source: libcfa/src/concurrency/io.cfa@ 6e47b49

ADT ast-experimental enum pthread-emulation qualifiedEnum
Last change on this file since 6e47b49 was 262fafd9, checked in by Thierry Delisle <tdelisle@…>, 4 years ago

Added debugging information to help find deadlock.

  • Property mode set to 100644
File size: 21.2 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2020 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// io.cfa --
8//
9// Author : Thierry Delisle
10// Created On : Thu Apr 23 17:31:00 2020
11// Last Modified By :
12// Last Modified On :
13// Update Count :
14//
15
16#define __cforall_thread__
17#define _GNU_SOURCE
18
19#if defined(__CFA_DEBUG__)
20 // #define __CFA_DEBUG_PRINT_IO__
21 // #define __CFA_DEBUG_PRINT_IO_CORE__
22#endif
23
24
25#if defined(CFA_HAVE_LINUX_IO_URING_H)
26 #include <errno.h>
27 #include <signal.h>
28 #include <stdint.h>
29 #include <string.h>
30 #include <unistd.h>
31
32 extern "C" {
33 #include <sys/syscall.h>
34 #include <sys/eventfd.h>
35 #include <sys/uio.h>
36
37 #include <linux/io_uring.h>
38 }
39
40 #include "stats.hfa"
41 #include "kernel.hfa"
42 #include "kernel/fwd.hfa"
43 #include "kernel/private.hfa"
44 #include "kernel/cluster.hfa"
45 #include "io/types.hfa"
46
47 __attribute__((unused)) static const char * opcodes[] = {
48 "OP_NOP",
49 "OP_READV",
50 "OP_WRITEV",
51 "OP_FSYNC",
52 "OP_READ_FIXED",
53 "OP_WRITE_FIXED",
54 "OP_POLL_ADD",
55 "OP_POLL_REMOVE",
56 "OP_SYNC_FILE_RANGE",
57 "OP_SENDMSG",
58 "OP_RECVMSG",
59 "OP_TIMEOUT",
60 "OP_TIMEOUT_REMOVE",
61 "OP_ACCEPT",
62 "OP_ASYNC_CANCEL",
63 "OP_LINK_TIMEOUT",
64 "OP_CONNECT",
65 "OP_FALLOCATE",
66 "OP_OPENAT",
67 "OP_CLOSE",
68 "OP_FILES_UPDATE",
69 "OP_STATX",
70 "OP_READ",
71 "OP_WRITE",
72 "OP_FADVISE",
73 "OP_MADVISE",
74 "OP_SEND",
75 "OP_RECV",
76 "OP_OPENAT2",
77 "OP_EPOLL_CTL",
78 "OP_SPLICE",
79 "OP_PROVIDE_BUFFERS",
80 "OP_REMOVE_BUFFERS",
81 "OP_TEE",
82 "INVALID_OP"
83 };
84
85 static $io_context * __ioarbiter_allocate( $io_arbiter & this, __u32 idxs[], __u32 want );
86 static void __ioarbiter_submit( $io_context * , __u32 idxs[], __u32 have, bool lazy );
87 static void __ioarbiter_flush ( $io_context & );
88 static inline void __ioarbiter_notify( $io_context & ctx );
89//=============================================================================================
90// I/O Polling
91//=============================================================================================
92 static inline unsigned __flush( struct $io_context & );
93 static inline __u32 __release_sqes( struct $io_context & );
94 extern void __kernel_unpark( thread$ * thrd, unpark_hint );
95
96 static void ioring_syscsll( struct $io_context & ctx, unsigned int min_comp, unsigned int flags ) {
97 __STATS__( true, io.calls.flush++; )
