source: libcfa/src/concurrency/io.cfa@ 2377ca2

ADT ast-experimental enum pthread-emulation qualifiedEnum
Last change on this file since 2377ca2 was 54c1196, checked in by Thierry Delisle <tdelisle@…>, 4 years ago

Added io helping stats

  • Property mode set to 100644
File size: 19.8 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2020 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// io.cfa --
8//
9// Author : Thierry Delisle
10// Created On : Thu Apr 23 17:31:00 2020
11// Last Modified By :
12// Last Modified On :
13// Update Count :
14//
15
16#define __cforall_thread__
17#define _GNU_SOURCE
18
19#if defined(__CFA_DEBUG__)
20 // #define __CFA_DEBUG_PRINT_IO__
21 // #define __CFA_DEBUG_PRINT_IO_CORE__
22#endif
23
24
25#if defined(CFA_HAVE_LINUX_IO_URING_H)
26 #include <errno.h>
27 #include <signal.h>
28 #include <stdint.h>
29 #include <string.h>
30 #include <unistd.h>
31
32 extern "C" {
33 #include <sys/syscall.h>
34 #include <sys/eventfd.h>
35 #include <sys/uio.h>
36
37 #include <linux/io_uring.h>
38 }
39
40 #include "stats.hfa"
41 #include "kernel.hfa"
42 #include "kernel/fwd.hfa"
43 #include "kernel/private.hfa"
44 #include "kernel/cluster.hfa"
45 #include "io/types.hfa"
46
47 __attribute__((unused)) static const char * opcodes[] = {
48 "OP_NOP",
49 "OP_READV",
50 "OP_WRITEV",
51 "OP_FSYNC",
52 "OP_READ_FIXED",
53 "OP_WRITE_FIXED",
54 "OP_POLL_ADD",
55 "OP_POLL_REMOVE",
56 "OP_SYNC_FILE_RANGE",
57 "OP_SENDMSG",
58 "OP_RECVMSG",
59 "OP_TIMEOUT",
60 "OP_TIMEOUT_REMOVE",
61 "OP_ACCEPT",
62 "OP_ASYNC_CANCEL",
63 "OP_LINK_TIMEOUT",
64 "OP_CONNECT",
65 "OP_FALLOCATE",
66 "OP_OPENAT",
67 "OP_CLOSE",
68 "OP_FILES_UPDATE",
69 "OP_STATX",
70 "OP_READ",
71 "OP_WRITE",
72 "OP_FADVISE",
73 "OP_MADVISE",
74 "OP_SEND",
75 "OP_RECV",
76 "OP_OPENAT2",
77 "OP_EPOLL_CTL",
78 "OP_SPLICE",
79 "OP_PROVIDE_BUFFERS",
80 "OP_REMOVE_BUFFERS",
81 "OP_TEE",
82 "INVALID_OP"
83 };
84
85 static $io_context * __ioarbiter_allocate( $io_arbiter & this, __u32 idxs[], __u32 want );
86 static void __ioarbiter_submit( $io_context * , __u32 idxs[], __u32 have, bool lazy );
87 static void __ioarbiter_flush ( $io_context & );
88 static inline void __ioarbiter_notify( $io_context & ctx );
89//=============================================================================================
90// I/O Polling
91//=============================================================================================
92 static inline unsigned __flush( struct $io_context & );
93 static inline __u32 __release_sqes( struct $io_context & );
94 extern void __kernel_unpark( thread$ * thrd, unpark_hint );
95
96 static bool __cfa_do_drain( $io_context * ctx, cluster * cltr ) {
97 /* paranoid */ verify( ! __preemption_enabled() );
98 /* paranoid */ verify( ready_schedule_islocked() );
99 /* paranoid */ verify( ctx );
100
101 const __u32 mask = *ctx->cq.mask;
102
103
104 {
105 const __u32 head = *ctx->cq.head;
106 const __u32 tail = *ctx->cq.tail;
107
108 if(head == tail) return false;
109 }
110
111 // Drain the queue
112 if(!__atomic_try_acquire(&ctx->cq.lock)) {
113 __STATS__( false, io.calls.locked++; )
114 return false;
115 }
116
117 unsigned long long ts_prev = ctx->cq.ts;
118
119 // re-read the head and tail in case it already changed.
