source: libcfa/src/concurrency/io.cfa@ 78da4ab

ADT arm-eh ast-experimental enum forall-pointer-decay jacob/cs343-translation new-ast-unique-expr pthread-emulation qualifiedEnum
Last change on this file since 78da4ab was 78da4ab, checked in by Thierry Delisle <tdelisle@…>, 5 years ago

New implementation of io based on instance burrowing.
Trying to avoid the unbounded growth of the previous flat combining approach.

  • Property mode set to 100644
File size: 19.5 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2020 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// io.cfa --
8//
9// Author : Thierry Delisle
10// Created On : Thu Apr 23 17:31:00 2020
11// Last Modified By :
12// Last Modified On :
13// Update Count :
14//
15
16#define __cforall_thread__
17
18#if defined(__CFA_DEBUG__)
19 #define __CFA_DEBUG_PRINT_IO__
20 #define __CFA_DEBUG_PRINT_IO_CORE__
21#endif
22
23
24#if defined(CFA_HAVE_LINUX_IO_URING_H)
25 #define _GNU_SOURCE /* See feature_test_macros(7) */
26 #include <errno.h>
27 #include <signal.h>
28 #include <stdint.h>
29 #include <string.h>
30 #include <unistd.h>
31
32 extern "C" {
33 #include <sys/syscall.h>
34
35 #include <linux/io_uring.h>
36 }
37
38 #include "stats.hfa"
39 #include "kernel.hfa"
40 #include "kernel/fwd.hfa"
41 #include "io/types.hfa"
42
43 __attribute__((unused)) static const char * opcodes[] = {
44 "OP_NOP",
45 "OP_READV",
46 "OP_WRITEV",
47 "OP_FSYNC",
48 "OP_READ_FIXED",
49 "OP_WRITE_FIXED",
50 "OP_POLL_ADD",
51 "OP_POLL_REMOVE",
52 "OP_SYNC_FILE_RANGE",
53 "OP_SENDMSG",
54 "OP_RECVMSG",
55 "OP_TIMEOUT",
56 "OP_TIMEOUT_REMOVE",
57 "OP_ACCEPT",
58 "OP_ASYNC_CANCEL",
59 "OP_LINK_TIMEOUT",
60 "OP_CONNECT",
61 "OP_FALLOCATE",
62 "OP_OPENAT",
63 "OP_CLOSE",
64 "OP_FILES_UPDATE",
65 "OP_STATX",
66 "OP_READ",
67 "OP_WRITE",
68 "OP_FADVISE",
69 "OP_MADVISE",
70 "OP_SEND",
71 "OP_RECV",
72 "OP_OPENAT2",
73 "OP_EPOLL_CTL",
74 "OP_SPLICE",
75 "OP_PROVIDE_BUFFERS",
76 "OP_REMOVE_BUFFERS",
77 "OP_TEE",
78 "INVALID_OP"
79 };
80
81//=============================================================================================
82// I/O Syscall
83//=============================================================================================
84 static int __io_uring_enter( struct $io_context & ctx, unsigned to_submit, bool get ) {
85 bool need_sys_to_submit = false;
86 bool need_sys_to_complete = false;
87 unsigned flags = 0;
88
89 TO_SUBMIT:
90 if( to_submit > 0 ) {
91 if( !(ctx.ring_flags & IORING_SETUP_SQPOLL) ) {
92 need_sys_to_submit = true;
93 break TO_SUBMIT;
94 }
95 if( (*ctx.sq.flags) & IORING_SQ_NEED_WAKEUP ) {
96 need_sys_to_submit = true;
97 flags |= IORING_ENTER_SQ_WAKEUP;
98 }
99 }
100
101 if( get && !(ctx.ring_flags & IORING_SETUP_SQPOLL) ) {
102 flags |= IORING_ENTER_GETEVENTS;
103 if( (ctx.ring_flags & IORING_SETUP_IOPOLL) ) {
104 need_sys_to_complete = true;
105 }
106 }
107
108 int ret = 0;
109 if( need_sys_to_submit || need_sys_to_complete ) {
110 __cfadbg_print_safe(io_core, "Kernel I/O : IO_URING enter %d %u %u\n", ctx.fd, to_submit, flags);
111 ret = syscall( __NR_io_uring_enter, ctx.fd, to_submit, 0, flags, (sigset_t *)0p, _NSIG / 8);
112 __cfadbg_print_safe(io_core, "Kernel I/O : IO_URING %d returned %d\n", ctx.fd, ret);
113 }
114
115 // Memory barrier