98 int ret = syscall( __NR_io_uring_enter, ctx.fd, ctx.sq.to_submit, min_comp, flags, (sigset_t *)0p, _NSIG / 8);
99 if( ret < 0 ) {
100 switch((int)errno) {
101 case EAGAIN:
102 case EINTR:
103 case EBUSY:
104 // Update statistics
105 __STATS__( false, io.calls.errors.busy ++; )
106 return false;
107 default:
108 abort( "KERNEL ERROR: IO_URING SYSCALL - (%d) %s\n", (int)errno, strerror(errno) );
109 }
110 }
111
112 __cfadbg_print_safe(io, "Kernel I/O : %u submitted to io_uring %d\n", ret, ctx.fd);
113 __STATS__( true, io.calls.submitted += ret; )
114 /* paranoid */ verify( ctx.sq.to_submit <= *ctx.sq.num );
115 /* paranoid */ verify( ctx.sq.to_submit >= ret );
116
117 ctx.sq.to_submit -= ret;
118
119 /* paranoid */ verify( ctx.sq.to_submit <= *ctx.sq.num );
120
121 // Release the consumed SQEs
122 __release_sqes( ctx );
123
124 /* paranoid */ verify( ! __preemption_enabled() );
125
126 __atomic_store_n(&ctx.proc->io.pending, false, __ATOMIC_RELAXED);
127 }
128
129 static bool try_acquire( $io_context * ctx ) __attribute__((nonnull(1))) {
130 /* paranoid */ verify( ! __preemption_enabled() );
131 /* paranoid */ verify( ready_schedule_islocked() );
132
133
134 {
135 const __u32 head = *ctx->cq.head;
136 const __u32 tail = *ctx->cq.tail;
137
138 if(head == tail) return false;
139 }
140
141 // Drain the queue
142 if(!__atomic_try_acquire(&ctx->cq.lock)) {
143 __STATS__( false, io.calls.locked++; )
144 return false;
145 }
146
147 return true;
148 }
149
150 static bool __cfa_do_drain( $io_context * ctx, cluster * cltr ) __attribute__((nonnull(1, 2))) {
151 /* paranoid */ verify( ! __preemption_enabled() );
152 /* paranoid */ verify( ready_schedule_islocked() );
153 /* paranoid */ verify( ctx->cq.lock == true );
154
155 const __u32 mask = *ctx->cq.mask;
156 unsigned long long ts_prev = ctx->cq.ts;
157
158 // re-read the head and tail in case it already changed.
159 const __u32 head = *ctx->cq.head;
160 const __u32 tail = *ctx->cq.tail;
161 const __u32 count = tail - head;
162 __STATS__( false, io.calls.drain++; io.calls.completed += count; )
163
164 for(i; count) {
165 unsigned idx = (head + i) & mask;
166 volatile struct io_uring_cqe & cqe = ctx->cq.cqes[idx];
167
168 /* paranoid */ verify(&cqe);
169
170 struct io_future_t * future = (struct io_future_t *)(uintptr_t)cqe.user_data;
171 // __cfadbg_print_safe( io, "Kernel I/O : Syscall completed : cqe %p, result %d for %p\n", &cqe, cqe.res, future );
172
173 __kernel_unpark( fulfil( *future, cqe.res, false ), UNPARK_LOCAL );
174 }
175
176 unsigned long long ts_next = ctx->cq.ts = rdtscl();
177
178 // Mark to the kernel that the cqe has been seen
179 // Ensure that the kernel only sees the new value of the head index after the CQEs have been read.