120 const __u32 head = *ctx->cq.head;
121 const __u32 tail = *ctx->cq.tail;
122 const __u32 count = tail - head;
123 __STATS__( false, io.calls.drain++; io.calls.completed += count; )
124
125 for(i; count) {
126 unsigned idx = (head + i) & mask;
127 volatile struct io_uring_cqe & cqe = ctx->cq.cqes[idx];
128
129 /* paranoid */ verify(&cqe);
130
131 struct io_future_t * future = (struct io_future_t *)(uintptr_t)cqe.user_data;
132 __cfadbg_print_safe( io, "Kernel I/O : Syscall completed : cqe %p, result %d for %p\n", &cqe, cqe.res, future );
133
134 __kernel_unpark( fulfil( *future, cqe.res, false ), UNPARK_LOCAL );
135 }
136
137 __cfadbg_print_safe(io, "Kernel I/O : %u completed\n", count);
138 unsigned long long ts_next = ctx->cq.ts = rdtscl();
139
140 // Mark to the kernel that the cqe has been seen
141 // Ensure that the kernel only sees the new value of the head index after the CQEs have been read.
142 __atomic_store_n( ctx->cq.head, head + count, __ATOMIC_SEQ_CST );
143
144 /* paranoid */ verify( ready_schedule_islocked() );
145 /* paranoid */ verify( ! __preemption_enabled() );
146
147 __atomic_unlock(&ctx->cq.lock);
148
149 touch_tsc( cltr->sched.io.tscs, ctx->cq.id, ts_prev, ts_next );
150
151 return true;
152 }
153
154 bool __cfa_io_drain( processor * proc ) {
155 bool local = false;
156 bool remote = false;
157
158 cluster * const cltr = proc->cltr;
159 $io_context * const ctx = proc->io.ctx;
160 /* paranoid */ verify( cltr );
161 /* paranoid */ verify( ctx );
162
163 with(cltr->sched) {
164 const size_t ctxs_count = io.count;
165
166 /* paranoid */ verify( ready_schedule_islocked() );
167 /* paranoid */ verify( ! __preemption_enabled() );
168 /* paranoid */ verify( active_processor() == proc );
169 /* paranoid */ verify( __shard_factor.io > 0 );
170 /* paranoid */ verify( ctxs_count > 0 );
171 /* paranoid */ verify( ctx->cq.id < ctxs_count );
172
173 const unsigned this_cache = cache_id(cltr, ctx->cq.id / __shard_factor.io);
174 const unsigned long long ctsc = rdtscl();
175
176 if(proc->io.target == MAX) {
177 uint64_t chaos = __tls_rand();
178 unsigned ext = chaos & 0xff;
179 unsigned other = (chaos >> 8) % (ctxs_count);
180
181 if(ext < 3 || __atomic_load_n(&caches[other / __shard_factor.io].id, __ATOMIC_RELAXED) == this_cache) {
182 proc->io.target = other;
183 }
184 }
185 else {
186 const unsigned target = proc->io.target;
187 /* paranoid */ verify( io.tscs[target].tv != MAX );
188 if(target < ctxs_count) {
189 const unsigned long long cutoff = calc_cutoff(ctsc, ctx->cq.id, ctxs_count, io.data, io.tscs, __shard_factor.io);
190 const unsigned long long age = moving_average(ctsc, io.tscs[target].tv, io.tscs[target].ma);
191 // __cfadbg_print_safe(ready_queue, "Kernel : Help attempt on %u from %u, age %'llu vs cutoff %'llu, %s\n", target, this, age, cutoff, age > cutoff ? "yes" : "no");
192 if(age > cutoff) {
193 remote = __cfa_do_drain( io.data[target], cltr );
194 if(remote) __STATS__( false, io.calls.helped++; )
195 }
196 }
197 proc->io.target = MAX;
198 }
199 }
200
201
202 // Drain the local queue
203 local = __cfa_do_drain( proc->io.ctx, cltr );
204
205 /* paranoid */ verify( ready_schedule_islocked() );
206 /* paranoid */ verify( ! __preemption_enabled() );
207 /* paranoid */ verify( active_processor() == proc );
208 return local || remote;
209 }
210
211 bool __cfa_io_flush( processor * proc, int min_comp ) {
212 /* paranoid */ verify( ! __preemption_enabled() );
213 /* paranoid */ verify( proc );
214 /* paranoid */ verify( proc->io.ctx );
215
216 cluster * cltr = proc->cltr;
217 $io_context & ctx = *proc->io.ctx;
218
219 __ioarbiter_flush( ctx );
220
221 if(ctx.sq.to_submit != 0 || min_comp > 0) {
222
