---|
253 | bool local = false; |
---|
254 | bool remote = false; |
---|
255 | |
---|
256 | // make sure no ones creates/destroys io contexts |
---|
257 | ready_schedule_lock(); |
---|
258 | |
---|
259 | cluster * const cltr = proc->cltr; |
---|
260 | io_context$ * const ctx = proc->io.ctx; |
---|
261 | /* paranoid */ verify( cltr ); |
---|
262 | /* paranoid */ verify( ctx ); |
---|
263 | |
---|
264 | // Help if needed |
---|
265 | with(cltr->sched) { |
---|
266 | const size_t ctxs_count = io.count; |
---|
267 | |
---|
268 | /* paranoid */ verify( ready_schedule_islocked() ); |
---|
269 | /* paranoid */ verify( ! __preemption_enabled() ); |
---|
270 | /* paranoid */ verify( active_processor() == proc ); |
---|
271 | /* paranoid */ verify( __shard_factor.io > 0 ); |
---|
272 | /* paranoid */ verify( ctxs_count > 0 ); |
---|
273 | /* paranoid */ verify( ctx->cq.id < ctxs_count ); |
---|
274 | |
---|
275 | const unsigned this_cache = cache_id(cltr, ctx->cq.id / __shard_factor.io); |
---|
276 | const unsigned long long ctsc = rdtscl(); |
---|
277 | |
---|
278 | // only help once every other time |
---|
279 | // pick a target when not helping |
---|
280 | if(proc->io.target == UINT_MAX) { |
---|
281 | uint64_t chaos = __tls_rand(); |
---|
282 | // choose who to help and whether to accept helping far processors |
---|
283 | unsigned ext = chaos & 0xff; |
---|
284 | unsigned other = (chaos >> 8) % (ctxs_count); |
---|
285 | |
---|
286 | // if the processor is on the same cache line or is lucky ( 3 out of 256 odds ) help it |
---|
287 | if(ext < 3 || __atomic_load_n(&caches[other / __shard_factor.io].id, __ATOMIC_RELAXED) == this_cache) { |
---|
288 | proc->io.target = other; |
---|
289 | } |
---|
290 | } |
---|
291 | else { |
---|
292 | // a target was picked last time, help it |
---|
293 | const unsigned target = proc->io.target; |
---|
294 | /* paranoid */ verify( io.tscs[target].t.tv != ULLONG_MAX ); |
---|
295 | // make sure the target hasn't stopped existing since last time |
---|
296 | HELP: if(target < ctxs_count) { |
---|
297 | // calculate it's age and how young it could be before we give ip on helping |
---|
298 | const __readyQ_avg_t cutoff = calc_cutoff(ctsc, ctx->cq.id, ctxs_count, io.data, io.tscs, __shard_factor.io, false); |
---|
299 | const __readyQ_avg_t age = moving_average(ctsc, io.tscs[target].t.tv, io.tscs[target].t.ma, false); |
---|
300 | __cfadbg_print_safe(io, "Kernel I/O: Help attempt on %u from %u, age %'llu vs cutoff %'llu, %s\n", target, ctx->cq.id, age, cutoff, age > cutoff ? "yes" : "no"); |
---|
301 | // is the target older than the cutoff, recall 0 is oldest and bigger ints are younger |
---|
302 | if(age <= cutoff) break HELP; |
---|
303 | |
---|
304 | // attempt to help the submission side |
---|
305 | __cfa_do_flush( *io.data[target], true ); |
---|
306 | |
---|
307 | // attempt to help the completion side |
---|
308 | if(!try_acquire(io.data[target])) break HELP; // already acquire no help needed |
---|
309 | |
---|
310 | // actually help |
---|
311 | if(!__cfa_do_drain( io.data[target], cltr )) break HELP; |
---|
312 | |
---|
313 | // track we did help someone |
---|
314 | remote = true; |
---|
315 | __STATS__( true, io.calls.helped++; ) |
---|
316 | } |
---|
317 | |
---|
318 | // reset the target |
---|
319 | proc->io.target = UINT_MAX; |
---|
320 | } |
---|
321 | } |
---|
322 | |
---|
323 | // Drain the local queue |
---|
324 | if(try_acquire( proc->io.ctx )) { |