116 __atomic_thread_fence( __ATOMIC_SEQ_CST );
117 return ret;
118 }
119
120//=============================================================================================
121// I/O Polling
122//=============================================================================================
123 static inline unsigned __flush( struct $io_context & );
124 static inline __u32 __release_sqes( struct $io_context & );
125
126 static [int, bool] __drain_io( & struct $io_context ctx ) {
127 unsigned to_submit = __flush( ctx );
128 int ret = __io_uring_enter( ctx, to_submit, true );
129 if( ret < 0 ) {
130 switch((int)errno) {
131 case EAGAIN:
132 case EINTR:
133 case EBUSY:
134 return [0, true];
135 break;
136 default:
137 abort( "KERNEL ERROR: IO_URING SYSCALL - (%d) %s\n", (int)errno, strerror(errno) );
138 }
139 }
140
141 // update statistics
142 if (to_submit > 0) {
143 __STATS__( false,
144 if( to_submit > 0 ) {
145 io.submit_q.submit_avg.rdy += to_submit;
146 io.submit_q.submit_avg.csm += ret;
147 io.submit_q.submit_avg.cnt += 1;
148 }
149 )
150 /* paranoid */ verify( ctx.sq.to_submit <= *ctx.sq.num );
151
152 /* paranoid */ verify( ctx.sq.to_submit >= ret );
153 ctx.sq.to_submit -= ret;
154
155 /* paranoid */ verify( ctx.sq.to_submit <= *ctx.sq.num );
156
157 if(ret) {
158 __cfadbg_print_safe(io, "Kernel I/O : %u submitted to io_uring\n", ret);
159 }
160 }
161
162 // Release the consumed SQEs
163 __release_sqes( ctx );
164
165 // Drain the queue
166 unsigned head = *ctx.cq.head;
167 unsigned tail = *ctx.cq.tail;
168 const __u32 mask = *ctx.cq.mask;
169
170 // Nothing was new return 0
171 if (head == tail) {
172 return [0, to_submit > 0];
173 }
174
175 __u32 count = tail - head;
176 /* paranoid */ verify( count != 0 );
177 for(i; count) {
178 unsigned idx = (head + i) & mask;
179 volatile struct io_uring_cqe & cqe = ctx.cq.cqes[idx];
180
181 /* paranoid */ verify(&cqe);
182
183 struct io_future_t * future = (struct io_future_t *)(uintptr_t)cqe.user_data;
184 __cfadbg_print_safe( io, "Kernel I/O : Syscall completed : cqe %p, result %d for %p\n", &cqe, cqe.res, future );
185
186 fulfil( *future, cqe.res );
187 }
188
189 if(count) {
190 __cfadbg_print_safe(io, "Kernel I/O : %u completed\n", count);
191 }
192
193 // Mark to the kernel that the cqe has been seen
194 // Ensure that the kernel only sees the new value of the head index after the CQEs have been read.
195 __atomic_store_n( ctx.cq.head, head + count, __ATOMIC_SEQ_CST );
196
197 return [count, count > 0 || to_submit > 0];
198 }
199
200 void main( $io_context & this ) {
201 __cfadbg_print_safe(io_core, "Kernel I/O : IO poller %d (%p) ready\n", this.fd, &this);
202
203 const int reset_cnt = 5;
204 int reset = reset_cnt;
205 // Then loop until we need to start
206 LOOP:
207 while() {
208 waitfor( ^?{} : this) {
209 break LOOP;
210 }
211 or else {}
212
213 // Drain the io
214 int count;
215 bool again;
216 [count, again] = __drain_io( this );
217
218 if(!again) reset--;
219
220 // Update statistics
221 __STATS__( false,
222 io.complete_q.completed_avg.val += count;
223 io.complete_q.completed_avg.cnt += 1;
224 )
225
226 // If we got something, just yield and check again
227 if(reset > 1) {
228 yield();
229 continue LOOP;
230 }
231
232 // We alread failed to find completed entries a few time.