223 __STATS__( true, io.calls.flush++; )
224 int ret = syscall( __NR_io_uring_enter, ctx.fd, ctx.sq.to_submit, min_comp, min_comp > 0 ? IORING_ENTER_GETEVENTS : 0, (sigset_t *)0p, _NSIG / 8);
225 if( ret < 0 ) {
226 switch((int)errno) {
227 case EAGAIN:
228 case EINTR:
229 case EBUSY:
230 // Update statistics
231 __STATS__( false, io.calls.errors.busy ++; )
232 return false;
233 default:
234 abort( "KERNEL ERROR: IO_URING SYSCALL - (%d) %s\n", (int)errno, strerror(errno) );
235 }
236 }
237
238 __cfadbg_print_safe(io, "Kernel I/O : %u submitted to io_uring %d\n", ret, ctx.fd);
239 __STATS__( true, io.calls.submitted += ret; )
240 /* paranoid */ verify( ctx.sq.to_submit <= *ctx.sq.num );
241 /* paranoid */ verify( ctx.sq.to_submit >= ret );
242
243 ctx.sq.to_submit -= ret;
244
245 /* paranoid */ verify( ctx.sq.to_submit <= *ctx.sq.num );
246
247 // Release the consumed SQEs
248 __release_sqes( ctx );
249
250 /* paranoid */ verify( ! __preemption_enabled() );
251
252 __atomic_store_n(&ctx.proc->io.pending, false, __ATOMIC_RELAXED);
253 }
254
255 ready_schedule_lock();
256 bool ret = __cfa_io_drain( proc );
257 ready_schedule_unlock();
258 return ret;
259 }
260
261//=============================================================================================
262// I/O Submissions
263//=============================================================================================
264
265// Submition steps :
266// 1 - Allocate a queue entry. The ring already has memory for all entries but only the ones
267// listed in sq.array are visible by the kernel. For those not listed, the kernel does not
268// offer any assurance that an entry is not being filled by multiple flags. Therefore, we
269// need to write an allocator that allows allocating concurrently.
270//
271// 2 - Actually fill the submit entry, this is the only simple and straightforward step.
272//
273// 3 - Append the entry index to the array and adjust the tail accordingly. This operation
274// needs to arrive to two concensus at the same time:
275// A - The order in which entries are listed in the array: no two threads must pick the
276// same index for their entries
277// B - When can the tail be update for the kernel. EVERY entries in the array between
278// head and tail must be fully filled and shouldn't ever be touched again.
279//
280 //=============================================================================================
281 // Allocation
282 // for user's convenience fill the sqes from the indexes
283 static inline void __fill(struct io_uring_sqe * out_sqes[], __u32 want, __u32 idxs[], struct $io_context * ctx) {
284 struct io_uring_sqe * sqes = ctx->sq.sqes;
285 for(i; want) {
286 __cfadbg_print_safe(io, "Kernel I/O : filling loop\n");
287 out_sqes[i] = &sqes[idxs[i]];
288 }
289 }
290
291 // Try to directly allocate from the a given context
292 // Not thread-safe
293 static inline bool __alloc(struct $io_context * ctx, __u32 idxs[], __u32 want) {
294 __sub_ring_t & sq = ctx->sq;
295 const __u32 mask = *sq.mask;
296 __u32 fhead = sq.free_ring.head; // get the current head of the queue
297 __u32 ftail = sq.free_ring.tail; // get the current tail of the queue
298
299 // If we don't have enough sqes, fail
300 if((ftail - fhead) < want) { return false; }
301
302 // copy all the indexes we want from the available list
303 for(i; want) {
304 __cfadbg_print_safe(io, "Kernel I/O : allocating loop\n");
305 idxs[i] = sq.free_ring.array[(fhead + i) & mask];
306 }
307
308 // Advance the head to mark the indexes as consumed
309 __atomic_store_n(&sq.free_ring.head, fhead + want, __ATOMIC_RELEASE);
310
311 // return success
312 return true;
313 }
314
315 // Allocate an submit queue entry.