---|
325 | local = __cfa_do_drain( proc->io.ctx, cltr ); |
---|
326 | } |
---|
327 | |
---|
328 | /* paranoid */ verify( ready_schedule_islocked() ); |
---|
329 | /* paranoid */ verify( ! __preemption_enabled() ); |
---|
330 | /* paranoid */ verify( active_processor() == proc ); |
---|
331 | |
---|
332 | ready_schedule_unlock(); |
---|
333 | |
---|
334 | // return true if some completion entry, local or remote, was drained |
---|
335 | return local || remote; |
---|
336 | } |
---|
337 | |
---|
338 | |
---|
339 | |
---|
340 | // call from a processor to flush |
---|
341 | // contains all the bookkeeping a proc must do, not just the barebones flushing logic |
---|
342 | bool __cfa_io_flush( struct processor * proc ) { |
---|
343 | /* paranoid */ verify( ! __preemption_enabled() ); |
---|
344 | /* paranoid */ verify( proc ); |
---|
345 | /* paranoid */ verify( proc->io.ctx ); |
---|
346 | |
---|
347 | __cfa_do_flush( *proc->io.ctx, false ); |
---|
348 | |
---|
349 | // also drain since some stuff will immediately complete |
---|
350 | return __cfa_io_drain( proc ); |
---|
351 | } |
---|
352 | |
---|
353 | //============================================================================================= |
---|
354 | // I/O Submissions |
---|
355 | //============================================================================================= |
---|
356 | |
---|
357 | // Submition steps : |
---|
358 | // 1 - Allocate a queue entry. The ring already has memory for all entries but only the ones |
---|
359 | // listed in sq.array are visible by the kernel. For those not listed, the kernel does not |
---|
360 | // offer any assurance that an entry is not being filled by multiple flags. Therefore, we |
---|
361 | // need to write an allocator that allows allocating concurrently. |
---|
362 | // |
---|
363 | // 2 - Actually fill the submit entry, this is the only simple and straightforward step. |
---|
364 | // |
---|
365 | // 3 - Append the entry index to the array and adjust the tail accordingly. This operation |
---|
366 | // needs to arrive to two concensus at the same time: |
---|
367 | // A - The order in which entries are listed in the array: no two threads must pick the |
---|
368 | // same index for their entries |
---|
369 | // B - When can the tail be update for the kernel. EVERY entries in the array between |
---|
370 | // head and tail must be fully filled and shouldn't ever be touched again. |
---|
371 | // |
---|
372 | //============================================================================================= |
---|
373 | // Allocation |
---|
374 | // for user's convenience fill the sqes from the indexes |
---|
375 | static inline void __fill(struct io_uring_sqe * out_sqes[], __u32 want, __u32 idxs[], struct io_context$ * ctx) { |
---|
376 | struct io_uring_sqe * sqes = ctx->sq.sqes; |
---|
377 | for(i; want) { |
---|
378 | // __cfadbg_print_safe(io, "Kernel I/O : filling loop\n"); |
---|
379 | out_sqes[i] = &sqes[idxs[i]]; |
---|
380 | } |
---|
381 | } |
---|
382 | |
---|
383 | // Try to directly allocate from the a given context |
---|
384 | // Not thread-safe |
---|
385 | static inline bool __alloc(struct io_context$ * ctx, __u32 idxs[], __u32 want) { |
---|
386 | __sub_ring_t & sq = ctx->sq; |
---|
387 | const __u32 mask = *sq.mask; |
---|
388 | __u32 fhead = sq.free_ring.head; // get the current head of the queue |
---|