233 if(reset == 1) {
234 // Rearm the context so it can block
235 // but don't block right away
236 // we need to retry one last time in case
237 // something completed *just now*
238 __ioctx_prepare_block( this );
239 continue LOOP;
240 }
241
242 __STATS__( false,
243 io.complete_q.blocks += 1;
244 )
245 __cfadbg_print_safe(io_core, "Kernel I/O : Parking io poller %d (%p)\n", this.fd, &this);
246
247 // block this thread
248 wait( this.sem );
249
250 // restore counter
251 reset = reset_cnt;
252 }
253
254 __cfadbg_print_safe(io_core, "Kernel I/O : Fast poller %d (%p) stopping\n", this.fd, &this);
255 }
256
257//=============================================================================================
258// I/O Submissions
259//=============================================================================================
260
261// Submition steps :
262// 1 - Allocate a queue entry. The ring already has memory for all entries but only the ones
263// listed in sq.array are visible by the kernel. For those not listed, the kernel does not
264// offer any assurance that an entry is not being filled by multiple flags. Therefore, we
265// need to write an allocator that allows allocating concurrently.
266//
267// 2 - Actually fill the submit entry, this is the only simple and straightforward step.
268//
269// 3 - Append the entry index to the array and adjust the tail accordingly. This operation
270// needs to arrive to two concensus at the same time:
271// A - The order in which entries are listed in the array: no two threads must pick the
272// same index for their entries
273// B - When can the tail be update for the kernel. EVERY entries in the array between
274// head and tail must be fully filled and shouldn't ever be touched again.
275//
276
277 static $io_context * __ioarbiter_allocate( $io_arbiter & mutex this, processor *, __u32 idxs[], __u32 want );
278 static void __ioarbiter_submit ( $io_arbiter & mutex this, $io_context * , __u32 idxs[], __u32 have );
279 static void __ioarbiter_flush ( $io_arbiter & mutex this, $io_context * );
280 static inline void __ioarbiter_notify( $io_context & ctx );
281
282 //=============================================================================================
283 // Allocation
284 // for user's convenience fill the sqes from the indexes
285 static inline void __fill(struct io_uring_sqe * out_sqes[], __u32 want, __u32 idxs[], struct $io_context * ctx) {
286 struct io_uring_sqe * sqes = ctx->sq.sqes;
287 for(i; want) {
288 out_sqes[i] = &sqes[idxs[i]];
289 }
290 }
291
292 // Try to directly allocate from the a given context
293 // Not thread-safe
294 static inline bool __alloc(struct $io_context * ctx, __u32 idxs[], __u32 want) {
295 __sub_ring_t & sq = ctx->sq;
296 const __u32 mask = *sq.mask;
297 __u32 fhead = sq.free_ring.head; // get the current head of the queue
298 __u32 ftail = sq.free_ring.tail; // get the current tail of the queue
299
300 // If we don't have enough sqes, fail
301 if((ftail - fhead) < want) { return false; }
302
303 // copy all the indexes we want from the available list
304 for(i; want) {
305 idxs[i] = sq.free_ring.array[(fhead + i) & mask];
306 }
307
308 // Advance the head to mark the indexes as consumed
309 __atomic_store_n(&sq.free_ring.head, fhead + want, __ATOMIC_RELEASE);
310
311 // return success
312 return true;
313 }
314
315 // Allocate an submit queue entry.
316 // The kernel cannot see these entries until they are submitted, but other threads must be
317 // able to see which entries can be used and which are already un used by an other thread
318 // for convenience, return both the index and the pointer to the sqe
319 // sqe == &sqes[idx]
320 struct $io_context * cfa_io_allocate(struct io_uring_sqe * sqes[], __u32 idxs[], __u32 want) {
321 __cfadbg_print_safe(io, "Kernel I/O : attempting to allocate %u\n", want);
322
323 disable_interrupts();
324 processor * proc = __cfaabi_tls.this_processor;
325 /* paranoid */ verify( __cfaabi_tls.this_processor );
326 /* paranoid */ verify( proc->io.lock == false );
327
328 __atomic_store_n( &proc->io.lock, true, __ATOMIC_SEQ_CST );
329 $io_context * ctx = proc->io.ctx;
330 $io_arbiter * ioarb = proc->cltr->io.arbiter;
331 /* paranoid */ verify( ioarb );
332
333 // Can we proceed to the fast path
334 if( ctx // We alreay have an instance?