316 // The kernel cannot see these entries until they are submitted, but other threads must be
317 // able to see which entries can be used and which are already un used by an other thread
318 // for convenience, return both the index and the pointer to the sqe
319 // sqe == &sqes[idx]
320 struct $io_context * cfa_io_allocate(struct io_uring_sqe * sqes[], __u32 idxs[], __u32 want) {
321 __cfadbg_print_safe(io, "Kernel I/O : attempting to allocate %u\n", want);
322
323 disable_interrupts();
324 processor * proc = __cfaabi_tls.this_processor;
325 $io_context * ctx = proc->io.ctx;
326 /* paranoid */ verify( __cfaabi_tls.this_processor );
327 /* paranoid */ verify( ctx );
328
329 __cfadbg_print_safe(io, "Kernel I/O : attempting to fast allocation\n");
330
331 // We can proceed to the fast path
332 if( __alloc(ctx, idxs, want) ) {
333 // Allocation was successful
334 __STATS__( true, io.alloc.fast += 1; )
335 enable_interrupts();
336
337 __cfadbg_print_safe(io, "Kernel I/O : fast allocation successful from ring %d\n", ctx->fd);
338
339 __fill( sqes, want, idxs, ctx );
340 return ctx;
341 }
342 // The fast path failed, fallback
343 __STATS__( true, io.alloc.fail += 1; )
344
345 // Fast path failed, fallback on arbitration
346 __STATS__( true, io.alloc.slow += 1; )
347 enable_interrupts();
348
349 $io_arbiter * ioarb = proc->cltr->io.arbiter;
350 /* paranoid */ verify( ioarb );
351
352 __cfadbg_print_safe(io, "Kernel I/O : falling back on arbiter for allocation\n");
353
354 struct $io_context * ret = __ioarbiter_allocate(*ioarb, idxs, want);
355
356 __cfadbg_print_safe(io, "Kernel I/O : slow allocation completed from ring %d\n", ret->fd);
357
358 __fill( sqes, want, idxs,ret );
359 return ret;
360 }
361
362 //=============================================================================================
363 // submission
364 static inline void __submit_only( struct $io_context * ctx, __u32 idxs[], __u32 have) {
365 // We can proceed to the fast path
366 // Get the right objects
367 __sub_ring_t & sq = ctx->sq;
368 const __u32 mask = *sq.mask;
369 __u32 tail = *sq.kring.tail;
370
371 // Add the sqes to the array
372 for( i; have ) {
373 __cfadbg_print_safe(io, "Kernel I/O : __submit loop\n");
374 sq.kring.array[ (tail + i) & mask ] = idxs[i];
375 }
376
377 // Make the sqes visible to the submitter
378 __atomic_store_n(sq.kring.tail, tail + have, __ATOMIC_RELEASE);
379 sq.to_submit += have;
380
381 __atomic_store_n(&ctx->proc->io.pending, true, __ATOMIC_RELAXED);
382 __atomic_store_n(&ctx->proc->io.dirty , true, __ATOMIC_RELAXED);
383 }
384
385 static inline void __submit( struct $io_context * ctx, __u32 idxs[], __u32 have, bool lazy) {
386 __sub_ring_t & sq = ctx->sq;
387 __submit_only(ctx, idxs, have);
388
389 if(sq.to_submit > 30) {
390 __tls_stats()->io.flush.full++;
391 __cfa_io_flush( ctx->proc, 0 );
392 }
393 if(!lazy) {
394 __tls_stats()->io.flush.eager++;
395 __cfa_io_flush( ctx->proc, 0 );
396 }
397 }
398
399 void cfa_io_submit( struct $io_context * inctx, __u32 idxs[], __u32 have, bool lazy ) __attribute__((nonnull (1))) {
400 __cfadbg_print_safe(io, "Kernel I/O : attempting to submit %u (%s)\n", have, lazy ? "lazy" : "eager");
401
402 disable_interrupts();
403 processor * proc = __cfaabi_tls.this_processor;
404 $io_context * ctx = proc->io.ctx;
405 /* paranoid */ verify( __cfaabi_tls.this_processor );
406 /* paranoid */ verify( ctx );
407
408 // Can we proceed to the fast path
409 if( ctx == inctx ) // We have the right instance?