389 | __u32 ftail = sq.free_ring.tail; // get the current tail of the queue |
---|
390 | |
---|
391 | // If we don't have enough sqes, fail |
---|
392 | if((ftail - fhead) < want) { return false; } |
---|
393 | |
---|
394 | // copy all the indexes we want from the available list |
---|
395 | for(i; want) { |
---|
396 | // __cfadbg_print_safe(io, "Kernel I/O : allocating loop\n"); |
---|
397 | idxs[i] = sq.free_ring.array[(fhead + i) & mask]; |
---|
398 | } |
---|
399 | |
---|
400 | // Advance the head to mark the indexes as consumed |
---|
401 | __atomic_store_n(&sq.free_ring.head, fhead + want, __ATOMIC_RELEASE); |
---|
402 | |
---|
403 | // return success |
---|
404 | return true; |
---|
405 | } |
---|
406 | |
---|
407 | // Allocate an submit queue entry. |
---|
408 | // The kernel cannot see these entries until they are submitted, but other threads must be |
---|
409 | // able to see which entries can be used and which are already un used by an other thread |
---|
410 | // for convenience, return both the index and the pointer to the sqe |
---|
411 | // sqe == &sqes[idx] |
---|
412 | struct io_context$ * cfa_io_allocate(struct io_uring_sqe * sqes[], __u32 idxs[], __u32 want) libcfa_public { |
---|
413 | // __cfadbg_print_safe(io, "Kernel I/O : attempting to allocate %u\n", want); |
---|
414 | |
---|
415 | disable_interrupts(); |
---|
416 | struct processor * proc = __cfaabi_tls.this_processor; |
---|
417 | io_context$ * ctx = proc->io.ctx; |
---|
418 | /* paranoid */ verify( __cfaabi_tls.this_processor ); |
---|
419 | /* paranoid */ verify( ctx ); |
---|
420 | |
---|
421 | // __cfadbg_print_safe(io, "Kernel I/O : attempting to fast allocation\n"); |
---|
422 | |
---|
423 | // We can proceed to the fast path |
---|
424 | if( __alloc(ctx, idxs, want) ) { |
---|
425 | // Allocation was successful |
---|
426 | __STATS__( true, io.alloc.fast += 1; ) |
---|
427 | enable_interrupts(); |
---|
428 | |
---|
429 | // __cfadbg_print_safe(io, "Kernel I/O : fast allocation successful from ring %d\n", ctx->fd); |
---|
430 | |
---|
431 | __fill( sqes, want, idxs, ctx ); |
---|
432 | return ctx; |
---|
433 | } |
---|
434 | // The fast path failed, fallback |
---|
435 | __STATS__( true, io.alloc.fail += 1; ) |
---|
436 | |
---|
437 | // Fast path failed, fallback on arbitration |
---|
438 | __STATS__( true, io.alloc.slow += 1; ) |
---|
439 | enable_interrupts(); |
---|
440 | |
---|
441 | io_arbiter$ * ioarb = proc->cltr->io.arbiter; |
---|
442 | /* paranoid */ verify( ioarb ); |
---|
443 | |
---|
444 | // __cfadbg_print_safe(io, "Kernel I/O : falling back on arbiter for allocation\n"); |
---|
445 | |
---|
446 | struct io_context$ * ret = __ioarbiter_allocate(*ioarb, idxs, want); |
---|
447 | |
---|
448 | // __cfadbg_print_safe(io, "Kernel I/O : slow allocation completed from ring %d\n", ret->fd); |
---|
449 | |
---|
450 | __fill( sqes, want, idxs,ret ); |
---|
451 | return ret; |
---|
452 | } |
---|
453 | |
---|
454 | //============================================================================================= |
---|
455 | // submission |
---|
456 | // barebones logic to submit a group of sqes |
---|
457 | static inline void __submit_only( struct io_context$ * ctx, __u32 idxs[], __u32 have, bool lock) { |
---|
458 | if(!lock) |
---|
459 | lock( ctx->ext_sq.lock __cfaabi_dbg_ctx2 ); |
---|
460 | // We can proceed to the fast path |
---|
461 | // Get the right objects |
---|
462 | __sub_ring_t & sq = ctx->sq; |
---|