180 __atomic_store_n( ctx->cq.head, head + count, __ATOMIC_SEQ_CST );
181
182 __cfadbg_print_safe(io, "Kernel I/O : %u completed age %llu\n", count, ts_next);
183 /* paranoid */ verify( ready_schedule_islocked() );
184 /* paranoid */ verify( ! __preemption_enabled() );
185
186 __atomic_unlock(&ctx->cq.lock);
187
188 touch_tsc( cltr->sched.io.tscs, ctx->cq.id, ts_prev, ts_next );
189
190 return true;
191 }
192
193 bool __cfa_io_drain( processor * proc ) {
194 bool local = false;
195 bool remote = false;
196
197 ready_schedule_lock();
198
199 cluster * const cltr = proc->cltr;
200 $io_context * const ctx = proc->io.ctx;
201 /* paranoid */ verify( cltr );
202 /* paranoid */ verify( ctx );
203
204 with(cltr->sched) {
205 const size_t ctxs_count = io.count;
206
207 /* paranoid */ verify( ready_schedule_islocked() );
208 /* paranoid */ verify( ! __preemption_enabled() );
209 /* paranoid */ verify( active_processor() == proc );
210 /* paranoid */ verify( __shard_factor.io > 0 );
211 /* paranoid */ verify( ctxs_count > 0 );
212 /* paranoid */ verify( ctx->cq.id < ctxs_count );
213
214 const unsigned this_cache = cache_id(cltr, ctx->cq.id / __shard_factor.io);
215 const unsigned long long ctsc = rdtscl();
216
217 if(proc->io.target == MAX) {
218 uint64_t chaos = __tls_rand();
219 unsigned ext = chaos & 0xff;
220 unsigned other = (chaos >> 8) % (ctxs_count);
221
222 if(ext < 3 || __atomic_load_n(&caches[other / __shard_factor.io].id, __ATOMIC_RELAXED) == this_cache) {
223 proc->io.target = other;
224 }
225 }
226 else {
227 const unsigned target = proc->io.target;
228 /* paranoid */ verify( io.tscs[target].tv != MAX );
229 HELP: if(target < ctxs_count) {
230 const unsigned long long cutoff = calc_cutoff(ctsc, ctx->cq.id, ctxs_count, io.data, io.tscs, __shard_factor.io);
231 const unsigned long long age = moving_average(ctsc, io.tscs[target].tv, io.tscs[target].ma);
232 __cfadbg_print_safe(io, "Kernel I/O: Help attempt on %u from %u, age %'llu vs cutoff %'llu, %s\n", target, this, age, cutoff, age > cutoff ? "yes" : "no");
233 if(age <= cutoff) break HELP;
234
235 if(!try_acquire(io.data[target])) break HELP;
236
237 if(!__cfa_do_drain( io.data[target], cltr )) break HELP;
238
239 remote = true;
240 __STATS__( false, io.calls.helped++; )
241 }
242 proc->io.target = MAX;
243 }
244 }
245
246
247 // Drain the local queue
248 if(try_acquire( proc->io.ctx )) {
249 local = __cfa_do_drain( proc->io.ctx, cltr );
250 }
251
252 /* paranoid */ verify( ready_schedule_islocked() );
253 /* paranoid */ verify( ! __preemption_enabled() );
254 /* paranoid */ verify( active_processor() == proc );
255
256 ready_schedule_unlock();
257 return local || remote;
258 }
259
260 bool __cfa_io_flush( processor * proc ) {
261 /* paranoid */ verify( ! __preemption_enabled() );
262 /* paranoid */ verify( proc );
263 /* paranoid */ verify( proc->io.ctx );
264
265 $io_context & ctx = *proc->io.ctx;
266
267 __ioarbiter_flush( ctx );
268
269 if(ctx.sq.to_submit != 0) {
270 ioring_syscsll(ctx, 0, 0);
271
272 }
273
274 return __cfa_io_drain( proc );
275 }
276
277//=============================================================================================
278// I/O Submissions
279//=============================================================================================
280
281// Submition steps :
282// 1 - Allocate a queue entry. The ring already has memory for all entries but only the ones
283// listed in sq.array are visible by the kernel. For those not listed, the kernel does not
284// offer any assurance that an entry is not being filled by multiple flags. Therefore, we
285// need to write an allocator that allows allocating concurrently.
286//
287// 2 - Actually fill the submit entry, this is the only simple and straightforward step.
288//
289// 3 - Append the entry index to the array and adjust the tail accordingly. This operation
290// needs to arrive to two concensus at the same time:
291// A - The order in which entries are listed in the array: no two threads must pick the
292// same index for their entries
293// B - When can the tail be update for the kernel. EVERY entries in the array between
294// head and tail must be fully filled and shouldn't ever be touched again.