335 && !ctx->revoked ) // Our instance is still valid?
336 {
337 __cfadbg_print_safe(io, "Kernel I/O : attempting to fast allocation\n");
338
339 // We can proceed to the fast path
340 if( __alloc(ctx, idxs, want) ) {
341 // Allocation was successful
342 // Mark the instance as no longer in-use and re-enable interrupts
343 __atomic_store_n( &proc->io.lock, false, __ATOMIC_RELEASE );
344 enable_interrupts( __cfaabi_dbg_ctx );
345
346 __cfadbg_print_safe(io, "Kernel I/O : fast allocation successful\n");
347
348 __fill( sqes, want, idxs, ctx );
349 return ctx;
350 }
351 // The fast path failed, fallback
352 }
353
354 // Fast path failed, fallback on arbitration
355 __atomic_store_n( &proc->io.lock, false, __ATOMIC_RELEASE );
356 enable_interrupts( __cfaabi_dbg_ctx );
357
358 __cfadbg_print_safe(io, "Kernel I/O : falling back on arbiter for allocation\n");
359
360 struct $io_context * ret = __ioarbiter_allocate(*ioarb, proc, idxs, want);
361
362 __cfadbg_print_safe(io, "Kernel I/O : slow allocation completed\n");
363
364 __fill( sqes, want, idxs,ret );
365 return ret;
366 }
367
368
369 //=============================================================================================
370 // submission
371 static inline void __submit( struct $io_context * ctx, __u32 idxs[], __u32 have) {
372 // We can proceed to the fast path
373 // Get the right objects
374 __sub_ring_t & sq = ctx->sq;
375 const __u32 mask = *sq.mask;
376 __u32 tail = sq.kring.ready;
377
378 // Add the sqes to the array
379 for( i; have ) {
380 sq.kring.array[ (tail + i) & mask ] = idxs[i];
381 }
382
383 // Make the sqes visible to the submitter
384 __atomic_store_n(&sq.kring.ready, tail + have, __ATOMIC_RELEASE);
385
386 // Make sure the poller is awake
387 __cfadbg_print_safe(io, "Kernel I/O : waking the poller\n");
388 post( ctx->sem );
389 }
390
391 void cfa_io_submit( struct $io_context * inctx, __u32 idxs[], __u32 have ) __attribute__((nonnull (1))) {
392 __cfadbg_print_safe(io, "Kernel I/O : attempting to submit %u\n", have);
393
394 disable_interrupts();
395 processor * proc = __cfaabi_tls.this_processor;
396 /* paranoid */ verify( __cfaabi_tls.this_processor );
397 /* paranoid */ verify( proc->io.lock == false );
398
399 __atomic_store_n( &proc->io.lock, true, __ATOMIC_SEQ_CST );
400 $io_context * ctx = proc->io.ctx;
401
402 // Can we proceed to the fast path
403 if( ctx // We alreay have an instance?
404 && !ctx->revoked // Our instance is still valid?
405 && ctx == inctx ) // We have the right instance?