463 | const __u32 mask = *sq.mask; |
---|
464 | __u32 tail = *sq.kring.tail; |
---|
465 | |
---|
466 | // Add the sqes to the array |
---|
467 | for( i; have ) { |
---|
468 | // __cfadbg_print_safe(io, "Kernel I/O : __submit loop\n"); |
---|
469 | sq.kring.array[ (tail + i) & mask ] = idxs[i]; |
---|
470 | } |
---|
471 | |
---|
472 | // Make the sqes visible to the submitter |
---|
473 | __atomic_store_n(sq.kring.tail, tail + have, __ATOMIC_RELEASE); |
---|
474 | __atomic_fetch_add(&sq.to_submit, have, __ATOMIC_SEQ_CST); |
---|
475 | |
---|
476 | // set the bit to mark things need to be flushed |
---|
477 | __atomic_store_n(&ctx->proc->io.pending, true, __ATOMIC_RELAXED); |
---|
478 | __atomic_store_n(&ctx->proc->io.dirty , true, __ATOMIC_RELAXED); |
---|
479 | |
---|
480 | if(!lock) |
---|
481 | unlock( ctx->ext_sq.lock ); |
---|
482 | } |
---|
483 | |
---|
484 | // submission logic + maybe flushing |
---|
485 | static inline void __submit( struct io_context$ * ctx, __u32 idxs[], __u32 have, bool lazy) { |
---|
486 | __sub_ring_t & sq = ctx->sq; |
---|
487 | __submit_only(ctx, idxs, have, false); |
---|
488 | |
---|
489 | if(sq.to_submit > 30) { |
---|
490 | __tls_stats()->io.flush.full++; |
---|
491 | __cfa_io_flush( ctx->proc ); |
---|
492 | } |
---|
493 | if(!lazy) { |
---|
494 | __tls_stats()->io.flush.eager++; |
---|
495 | __cfa_io_flush( ctx->proc ); |
---|
496 | } |
---|
497 | } |
---|
498 | |
---|
499 | // call from a processor to flush |
---|
500 | // might require arbitration if the thread was migrated after the allocation |
---|
501 | void cfa_io_submit( struct io_context$ * inctx, __u32 idxs[], __u32 have, bool lazy ) __attribute__((nonnull (1))) libcfa_public { |
---|
502 | // __cfadbg_print_safe(io, "Kernel I/O : attempting to submit %u (%s)\n", have, lazy ? "lazy" : "eager"); |
---|
503 | |
---|
504 | disable_interrupts(); |
---|
505 | __STATS__( true, if(!lazy) io.submit.eagr += 1; ) |
---|
506 | struct processor * proc = __cfaabi_tls.this_processor; |
---|
507 | io_context$ * ctx = proc->io.ctx; |
---|
508 | /* paranoid */ verify( __cfaabi_tls.this_processor ); |
---|
509 | /* paranoid */ verify( ctx ); |
---|
510 | |
---|
511 | // Can we proceed to the fast path |
---|
512 | if( ctx == inctx ) // We have the right instance? |
---|
513 | { |
---|
514 | // yes! fast submit |
---|
515 | __submit(ctx, idxs, have, lazy); |
---|
516 | |
---|
517 | // Mark the instance as no longer in-use, re-enable interrupts and return |
---|
518 | __STATS__( true, io.submit.fast += 1; ) |
---|
519 | enable_interrupts(); |
---|
520 | |
---|
521 | // __cfadbg_print_safe(io, "Kernel I/O : submitted on fast path\n"); |
---|
522 | return; |
---|
523 | } |
---|
524 | |
---|
525 | // Fast path failed, fallback on arbitration |
---|
526 | __STATS__( true, io.submit.slow += 1; ) |
---|
527 | enable_interrupts(); |
---|
528 | |
---|
529 | // __cfadbg_print_safe(io, "Kernel I/O : falling back on arbiter for submission\n"); |
---|
530 | |
---|
531 | __ioarbiter_submit(inctx, idxs, have, lazy); |
---|
532 | } |
---|
533 | |
---|
534 | //============================================================================================= |
---|
535 | // Flushing |
---|
536 | // Go through the ring's submit queue and release everything that has already been consumed |
---|
537 | // by io_uring |
---|
538 | // This cannot be done by multiple threads |
---|
539 | static __u32 __release_sqes( struct io_context$ & ctx ) { |