295//
296 //=============================================================================================
297 // Allocation
298 // for user's convenience fill the sqes from the indexes
299 static inline void __fill(struct io_uring_sqe * out_sqes[], __u32 want, __u32 idxs[], struct $io_context * ctx) {
300 struct io_uring_sqe * sqes = ctx->sq.sqes;
301 for(i; want) {
302 // __cfadbg_print_safe(io, "Kernel I/O : filling loop\n");
303 out_sqes[i] = &sqes[idxs[i]];
304 }
305 }
306
307 // Try to directly allocate from the a given context
308 // Not thread-safe
309 static inline bool __alloc(struct $io_context * ctx, __u32 idxs[], __u32 want) {
310 __sub_ring_t & sq = ctx->sq;
311 const __u32 mask = *sq.mask;
312 __u32 fhead = sq.free_ring.head; // get the current head of the queue
313 __u32 ftail = sq.free_ring.tail; // get the current tail of the queue
314
315 // If we don't have enough sqes, fail
316 if((ftail - fhead) < want) { return false; }
317
318 // copy all the indexes we want from the available list
319 for(i; want) {
320 // __cfadbg_print_safe(io, "Kernel I/O : allocating loop\n");
321 idxs[i] = sq.free_ring.array[(fhead + i) & mask];
322 }
323
324 // Advance the head to mark the indexes as consumed
325 __atomic_store_n(&sq.free_ring.head, fhead + want, __ATOMIC_RELEASE);
326
327 // return success
328 return true;
329 }
330
331 // Allocate an submit queue entry.
332 // The kernel cannot see these entries until they are submitted, but other threads must be
333 // able to see which entries can be used and which are already un used by an other thread
334 // for convenience, return both the index and the pointer to the sqe
335 // sqe == &sqes[idx]
336 struct $io_context * cfa_io_allocate(struct io_uring_sqe * sqes[], __u32 idxs[], __u32 want) {
337 // __cfadbg_print_safe(io, "Kernel I/O : attempting to allocate %u\n", want);
338
339 disable_interrupts();
340 processor * proc = __cfaabi_tls.this_processor;
341 $io_context * ctx = proc->io.ctx;
342 /* paranoid */ verify( __cfaabi_tls.this_processor );
343 /* paranoid */ verify( ctx );
344
345 // __cfadbg_print_safe(io, "Kernel I/O : attempting to fast allocation\n");
346
347 // We can proceed to the fast path
348 if( __alloc(ctx, idxs, want) ) {
349 // Allocation was successful
350 __STATS__( true, io.alloc.fast += 1; )
351 enable_interrupts();
352
353 // __cfadbg_print_safe(io, "Kernel I/O : fast allocation successful from ring %d\n", ctx->fd);
354
355 __fill( sqes, want, idxs, ctx );
356 return ctx;
357 }
358 // The fast path failed, fallback
359 __STATS__( true, io.alloc.fail += 1; )
360
361 // Fast path failed, fallback on arbitration
362 __STATS__( true, io.alloc.slow += 1; )
363 enable_interrupts();
364
365 $io_arbiter * ioarb = proc->cltr->io.arbiter;
366 /* paranoid */ verify( ioarb );
367
368 // __cfadbg_print_safe(io, "Kernel I/O : falling back on arbiter for allocation\n");
369
370 struct $io_context * ret = __ioarbiter_allocate(*ioarb, idxs, want);
371
372 // __cfadbg_print_safe(io, "Kernel I/O : slow allocation completed from ring %d\n", ret->fd);
373
374 __fill( sqes, want, idxs,ret );
375 return ret;
376 }
377
378 //=============================================================================================
379 // submission
380 static inline void __submit_only( struct $io_context * ctx, __u32 idxs[], __u32 have) {
381 // We can proceed to the fast path
382 // Get the right objects
383 __sub_ring_t & sq = ctx->sq;
384 const __u32 mask = *sq.mask;
385 __u32 tail = *sq.kring.tail;
386
387 // Add the sqes to the array
388 for( i; have ) {
389 // __cfadbg_print_safe(io, "Kernel I/O : __submit loop\n");
390 sq.kring.array[ (tail + i) & mask ] = idxs[i];
391 }
392
393 // Make the sqes visible to the submitter
394 __atomic_store_n(sq.kring.tail, tail + have, __ATOMIC_RELEASE);