406 {
407 __submit(ctx, idxs, have);
408
409 // Mark the instance as no longer in-use, re-enable interrupts and return
410 __atomic_store_n( &proc->io.lock, false, __ATOMIC_RELEASE );
411 enable_interrupts( __cfaabi_dbg_ctx );
412
413 __cfadbg_print_safe(io, "Kernel I/O : submitted on fast path\n");
414 return;
415 }
416
417 // Fast path failed, fallback on arbitration
418 __atomic_store_n( &proc->io.lock, false, __ATOMIC_RELEASE );
419 enable_interrupts( __cfaabi_dbg_ctx );
420
421 __cfadbg_print_safe(io, "Kernel I/O : falling back on arbiter for submission\n");
422
423 __ioarbiter_submit(*inctx->arbiter, inctx, idxs, have);
424 }
425
426 //=============================================================================================
427 // Flushing
428 static unsigned __flush( struct $io_context & ctx ) {
429 // First check for external
430 if( !__atomic_load_n(&ctx.ext_sq.empty, __ATOMIC_SEQ_CST) ) {
431 // We have external submissions, delegate to the arbiter
432 __ioarbiter_flush( *ctx.arbiter, &ctx );
433 }
434
435 __u32 tail = *ctx.sq.kring.tail;
436 __u32 ready = ctx.sq.kring.ready;
437
438 /* paranoid */ verify( ctx.sq.to_submit <= *ctx.sq.num );
439 ctx.sq.to_submit += (ready - tail);
440 /* paranoid */ verify( ctx.sq.to_submit <= *ctx.sq.num );
441
442 if(ctx.sq.to_submit) {
443 __cfadbg_print_safe(io, "Kernel I/O : %u ready to submit\n", ctx.sq.to_submit);
444 }
445
446 __atomic_store_n(ctx.sq.kring.tail, ready, __ATOMIC_RELEASE);
447
448 return ctx.sq.to_submit;
449 }
450
451
452 // Go through the ring's submit queue and release everything that has already been consumed
453 // by io_uring
454 // This cannot be done by multiple threads
455 static __u32 __release_sqes( struct $io_context & ctx ) {
456 const __u32 mask = *ctx.sq.mask;
457
458 __attribute__((unused))
459 __u32 ctail = *ctx.sq.kring.tail; // get the current tail of the queue
460 __u32 chead = *ctx.sq.kring.head; // get the current head of the queue
461 __u32 phead = ctx.sq.kring.released; // get the head the last time we were here
462
463 __u32 ftail = ctx.sq.free_ring.tail; // get the current tail of the queue
464
465 // the 3 fields are organized like this diagram
466 // except it's are ring
467 // ---+--------+--------+----
468 // ---+--------+--------+----
469 // ^ ^ ^
470 // phead chead ctail
471
472 // make sure ctail doesn't wrap around and reach phead
473 /* paranoid */ verify(
474 (ctail >= chead && chead >= phead)
475 || (chead >= phead && phead >= ctail)
476 || (phead >= ctail && ctail >= chead)
477 );
478
479 // find the range we need to clear
480 __u32 count = chead - phead;
481
482 if(count == 0) {
483 return 0;
484 }
485
486 // We acquired an previous-head/current-head range
487 // go through the range and release the sqes
488 for( i; count ) {
489 __u32 idx = ctx.sq.kring.array[ (phead + i) & mask ];
490 ctx.sq.free_ring.array[ (ftail + i) & mask ] = idx;
491 }
492
493 ctx.sq.kring.released = chead; // note up to were we processed
494 __atomic_store_n(&ctx.sq.free_ring.tail, ftail + count, __ATOMIC_SEQ_CST);
495
496 __ioarbiter_notify(ctx);
497
498 return count;
499 }
500
501//=============================================================================================
502// I/O Arbiter
503//=============================================================================================
504 static inline void __revoke( $io_arbiter & this, $io_context * ctx ) {
505 if(ctx->revoked) return;
506
507 remove( this.assigned, *ctx );
508
509 // Mark as revoked
510 __atomic_store_n(&ctx->revoked, true, __ATOMIC_SEQ_CST);
511
512 // Wait for the processor to no longer use it
513 while(ctx->proc->io.lock) Pause();
514
515 // Remove the coupling with the processor
516 ctx->proc->io.ctx = 0p;
517 ctx->proc = 0p;
518
519 // add to available contexts
520 addHead( this.available, *ctx );
521 }
522
523 static inline void __assign( $io_arbiter & this, $io_context * ctx, processor * proc ) {
524 remove( this.available, *ctx );
525
526 ctx->revoked = false;
527 ctx->proc = proc;
528 __atomic_store_n(&proc->io.ctx, ctx, __ATOMIC_SEQ_CST);
529
530 // add to assigned contexts
531 addTail( this.assigned, *ctx );
532 }
533
534 static $io_context * __ioarbiter_allocate( $io_arbiter & mutex this, processor * proc, __u32 idxs[], __u32 want ) {
535 __cfadbg_print_safe(io, "Kernel I/O : arbiter allocating\n");
536
537 SeqIter($io_context) iter;
538 $io_context & ci;
539 // Do we already have something available?