---|
540 | const __u32 mask = *ctx.sq.mask; |
---|
541 | |
---|
542 | __attribute__((unused)) |
---|
543 | __u32 ctail = *ctx.sq.kring.tail; // get the current tail of the queue |
---|
544 | __u32 chead = *ctx.sq.kring.head; // get the current head of the queue |
---|
545 | __u32 phead = ctx.sq.kring.released; // get the head the last time we were here |
---|
546 | |
---|
547 | __u32 ftail = ctx.sq.free_ring.tail; // get the current tail of the queue |
---|
548 | |
---|
549 | // the 3 fields are organized like this diagram |
---|
550 | // except it's are ring |
---|
551 | // ---+--------+--------+---- |
---|
552 | // ---+--------+--------+---- |
---|
553 | // ^ ^ ^ |
---|
554 | // phead chead ctail |
---|
555 | |
---|
556 | // make sure ctail doesn't wrap around and reach phead |
---|
557 | /* paranoid */ verify( |
---|
558 | (ctail >= chead && chead >= phead) |
---|
559 | || (chead >= phead && phead >= ctail) |
---|
560 | || (phead >= ctail && ctail >= chead) |
---|
561 | ); |
---|
562 | |
---|
563 | // find the range we need to clear |
---|
564 | __u32 count = chead - phead; |
---|
565 | |
---|
566 | if(count == 0) { |
---|
567 | return 0; |
---|
568 | } |
---|
569 | |
---|
570 | // We acquired an previous-head/current-head range |
---|
571 | // go through the range and release the sqes |
---|
572 | for( i; count ) { |
---|
573 | // __cfadbg_print_safe(io, "Kernel I/O : release loop\n"); |
---|
574 | __u32 idx = ctx.sq.kring.array[ (phead + i) & mask ]; |
---|
575 | ctx.sq.free_ring.array[ (ftail + i) & mask ] = idx; |
---|
576 | } |
---|
577 | |
---|
578 | ctx.sq.kring.released = chead; // note up to were we processed |
---|
579 | __atomic_store_n(&ctx.sq.free_ring.tail, ftail + count, __ATOMIC_SEQ_CST); |
---|
580 | |
---|
581 | // notify the allocator that new allocations can be made |
---|
582 | __ioarbiter_notify(ctx); |
---|
583 | |
---|
584 | return count; |
---|
585 | } |
---|
586 | |
---|
587 | //============================================================================================= |
---|
588 | // I/O Arbiter |
---|
589 | //============================================================================================= |
---|
590 | static inline bool enqueue(__outstanding_io_queue & queue, __outstanding_io & item) { |
---|
591 | bool was_empty; |
---|
592 | |
---|
593 | // Lock the list, it's not thread safe |
---|
594 | lock( queue.lock __cfaabi_dbg_ctx2 ); |
---|
595 | { |
---|
596 | was_empty = empty(queue.queue); |
---|
597 | |
---|
598 | // Add our request to the list |
---|
599 | add( queue.queue, item ); |
---|
600 | |
---|
601 | // Mark as pending |
---|
602 | __atomic_store_n( &queue.empty, false, __ATOMIC_SEQ_CST ); |
---|
603 | } |
---|
604 | unlock( queue.lock ); |
---|
605 | |
---|
606 | return was_empty; |
---|
607 | } |
---|
608 | |
---|
609 | static inline bool empty(__outstanding_io_queue & queue ) { |
---|
610 | return __atomic_load_n( &queue.empty, __ATOMIC_SEQ_CST); |
---|
611 | } |
---|
612 | |
---|
613 | static io_context$ * __ioarbiter_allocate( io_arbiter$ & this, __u32 idxs[], __u32 want ) { |
---|
614 | // __cfadbg_print_safe(io, "Kernel I/O : arbiter allocating\n"); |
---|
615 | |
---|
616 | __STATS__( false, io.alloc.block += 1; ) |
---|
617 | |
---|
618 | // No one has any resources left, wait for something to finish |
---|
619 | // We need to add ourself to a list of pending allocs and wait for an answer |
---|