395 sq.to_submit += have;
396
397 __atomic_store_n(&ctx->proc->io.pending, true, __ATOMIC_RELAXED);
398 __atomic_store_n(&ctx->proc->io.dirty , true, __ATOMIC_RELAXED);
399 }
400
401 static inline void __submit( struct $io_context * ctx, __u32 idxs[], __u32 have, bool lazy) {
402 __sub_ring_t & sq = ctx->sq;
403 __submit_only(ctx, idxs, have);
404
405 if(sq.to_submit > 30) {
406 __tls_stats()->io.flush.full++;
407 __cfa_io_flush( ctx->proc );
408 }
409 if(!lazy) {
410 __tls_stats()->io.flush.eager++;
411 __cfa_io_flush( ctx->proc );
412 }
413 }
414
415 void cfa_io_submit( struct $io_context * inctx, __u32 idxs[], __u32 have, bool lazy ) __attribute__((nonnull (1))) {
416 // __cfadbg_print_safe(io, "Kernel I/O : attempting to submit %u (%s)\n", have, lazy ? "lazy" : "eager");
417
418 disable_interrupts();
419 processor * proc = __cfaabi_tls.this_processor;
420 $io_context * ctx = proc->io.ctx;
421 /* paranoid */ verify( __cfaabi_tls.this_processor );
422 /* paranoid */ verify( ctx );
423
424 // Can we proceed to the fast path
425 if( ctx == inctx ) // We have the right instance?
426 {
427 __submit(ctx, idxs, have, lazy);
428
429 // Mark the instance as no longer in-use, re-enable interrupts and return
430 __STATS__( true, io.submit.fast += 1; )
431 enable_interrupts();
432
433 // __cfadbg_print_safe(io, "Kernel I/O : submitted on fast path\n");
434 return;
435 }
436
437 // Fast path failed, fallback on arbitration
438 __STATS__( true, io.submit.slow += 1; )
439 enable_interrupts();
440
441 // __cfadbg_print_safe(io, "Kernel I/O : falling back on arbiter for submission\n");
442
443 __ioarbiter_submit(inctx, idxs, have, lazy);
444 }
445
446 //=============================================================================================
447 // Flushing
448 // Go through the ring's submit queue and release everything that has already been consumed
449 // by io_uring
450 // This cannot be done by multiple threads
451 static __u32 __release_sqes( struct $io_context & ctx ) {
452 const __u32 mask = *ctx.sq.mask;
453
454 __attribute__((unused))
455 __u32 ctail = *ctx.sq.kring.tail; // get the current tail of the queue
456 __u32 chead = *ctx.sq.kring.head; // get the current head of the queue
457 __u32 phead = ctx.sq.kring.released; // get the head the last time we were here
458
459 __u32 ftail = ctx.sq.free_ring.tail; // get the current tail of the queue
460
461 // the 3 fields are organized like this diagram
462 // except it's are ring
463 // ---+--------+--------+----
464 // ---+--------+--------+----
465 // ^ ^ ^
466 // phead chead ctail
467
468 // make sure ctail doesn't wrap around and reach phead
469 /* paranoid */ verify(
470 (ctail >= chead && chead >= phead)
471 || (chead >= phead && phead >= ctail)
472 || (phead >= ctail && ctail >= chead)
473 );
474
475 // find the range we need to clear
476 __u32 count = chead - phead;
477
478 if(count == 0) {
479 return 0;
480 }
481
482 // We acquired an previous-head/current-head range
483 // go through the range and release the sqes
484 for( i; count ) {
485 // __cfadbg_print_safe(io, "Kernel I/O : release loop\n");
486 __u32 idx = ctx.sq.kring.array[ (phead + i) & mask ];
487 ctx.sq.free_ring.array[ (ftail + i) & mask ] = idx;
488 }
489
490 ctx.sq.kring.released = chead; // note up to were we processed
491 __atomic_store_n(&ctx.sq.free_ring.tail, ftail + count, __ATOMIC_SEQ_CST);
492
493 __ioarbiter_notify(ctx);
494
495 return count;
496 }
497
498//=============================================================================================
499// I/O Arbiter
500//=============================================================================================
501 static inline bool enqueue(__outstanding_io_queue & queue, __outstanding_io & item) {
502 bool was_empty;
503
504 // Lock the list, it's not thread safe
