source: libcfa/src/concurrency/future.hfa @ ab2b352

ADTast-experimental
Last change on this file since ab2b352 was beeff61e, checked in by caparsons <caparson@…>, 18 months ago

some cleanup and a bunch of changes to support waituntil statement

  • Property mode set to 100644
File size: 9.0 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2020 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// concurrency/future.hfa --
8//
9// Author           : Thierry Delisle & Peiran Hong & Colby Parsons
10// Created On       : Wed Jan 06 17:33:18 2021
11// Last Modified By :
12// Last Modified On :
13// Update Count     :
14//
15
16#pragma once
17
18#include "bits/locks.hfa"
19#include "monitor.hfa"
20#include "select.hfa"
21#include "locks.hfa"
22
23//----------------------------------------------------------------------------
24// future
25// I don't use future_t here since I need to use a lock for this future
26//  since it supports multiple consumers
27//  future_t is lockfree and uses atomics which aren't needed given we use locks here
28forall( T ) {
29    // enum { FUTURE_EMPTY = 0, FUTURE_FULFILLED = 1 }; // Enums seem to be broken so feel free to add this back afterwards
30
31    // temporary enum replacement
32    const int FUTURE_EMPTY = 0;
33    const int FUTURE_FULFILLED = 1;
34
35        struct future {
36                int state;
37                T result;
38                dlist( select_node ) waiters;
39        futex_mutex lock;
40        };
41
42    struct future_node {
43        inline select_node;
44        T * my_result;
45    };
46
47        static inline {
48
49        void ?{}( future_node(T) & this, thread$ * blocked_thread, T * my_result ) {
50            ((select_node &)this){ blocked_thread };
51            this.my_result = my_result;
52        }
53
54        void ?{}(future(T) & this) {
55                        this.waiters{};
56            this.state = FUTURE_EMPTY;
57            this.lock{};
58                }
59
60                // Reset future back to original state
61                void reset(future(T) & this) with(this)
62        {
63            lock( lock );
64            if( ! waiters`isEmpty )
65                abort("Attempting to reset a future with blocked waiters");
66            state = FUTURE_EMPTY;
67            unlock( lock );
68        }
69
70                // check if the future is available
71        // currently no mutual exclusion because I can't see when you need this call to be synchronous or protected
72                bool available( future(T) & this ) { return this.state; }
73
74
75        // memcpy wrapper to help copy values
76        void copy_T( T & from, T & to ) {
77            memcpy((void *)&to, (void *)&from, sizeof(T));
78        }
79
80        // internal helper to signal waiters off of the future
81        void _internal_flush( future(T) & this ) with(this) {
82            while( ! waiters`isEmpty ) {
83                if ( !__handle_waituntil_OR( waiters ) ) // handle special waituntil OR case
84                    break; // if handle_OR returns false then waiters is empty so break
85                select_node &s = try_pop_front( waiters );
86
87                if ( s.clause_status == 0p )
88                    // poke in result so that woken threads do not need to reacquire any locks
89                    copy_T( result, *(((future_node(T) &)s).my_result) );
90                else if ( !__make_select_node_available( s ) ) continue;
91               
92                // only unpark if future is not selected
93                // or if it is selected we only unpark if we win the race
94                unpark( s.blocked_thread );
95            }
96        }
97
98                // Fulfil the future, returns whether or not someone was unblocked
99                bool fulfil( future(T) & this, T val ) with(this) {
100            lock( lock );
101            if( state != FUTURE_EMPTY )
102                abort("Attempting to fulfil a future that has already been fulfilled");
103
104            copy_T( val, result );
105
106            bool ret_val = ! waiters`isEmpty;
107            state = FUTURE_FULFILLED;
108                        _internal_flush( this );
109            unlock( lock );
110            return ret_val;
111                }
112
113                // Wait for the future to be fulfilled
114                // Also return whether the thread had to block or not
115                [T, bool] get( future(T) & this ) with( this ) {
116            lock( lock );
117            T ret_val;
118            if( state == FUTURE_FULFILLED ) {
119                copy_T( result, ret_val );
120                unlock( lock );
121                return [ret_val, false];
122            }
123
124            future_node(T) node = { active_thread(), &ret_val };
125            insert_last( waiters, ((select_node &)node) );
126            unlock( lock );
127            park( );
128
129                        return [ret_val, true];
130                }
131
132                // Wait for the future to be fulfilled
133                T get( future(T) & this ) {
134                        [T, bool] tt;
135                        tt = get(this);
136                        return tt.0;
137                }
138
139        // Gets value if it is available and returns [ val, true ]
140        // otherwise returns [ default_val, false]
141        // will not block
142        [T, bool] try_get( future(T) & this ) with(this) {
143            lock( lock );
144            T ret_val;
145            if( state == FUTURE_FULFILLED ) {
146                copy_T( result, ret_val );
147                unlock( lock );
148                return [ret_val, true];
149            }
150            unlock( lock );
151           
152            return [ret_val, false];
153        }
154
155        bool register_select( future(T) & this, select_node & s ) with(this) {
156            lock( lock );
157