620 | __pending_alloc pa; |
---|
621 | pa.idxs = idxs; |
---|
622 | pa.want = want; |
---|
623 | |
---|
624 | enqueue(this.pending, (__outstanding_io&)pa); |
---|
625 | |
---|
626 | wait( pa.waitctx ); |
---|
627 | |
---|
628 | return pa.ctx; |
---|
629 | |
---|
630 | } |
---|
631 | |
---|
632 | // notify the arbiter that new allocations are available |
---|
633 | static void __ioarbiter_notify( io_arbiter$ & this, io_context$ * ctx ) { |
---|
634 | /* paranoid */ verify( !empty(this.pending.queue) ); |
---|
635 | /* paranoid */ verify( __preemption_enabled() ); |
---|
636 | |
---|
637 | // mutual exclusion is needed |
---|
638 | lock( this.pending.lock __cfaabi_dbg_ctx2 ); |
---|
639 | { |
---|
640 | __cfadbg_print_safe(io, "Kernel I/O : notifying\n"); |
---|
641 | |
---|
642 | // as long as there are pending allocations try to satisfy them |
---|
643 | // for simplicity do it in FIFO order |
---|
644 | while( !empty(this.pending.queue) ) { |
---|
645 | // get first pending allocs |
---|
646 | __u32 have = ctx->sq.free_ring.tail - ctx->sq.free_ring.head; |
---|
647 | __pending_alloc & pa = (__pending_alloc&)head( this.pending.queue ); |
---|
648 | |
---|
649 | // check if we have enough to satisfy the request |
---|
650 | if( have > pa.want ) goto DONE; |
---|
651 | |
---|
652 | // if there are enough allocations it means we can drop the request |
---|
653 | drop( this.pending.queue ); |
---|
654 | |
---|
655 | /* paranoid */__attribute__((unused)) bool ret = |
---|
656 | |
---|
657 | // actually do the alloc |
---|
658 | __alloc(ctx, pa.idxs, pa.want); |
---|
659 | |
---|
660 | /* paranoid */ verify( ret ); |
---|
661 | |
---|
662 | // write out which context statisfied the request and post |
---|
663 | // this |
---|
664 | pa.ctx = ctx; |
---|
665 | post( pa.waitctx ); |
---|
666 | } |
---|
667 | |
---|
668 | this.pending.empty = true; |
---|
669 | DONE:; |
---|
670 | } |
---|
671 | unlock( this.pending.lock ); |
---|
672 | |
---|
673 | /* paranoid */ verify( __preemption_enabled() ); |
---|
674 | } |
---|
675 | |
---|
676 | // short hand to avoid the mutual exclusion of the pending is empty regardless |
---|
677 | static void __ioarbiter_notify( io_context$ & ctx ) { |
---|
678 | if(empty( ctx.arbiter->pending )) return; |
---|
679 | __ioarbiter_notify( *ctx.arbiter, &ctx ); |
---|
680 | } |
---|
681 | |
---|
682 | // Submit from outside the local processor: append to the outstanding list |
---|
683 | static void __ioarbiter_submit( io_context$ * ctx, __u32 idxs[], __u32 have, bool lazy ) { |
---|
684 | __cfadbg_print_safe(io, "Kernel I/O : submitting %u from the arbiter to context %u\n", have, ctx->fd); |
---|
685 | |
---|
686 | __cfadbg_print_safe(io, "Kernel I/O : waiting to submit %u\n", have); |
---|
687 | |
---|
688 | // create the intrusive object to append |
---|
689 | __external_io ei; |
---|
690 | ei.idxs = idxs; |
---|
691 | ei.have = have; |
---|
692 | ei.lazy = lazy; |
---|
693 | |
---|
694 | // enqueue the io |
---|
695 | bool we = enqueue(ctx->ext_sq, (__outstanding_io&)ei); |
---|
696 | |
---|
697 | // mark pending |
---|
698 | __atomic_store_n(&ctx->proc->io.pending, true, __ATOMIC_SEQ_CST); |
---|
699 | |
---|
700 | // if this is the first to be enqueued, signal the processor in an attempt to speed up flushing |
---|
701 | // if it's not the first enqueue, a signal is already in transit |
---|
702 | if( we ) { |
---|
703 | sigval_t value = { PREEMPT_IO }; |
---|