540 for( over( iter, this.available ); iter | ci;) {
541 __cfadbg_print_safe(io, "Kernel I/O : attempting available context\n");
542
543 $io_context * c = &ci;
544 if(__alloc(c, idxs, want)) {
545 __assign( this, c, proc);
546 return c;
547 }
548 }
549
550
551 // Otherwise, we have no choice but to revoke everyone to check if other instance have available data
552 for( over( iter, this.assigned ); iter | ci; ) {
553 __cfadbg_print_safe(io, "Kernel I/O : revoking context for allocation\n");
554
555 $io_context * c = &ci;
556 __revoke( this, c );
557
558 if(__alloc(c, idxs, want)) {
559 __assign( this, c, proc);
560 return c;
561 }
562 }
563
564 __cfadbg_print_safe(io, "Kernel I/O : waiting for available resources\n");
565
566 // No one has any resources left, wait for something to finish
567 // Mark as pending
568 __atomic_store_n( &this.pending.flag, true, __ATOMIC_SEQ_CST );
569
570 // Wait for our turn to submit
571 wait( this.pending.blocked, want );
572
573 __attribute((unused)) bool ret =
574 __alloc( this.pending.ctx, idxs, want);
575 /* paranoid */ verify( ret );
576
577 __assign( this, this.pending.ctx, proc);
578 return this.pending.ctx;
579 }
580
581 static void __ioarbiter_notify( $io_arbiter & mutex this, $io_context * ctx ) {
582 /* paranoid */ verify( !is_empty(this.pending.blocked) );
583 this.pending.ctx = ctx;
584
585 while( !is_empty(this.pending.blocked) ) {
586 __u32 have = ctx->sq.free_ring.tail - ctx->sq.free_ring.head;
587 __u32 want = front( this.pending.blocked );
588
589 if( have > want ) return;
590
591 signal_block( this.pending.blocked );
592 }
593
594 this.pending.flag = false;
595 }
596
597 static void __ioarbiter_notify( $io_context & ctx ) {
598 if(__atomic_load_n( &ctx.arbiter->pending.flag, __ATOMIC_SEQ_CST)) {
599 __ioarbiter_notify( *ctx.arbiter, &ctx );
600 }
601 }
602
603 // Simply append to the pending
604 static void __ioarbiter_submit( $io_arbiter & mutex this, $io_context * ctx, __u32 idxs[], __u32 have ) {
605 __cfadbg_print_safe(io, "Kernel I/O : submitting %u from the arbiter to context %u\n", have, ctx->fd);
606
607 /* paranoid */ verify( &this == ctx->arbiter );
608
609 // Mark as pending
610 __atomic_store_n( &ctx->ext_sq.empty, false, __ATOMIC_SEQ_CST );
611
612 // Wake-up the poller
613 post( ctx->sem );
614
615 __cfadbg_print_safe(io, "Kernel I/O : waiting to submit %u\n", have);
616
617 // Wait for our turn to submit
618 wait( ctx->ext_sq.blocked );
619
620 // Submit our indexes
621 __submit(ctx, idxs, have);
622
623 __cfadbg_print_safe(io, "Kernel I/O : %u submitted from arbiter\n", have);
624 }
625
626 static void __ioarbiter_flush( $io_arbiter & mutex this, $io_context * ctx ) {
627 /* paranoid */ verify( &this == ctx->arbiter );
628
629 __revoke( this, ctx );
630
631 __cfadbg_print_safe(io, "Kernel I/O : arbiter flushing\n");
632
633 condition & blcked = ctx->ext_sq.blocked;
634 /* paranoid */ verify( ctx->ext_sq.empty == is_empty( blcked ) );
635 while(!is_empty( blcked )) {
636 signal_block( blcked );
637 }
638
639 ctx->ext_sq.empty = true;
640 }
641
642 void __ioarbiter_register( $io_arbiter & mutex this, $io_context & ctx ) {
643 __cfadbg_print_safe(io, "Kernel I/O : registering new context\n");
644
645 ctx.arbiter = &this;
646
647 // add to available contexts
648 addHead( this.available, ctx );
649
650 // Check if this solves pending allocations
651 if(this.pending.flag) {
652 __ioarbiter_notify( ctx );
653 }
654 }
655
656 void __ioarbiter_unregister( $io_arbiter & mutex this, $io_context & ctx ) {
657 /* paranoid */ verify( &this == ctx.arbiter );
658
659 __revoke( this, &ctx );
660
661 remove( this.available, ctx );
662 }
663#endif
Note: See TracBrowser for help on using the repository browser.