410 {
411 __submit(ctx, idxs, have, lazy);
412
413 // Mark the instance as no longer in-use, re-enable interrupts and return
414 __STATS__( true, io.submit.fast += 1; )
415 enable_interrupts();
416
417 __cfadbg_print_safe(io, "Kernel I/O : submitted on fast path\n");
418 return;
419 }
420
421 // Fast path failed, fallback on arbitration
422 __STATS__( true, io.submit.slow += 1; )
423 enable_interrupts();
424
425 __cfadbg_print_safe(io, "Kernel I/O : falling back on arbiter for submission\n");
426
427 __ioarbiter_submit(inctx, idxs, have, lazy);
428 }
429
430 //=============================================================================================
431 // Flushing
432 // Go through the ring's submit queue and release everything that has already been consumed
433 // by io_uring
434 // This cannot be done by multiple threads
435 static __u32 __release_sqes( struct $io_context & ctx ) {
436 const __u32 mask = *ctx.sq.mask;
437
438 __attribute__((unused))
439 __u32 ctail = *ctx.sq.kring.tail; // get the current tail of the queue
440 __u32 chead = *ctx.sq.kring.head; // get the current head of the queue
441 __u32 phead = ctx.sq.kring.released; // get the head the last time we were here
442
443 __u32 ftail = ctx.sq.free_ring.tail; // get the current tail of the queue
444
445 // the 3 fields are organized like this diagram
446 // except it's are ring
447 // ---+--------+--------+----
448 // ---+--------+--------+----
449 // ^ ^ ^
450 // phead chead ctail
451
452 // make sure ctail doesn't wrap around and reach phead
453 /* paranoid */ verify(
454 (ctail >= chead && chead >= phead)
455 || (chead >= phead && phead >= ctail)
456 || (phead >= ctail && ctail >= chead)
457 );
458
459 // find the range we need to clear
460 __u32 count = chead - phead;
461
462 if(count == 0) {
463 return 0;
464 }
465
466 // We acquired an previous-head/current-head range
467 // go through the range and release the sqes
468 for( i; count ) {
469 __cfadbg_print_safe(io, "Kernel I/O : release loop\n");
470 __u32 idx = ctx.sq.kring.array[ (phead + i) & mask ];
471 ctx.sq.free_ring.array[ (ftail + i) & mask ] = idx;
472 }
473
474 ctx.sq.kring.released = chead; // note up to were we processed
475 __atomic_store_n(&ctx.sq.free_ring.tail, ftail + count, __ATOMIC_SEQ_CST);
476
477 __ioarbiter_notify(ctx);
478
479 return count;
480 }
481
482//=============================================================================================
483// I/O Arbiter
484//=============================================================================================
485 static inline bool enqueue(__outstanding_io_queue & queue, __outstanding_io & item) {
486 bool was_empty;
487
488 // Lock the list, it's not thread safe
489 lock( queue.lock __cfaabi_dbg_ctx2 );
490 {
491 was_empty = empty(queue.queue);
492
493 // Add our request to the list
494 add( queue.queue, item );
495
496 // Mark as pending
497 __atomic_store_n( &queue.empty, false, __ATOMIC_SEQ_CST );
498 }
499 unlock( queue.lock );
500
501 return was_empty;
502 }
503
504 static inline bool empty(__outstanding_io_queue & queue ) {
505 return __atomic_load_n( &queue.empty, __ATOMIC_SEQ_CST);
506 }
507
508 static $io_context * __ioarbiter_allocate( $io_arbiter & this, __u32 idxs[], __u32 want ) {
509 __cfadbg_print_safe(io, "Kernel I/O : arbiter allocating\n");
510
511 __STATS__( false, io.alloc.block += 1; )
512
513 // No one has any resources left, wait for something to finish
514 // We need to add ourself to a list of pending allocs and wait for an answer
515 __pending_alloc pa;
516 pa.idxs = idxs;
517 pa.want = want;
518
519 enqueue(this.pending, (__outstanding_io&)pa);
520
521 wait( pa.sem );
522
523 return pa.ctx;
524
525 }
526
527 static void __ioarbiter_notify( $io_arbiter & this, $io_context * ctx ) {