704 | __cfaabi_pthread_sigqueue(ctx->proc->kernel_thread, SIGUSR1, value); |
---|
705 | __STATS__( false, io.flush.signal += 1; ) |
---|
706 | } |
---|
707 | __STATS__( false, io.submit.extr += 1; ) |
---|
708 | |
---|
709 | // to avoid dynamic allocation/memory reclamation headaches, wait for it to have been submitted |
---|
710 | wait( ei.waitctx ); |
---|
711 | |
---|
712 | __cfadbg_print_safe(io, "Kernel I/O : %u submitted from arbiter\n", have); |
---|
713 | } |
---|
714 | |
---|
715 | // flush the io arbiter: move all external io operations to the submission ring |
---|
716 | static void __ioarbiter_flush( io_context$ & ctx, bool kernel ) { |
---|
717 | // if there are no external operations just return |
---|
718 | if(empty( ctx.ext_sq )) return; |
---|
719 | |
---|
720 | // stats and logs |
---|
721 | __STATS__( false, io.flush.external += 1; ) |
---|
722 | __cfadbg_print_safe(io, "Kernel I/O : arbiter flushing\n"); |
---|
723 | |
---|
724 | // this can happen from multiple processors, mutual exclusion is needed |
---|
725 | lock( ctx.ext_sq.lock __cfaabi_dbg_ctx2 ); |
---|
726 | { |
---|
727 | // pop each operation one at a time. |
---|
728 | // There is no wait morphing because of the io sq ring |
---|
729 | while( !empty(ctx.ext_sq.queue) ) { |
---|
730 | // drop the element from the queue |
---|
731 | __external_io & ei = (__external_io&)drop( ctx.ext_sq.queue ); |
---|
732 | |
---|
733 | // submit it |
---|
734 | __submit_only(&ctx, ei.idxs, ei.have, true); |
---|
735 | |
---|
736 | // wake the thread that was waiting on it |
---|
737 | // since this can both be called from kernel and user, check the flag before posting |
---|
738 | __post( ei.waitctx, kernel, UNPARK_LOCAL ); |
---|
739 | } |
---|
740 | |
---|
741 | // mark the queue as empty |
---|
742 | ctx.ext_sq.empty = true; |
---|
743 | ctx.sq.last_external = true; |
---|
744 | } |
---|
745 | unlock(ctx.ext_sq.lock ); |
---|
746 | } |
---|
747 | |
---|
748 | extern "C" { |
---|
749 | // debug functions used for gdb |
---|
750 | // io_uring doesn't yet support gdb soe the kernel-shared data structures aren't viewable in gdb |
---|
751 | // these functions read the data that gdb can't and should be removed once the support is added |
---|
752 | static __u32 __cfagdb_cq_head( io_context$ * ctx ) __attribute__((nonnull(1),used,noinline)) { return *ctx->cq.head; } |
---|
753 | static __u32 __cfagdb_cq_tail( io_context$ * ctx ) __attribute__((nonnull(1),used,noinline)) { return *ctx->cq.tail; } |
---|
754 | static __u32 __cfagdb_cq_mask( io_context$ * ctx ) __attribute__((nonnull(1),used,noinline)) { return *ctx->cq.mask; } |
---|
755 | static __u32 __cfagdb_sq_head( io_context$ * ctx ) __attribute__((nonnull(1),used,noinline)) { return *ctx->sq.kring.head; } |
---|
756 | static __u32 __cfagdb_sq_tail( io_context$ * ctx ) __attribute__((nonnull(1),used,noinline)) { return *ctx->sq.kring.tail; } |
---|
757 | static __u32 __cfagdb_sq_mask( io_context$ * ctx ) __attribute__((nonnull(1),used,noinline)) { return *ctx->sq.mask; } |
---|
758 | |
---|
759 | // fancier version that reads an sqe and copies it out. |
---|
760 | static struct io_uring_sqe __cfagdb_sq_at( io_context$ * ctx, __u32 at ) __attribute__((nonnull(1),used,noinline)) { |
---|
761 | __u32 ax = at & *ctx->sq.mask; |
---|
762 | __u32 ix = ctx->sq.kring.array[ax]; |
---|
763 | return ctx->sq.sqes[ix]; |
---|
764 | } |
---|
765 | } |
---|
766 | #endif |
---|