505 lock( queue.lock __cfaabi_dbg_ctx2 );
506 {
507 was_empty = empty(queue.queue);
508
509 // Add our request to the list
510 add( queue.queue, item );
511
512 // Mark as pending
513 __atomic_store_n( &queue.empty, false, __ATOMIC_SEQ_CST );
514 }
515 unlock( queue.lock );
516
517 return was_empty;
518 }
519
520 static inline bool empty(__outstanding_io_queue & queue ) {
521 return __atomic_load_n( &queue.empty, __ATOMIC_SEQ_CST);
522 }
523
524 static $io_context * __ioarbiter_allocate( $io_arbiter & this, __u32 idxs[], __u32 want ) {
525 // __cfadbg_print_safe(io, "Kernel I/O : arbiter allocating\n");
526
527 __STATS__( false, io.alloc.block += 1; )
528
529 // No one has any resources left, wait for something to finish
530 // We need to add ourself to a list of pending allocs and wait for an answer
531 __pending_alloc pa;
532 pa.idxs = idxs;
533 pa.want = want;
534
535 enqueue(this.pending, (__outstanding_io&)pa);
536
537 wait( pa.sem );
538
539 return pa.ctx;
540
541 }
542
543 static void __ioarbiter_notify( $io_arbiter & this, $io_context * ctx ) {
544 /* paranoid */ verify( !empty(this.pending.queue) );
545
546 lock( this.pending.lock __cfaabi_dbg_ctx2 );
547 {
548 while( !empty(this.pending.queue) ) {
549 __cfadbg_print_safe(io, "Kernel I/O : notifying\n");
550 __u32 have = ctx->sq.free_ring.tail - ctx->sq.free_ring.head;
551 __pending_alloc & pa = (__pending_alloc&)head( this.pending.queue );
552
553 if( have > pa.want ) goto DONE;
554 drop( this.pending.queue );
555
556 /* paranoid */__attribute__((unused)) bool ret =
557
558 __alloc(ctx, pa.idxs, pa.want);
559
560 /* paranoid */ verify( ret );
561
562 pa.ctx = ctx;
563
564 post( pa.sem );
565 }
566
567 this.pending.empty = true;
568 DONE:;
569 }
570 unlock( this.pending.lock );
571 }
572
573 static void __ioarbiter_notify( $io_context & ctx ) {
574 if(!empty( ctx.arbiter->pending )) {
575 __ioarbiter_notify( *ctx.arbiter, &ctx );
576 }
577 }
578
579 // Simply append to the pending
580 static void __ioarbiter_submit( $io_context * ctx, __u32 idxs[], __u32 have, bool lazy ) {
581 __cfadbg_print_safe(io, "Kernel I/O : submitting %u from the arbiter to context %u\n", have, ctx->fd);
582
583 __cfadbg_print_safe(io, "Kernel I/O : waiting to submit %u\n", have);
584
585 __external_io ei;
586 ei.idxs = idxs;
587 ei.have = have;
588 ei.lazy = lazy;
589
590 bool we = enqueue(ctx->ext_sq, (__outstanding_io&)ei);
591
592 __atomic_store_n(&ctx->proc->io.pending, true, __ATOMIC_SEQ_CST);
593
594 if( we ) {
595 sigval_t value = { PREEMPT_IO };
596 pthread_sigqueue(ctx->proc->kernel_thread, SIGUSR1, value);
597 }
598
599 wait( ei.sem );
600
601 __cfadbg_print_safe(io, "Kernel I/O : %u submitted from arbiter\n", have);
602 }
603
604 static void __ioarbiter_flush( $io_context & ctx ) {
605 if(!empty( ctx.ext_sq )) {
606 __STATS__( false, io.flush.external += 1; )
607
608 __cfadbg_print_safe(io, "Kernel I/O : arbiter flushing\n");
609
610 lock( ctx.ext_sq.lock __cfaabi_dbg_ctx2 );
611 {
612 while( !empty(ctx.ext_sq.queue) ) {
613 __external_io & ei = (__external_io&)drop( ctx.ext_sq.queue );
614
615 __submit_only(&ctx, ei.idxs, ei.have);
616
617 post( ei.sem );
618 }
619
620 ctx.ext_sq.empty = true;
621 }
622 unlock(ctx.ext_sq.lock );
623 }
624 }
625
626 #if defined(CFA_WITH_IO_URING_IDLE)
627 bool __kernel_read(processor * proc, io_future_t & future, iovec & iov, int fd) {
628 $io_context * ctx = proc->io.ctx;
629 /* paranoid */ verify( ! __preemption_enabled() );
630 /* paranoid */ verify( proc == __cfaabi_tls.this_processor );
631 /* paranoid */ verify( ctx );
632
633 __u32 idx;
634 struct io_uring_sqe * sqe;
635
636 // We can proceed to the fast path
637 if( !__alloc(ctx, &idx, 1) ) {
638 /* paranoid */ verify( false ); // for now check if this happens, next time just abort the sleep.