528 /* paranoid */ verify( !empty(this.pending.queue) );
529
530 lock( this.pending.lock __cfaabi_dbg_ctx2 );
531 {
532 while( !empty(this.pending.queue) ) {
533 __cfadbg_print_safe(io, "Kernel I/O : notifying\n");
534 __u32 have = ctx->sq.free_ring.tail - ctx->sq.free_ring.head;
535 __pending_alloc & pa = (__pending_alloc&)head( this.pending.queue );
536
537 if( have > pa.want ) goto DONE;
538 drop( this.pending.queue );
539
540 /* paranoid */__attribute__((unused)) bool ret =
541
542 __alloc(ctx, pa.idxs, pa.want);
543
544 /* paranoid */ verify( ret );
545
546 pa.ctx = ctx;
547
548 post( pa.sem );
549 }
550
551 this.pending.empty = true;
552 DONE:;
553 }
554 unlock( this.pending.lock );
555 }
556
557 static void __ioarbiter_notify( $io_context & ctx ) {
558 if(!empty( ctx.arbiter->pending )) {
559 __ioarbiter_notify( *ctx.arbiter, &ctx );
560 }
561 }
562
563 // Simply append to the pending
564 static void __ioarbiter_submit( $io_context * ctx, __u32 idxs[], __u32 have, bool lazy ) {
565 __cfadbg_print_safe(io, "Kernel I/O : submitting %u from the arbiter to context %u\n", have, ctx->fd);
566
567 __cfadbg_print_safe(io, "Kernel I/O : waiting to submit %u\n", have);
568
569 __external_io ei;
570 ei.idxs = idxs;
571 ei.have = have;
572 ei.lazy = lazy;
573
574 bool we = enqueue(ctx->ext_sq, (__outstanding_io&)ei);
575
576 __atomic_store_n(&ctx->proc->io.pending, true, __ATOMIC_SEQ_CST);
577
578 if( we ) {
579 sigval_t value = { PREEMPT_IO };
580 pthread_sigqueue(ctx->proc->kernel_thread, SIGUSR1, value);
581 }
582
583 wait( ei.sem );
584
585 __cfadbg_print_safe(io, "Kernel I/O : %u submitted from arbiter\n", have);
586 }
587
588 static void __ioarbiter_flush( $io_context & ctx ) {
589 if(!empty( ctx.ext_sq )) {
590 __STATS__( false, io.flush.external += 1; )
591
592 __cfadbg_print_safe(io, "Kernel I/O : arbiter flushing\n");
593
594 lock( ctx.ext_sq.lock __cfaabi_dbg_ctx2 );
595 {
596 while( !empty(ctx.ext_sq.queue) ) {
597 __external_io & ei = (__external_io&)drop( ctx.ext_sq.queue );
598
599 __submit_only(&ctx, ei.idxs, ei.have);
600
601 post( ei.sem );
602 }
603
604 ctx.ext_sq.empty = true;
605 }
606 unlock(ctx.ext_sq.lock );
607 }
608 }
609
610 #if defined(CFA_WITH_IO_URING_IDLE)
611 bool __kernel_read(processor * proc, io_future_t & future, iovec & iov, int fd) {
612 $io_context * ctx = proc->io.ctx;
613 /* paranoid */ verify( ! __preemption_enabled() );
614 /* paranoid */ verify( proc == __cfaabi_tls.this_processor );
615 /* paranoid */ verify( ctx );
616
617 __u32 idx;
618 struct io_uring_sqe * sqe;
619
620 // We can proceed to the fast path
621 if( !__alloc(ctx, &idx, 1) ) return false;
622
623 // Allocation was successful
624 __fill( &sqe, 1, &idx, ctx );
625
626 sqe->user_data = (uintptr_t)&future;
627 sqe->flags = 0;
628 sqe->fd = fd;
629 sqe->off = 0;
630 sqe->ioprio = 0;
631 sqe->fsync_flags = 0;
632 sqe->__pad2[0] = 0;
633 sqe->__pad2[1] = 0;
634 sqe->__pad2[2] = 0;
635
636 #if defined(CFA_HAVE_IORING_OP_READ)
637 sqe->opcode = IORING_OP_READ;
638 sqe->addr = (uint64_t)iov.iov_base;
639 sqe->len = iov.iov_len;
640 #elif defined(CFA_HAVE_READV) && defined(CFA_HAVE_IORING_OP_READV)
641 sqe->opcode = IORING_OP_READV;
642 sqe->addr = (uintptr_t)&iov;
643 sqe->len = 1;
644 #else
645 #error CFA_WITH_IO_URING_IDLE but none of CFA_HAVE_READV, CFA_HAVE_IORING_OP_READV or CFA_HAVE_IORING_OP_READ defined
646 #endif
647
648 asm volatile("": : :"memory");
649
650 /* paranoid */ verify( sqe->user_data == (uintptr_t)&future );
651 __submit( ctx, &idx, 1, true );
652
653 /* paranoid */ verify( proc == __cfaabi_tls.this_processor );
654 /* paranoid */ verify( ! __preemption_enabled() );
655
656 return true;
657 }
658 #endif
659#endif
Note: See TracBrowser for help on using the repository browser.