158            // check if we can complete operation. If so race to establish winner in special OR case
159            if ( !s.park_counter && state != FUTURE_EMPTY ) {
160                if ( !__make_select_node_available( s ) ) { // we didn't win the race so give up on registering
161                    unlock( lock );
162                    return false;
163                }
164            }
165
166            // future not ready -> insert select node and return
167            if( state == FUTURE_EMPTY ) {
168                insert_last( waiters, s );
169                unlock( lock );
170                return false;
171            }
172
173            __make_select_node_available( s );
174            unlock( lock );
175            return true;
176        }
177
178        bool unregister_select( future(T) & this, select_node & s ) with(this) {
179            if ( ! s`isListed ) return false;
180            lock( lock );
181            if ( s`isListed ) remove( s );
182            unlock( lock );
183            return false;
184        }
185               
186        bool on_selected( future(T) & this, select_node & node ) { return true; }
187        }
188}
189
190//--------------------------------------------------------------------------------------------------------
191// These futures below do not support select statements so they may not be as useful as 'future'
192//  however the 'single_future' is cheap and cheerful and is most likely more performant than 'future'
193//  since it uses raw atomics and no locks
194//
195// As far as 'multi_future' goes I can't see many use cases as it will be less performant than 'future'
196//  since it is monitor based and also is not compatible with select statements
197//--------------------------------------------------------------------------------------------------------
198
199forall( T ) {
200        struct single_future {
201                inline future_t;
202                T result;
203        };
204
205        static inline {
206                // Reset future back to original state
207                void reset(single_future(T) & this) { reset( (future_t&)this ); }
208
209                // check if the future is available
210                bool available( single_future(T) & this ) { return available( (future_t&)this ); }
211
212                // Mark the future as abandoned, meaning it will be deleted by the server
213                // This doesn't work beause of the potential need for a destructor
214                void abandon( single_future(T) & this );
215
216                // Fulfil the future, returns whether or not someone was unblocked
217                thread$ * fulfil( single_future(T) & this, T result ) {
218                        this.result = result;
219                        return fulfil( (future_t&)this );
220                }
221
222                // Wait for the future to be fulfilled
223                // Also return whether the thread had to block or not
224                [T, bool] wait( single_future(T) & this ) {
225                        bool r = wait( (future_t&)this );
226                        return [this.result, r];
227                }
228
229                // Wait for the future to be fulfilled
230                T wait( single_future(T) & this ) {
231                        [T, bool] tt;
232                        tt = wait(this);
233                        return tt.0;
234                }
235        }
236}
237
238forall( T ) {
239        monitor multi_future {
240                inline future_t;
241                condition blocked;
242                bool has_first;
243                T result;
244        };
245
246        static inline {
247                void ?{}(multi_future(T) & this) {
248                        this.has_first = false;
249                }
250
251                bool $first( multi_future(T) & mutex this ) {
252                        if (this.has_first) {
253                                wait( this.blocked );
254                                return false;
255                        }
256
257                        this.has_first = true;
258                        return true;
259                }
260
261                void $first_done( multi_future(T) & mutex this ) {
262                        this.has_first = false;
263                        signal_all( this.blocked );
264                }
265
266                // Reset future back to original state
267                void reset(multi_future(T) & mutex this) {
268                        if( this.has_first != false) abort("Attempting to reset a multi_future with at least one blocked threads");
269                        if( !is_empty(this.blocked) ) abort("Attempting to reset a multi_future with multiple blocked threads");
270                        reset( (future_t&)this );
271                }
272
273                // Fulfil the future, returns whether or not someone was unblocked
274                bool fulfil( multi_future(T) & this, T result ) {
275                        this.result = result;
276                        return fulfil( (future_t&)this ) != 0p;
277                }
278
279                // Wait for the future to be fulfilled
280                // Also return whether the thread had to block or not
281                [T, bool] wait( multi_future(T) & this ) {
282                        bool sw = $first( this );
283                        bool w = !sw;
284                        if ( sw ) {
285                                w = wait( (future_t&)this );
286                                $first_done( this );
287                        }
288
289                        return [this.result, w];
290                }
291
292                // Wait for the future to be fulfilled
293                T wait( multi_future(T) & this ) {
294                        return wait(this).0;
295                }
296        }
297}
Note: See TracBrowser for help on using the repository browser.