639 return false;
640 }
641
642 // Allocation was successful
643 __fill( &sqe, 1, &idx, ctx );
644
645 sqe->user_data = (uintptr_t)&future;
646 sqe->flags = 0;
647 sqe->fd = fd;
648 sqe->off = 0;
649 sqe->ioprio = 0;
650 sqe->fsync_flags = 0;
651 sqe->__pad2[0] = 0;
652 sqe->__pad2[1] = 0;
653 sqe->__pad2[2] = 0;
654
655 #if defined(CFA_HAVE_IORING_OP_READ)
656 sqe->opcode = IORING_OP_READ;
657 sqe->addr = (uint64_t)iov.iov_base;
658 sqe->len = iov.iov_len;
659 #elif defined(CFA_HAVE_READV) && defined(CFA_HAVE_IORING_OP_READV)
660 sqe->opcode = IORING_OP_READV;
661 sqe->addr = (uintptr_t)&iov;
662 sqe->len = 1;
663 #else
664 #error CFA_WITH_IO_URING_IDLE but none of CFA_HAVE_READV, CFA_HAVE_IORING_OP_READV or CFA_HAVE_IORING_OP_READ defined
665 #endif
666
667 asm volatile("": : :"memory");
668
669 /* paranoid */ verify( sqe->user_data == (uintptr_t)&future );
670 __submit_only( ctx, &idx, 1 );
671
672 /* paranoid */ verify( proc == __cfaabi_tls.this_processor );
673 /* paranoid */ verify( ! __preemption_enabled() );
674
675 return true;
676 }
677
678 void __cfa_io_idle( processor * proc ) {
679 iovec iov;
680 __atomic_acquire( &proc->io.ctx->cq.lock );
681
682 __attribute__((used)) volatile bool was_reset = false;
683
684 with( proc->idle_wctx) {
685
686 // Do we already have a pending read
687 if(available(*ftr)) {
688 // There is no pending read, we need to add one
689 reset(*ftr);
690
691 iov.iov_base = rdbuf;
692 iov.iov_len = sizeof(eventfd_t);
693 __kernel_read(proc, *ftr, iov, evfd );
694 ftr->result = 0xDEADDEAD;
695 *((eventfd_t *)rdbuf) = 0xDEADDEADDEADDEAD;
696 was_reset = true;
697 }
698 }
699
700 if( !__atomic_load_n( &proc->do_terminate, __ATOMIC_SEQ_CST ) ) {
701 __ioarbiter_flush( *proc->io.ctx );
702 proc->idle_wctx.sleep_time = rdtscl();
703 ioring_syscsll( *proc->io.ctx, 1, IORING_ENTER_GETEVENTS);
704 }
705
706 ready_schedule_lock();
707 __cfa_do_drain( proc->io.ctx, proc->cltr );
708 ready_schedule_unlock();
709
710 asm volatile ("" :: "m" (was_reset));
711 }
712 #endif
713#endif
Note: See TracBrowser for help on using the repository browser.