source: libcfa/src/concurrency/future.hfa @ 97f8f0f

Last change on this file since 97f8f0f was bf55f32, checked in by caparsons <caparson@…>, 16 months ago

added support for general channel operators

  • Property mode set to 100644
File size: 8.8 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2020 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// concurrency/future.hfa --
8//
9// Author           : Thierry Delisle & Peiran Hong & Colby Parsons
10// Created On       : Wed Jan 06 17:33:18 2021
11// Last Modified By :
12// Last Modified On :
13// Update Count     :
14//
15
16#pragma once
17
18#include "bits/locks.hfa"
19#include "monitor.hfa"
20#include "select.hfa"
21#include "locks.hfa"
22
23//----------------------------------------------------------------------------
24// future
25// I don't use future_t here since I need to use a lock for this future
26//  since it supports multiple consumers
27//  future_t is lockfree and uses atomics which aren't needed given we use locks here
28forall( T ) {
29    // enum { FUTURE_EMPTY = 0, FUTURE_FULFILLED = 1 }; // Enums seem to be broken so feel free to add this back afterwards
30
31    // temporary enum replacement
32    const int FUTURE_EMPTY = 0;
33    const int FUTURE_FULFILLED = 1;
34
35        struct future {
36                int state;
37                T result;
38                dlist( select_node ) waiters;
39        futex_mutex lock;
40        };
41    __CFA_SELECT_GET_TYPE( future(T) );
42
43    struct future_node {
44        inline select_node;
45        T * my_result;
46    };
47
48        static inline {
49
50        void ?{}( future_node(T) & this, thread$ * blocked_thread, T * my_result ) {
51            ((select_node &)this){ blocked_thread };
52            this.my_result = my_result;
53        }
54
55        void ?{}( future(T) & this ) {
56                        this.waiters{};
57            this.state = FUTURE_EMPTY;
58            this.lock{};
59                }
60
61                // Reset future back to original state
62                void reset( future(T) & this ) with(this)
63        {
64            lock( lock );
65            if( ! waiters`isEmpty )
66                abort("Attempting to reset a future with blocked waiters");
67            state = FUTURE_EMPTY;
68            unlock( lock );
69        }
70
71                // check if the future is available
72        // currently no mutual exclusion because I can't see when you need this call to be synchronous or protected
73                bool available( future(T) & this ) { return __atomic_load_n( &this.state, __ATOMIC_RELAXED ); }
74
75
76        // memcpy wrapper to help copy values
77        void copy_T( T & from, T & to ) {
78            memcpy((void *)&to, (void *)&from, sizeof(T));
79        }
80
81        // internal helper to signal waiters off of the future
82        void _internal_flush( future(T) & this ) with(this) {
83            while( ! waiters`isEmpty ) {
84                if ( !__handle_waituntil_OR( waiters ) ) // handle special waituntil OR case
85                    break; // if handle_OR returns false then waiters is empty so break
86                select_node &s = try_pop_front( waiters );
87
88                if ( s.clause_status == 0p ) // poke in result so that woken threads do not need to reacquire any locks
89                    copy_T( result, *(((future_node(T) &)s).my_result) );
90               
91                wake_one( waiters, s );
92            }
93        }
94
95                // Fulfil the future, returns whether or not someone was unblocked
96                bool fulfil( future(T) & this, T val ) with(this) {
97            lock( lock );
98            if( state != FUTURE_EMPTY )
99                abort("Attempting to fulfil a future that has already been fulfilled");
100
101            copy_T( val, result );
102
103            bool ret_val = ! waiters`isEmpty;
104            state = FUTURE_FULFILLED;
105                        _internal_flush( this );
106            unlock( lock );
107            return ret_val;
108                }
109
110                // Wait for the future to be fulfilled
111                // Also return whether the thread had to block or not
112                [T, bool] get( future(T) & this ) with( this ) {
113            lock( lock );
114            T ret_val;
115            if( state == FUTURE_FULFILLED ) {
116                copy_T( result, ret_val );
117                unlock( lock );
118                return [ret_val, false];
119            }
120
121            future_node(T) node = { active_thread(), &ret_val };
122            insert_last( waiters, ((select_node &)node) );
123            unlock( lock );
124            park( );
125
126                        return [ret_val, true];
127                }
128
129                // Wait for the future to be fulfilled
130                T get( future(T) & this ) {
131                        [T, bool] tt;
132                        tt = get(this);
133                        return tt.0;
134                }
135
136        // Gets value if it is available and returns [ val, true ]
137        // otherwise returns [ default_val, false]
138        // will not block
139        [T, bool] try_get( future(T) & this ) with(this) {
140            lock( lock );
141            T ret_val;
142            if( state == FUTURE_FULFILLED ) {
143                copy_T( result, ret_val );
144                unlock( lock );
145                return [ret_val, true];
146            }
147            unlock( lock );
148           
149            return [ret_val, false];
150        }
151
152        bool register_select( future(T) & this, select_node & s ) with(this) {
153            lock( lock );
154
155            // check if we can complete operation. If so race to establish winner in special OR case
156            if ( !s.park_counter && state != FUTURE_EMPTY ) {
157                if ( !__make_select_node_available( s ) ) { // we didn't win the race so give up on registering
158                    unlock( lock );
159                    return false;
160                }
161            }
162
163            // future not ready -> insert select node and return
164            if( state == FUTURE_EMPTY ) {
165                insert_last( waiters, s );
166                unlock( lock );
167                return false;
168            }
169
170            __make_select_node_available( s );
171            unlock( lock );
172            return true;
173        }
174
175        bool unregister_select( future(T) & this, select_node & s ) with(this) {
176            if ( ! s`isListed ) return false;
177            lock( lock );
178            if ( s`isListed ) remove( s );
179            unlock( lock );
180            return false;
181        }
182               
183        bool on_selected( future(T) & this, select_node & node ) { return true; }
184        }
185}
186
187//--------------------------------------------------------------------------------------------------------
188// These futures below do not support select statements so they may not have as many features as 'future'
189//  however the 'single_future' is cheap and cheerful and is most likely more performant than 'future'
190//  since it uses raw atomics and no locks
191//
192// As far as 'multi_future' goes I can't see many use cases as it will be less performant than 'future'
193//  since it is monitor based and also is not compatible with select statements
194//--------------------------------------------------------------------------------------------------------
195
196forall( T ) {
197        struct single_future {
198                inline future_t;
199                T result;
200        };
201
202        static inline {
203                // Reset future back to original state
204                void reset(single_future(T) & this) { reset( (future_t&)this ); }
205
206                // check if the future is available
207                bool available( single_future(T) & this ) { return available( (future_t&)this ); }
208
209                // Mark the future as abandoned, meaning it will be deleted by the server
210                // This doesn't work beause of the potential need for a destructor
211                void abandon( single_future(T) & this );
212
213                // Fulfil the future, returns whether or not someone was unblocked
214                thread$ * fulfil( single_future(T) & this, T result ) {
215                        this.result = result;
216                        return fulfil( (future_t&)this );
217                }
218
219                // Wait for the future to be fulfilled
220                // Also return whether the thread had to block or not
221                [T, bool] wait( single_future(T) & this ) {
222                        bool r = wait( (future_t&)this );
223                        return [this.result, r];
224                }
225
226                // Wait for the future to be fulfilled
227                T wait( single_future(T) & this ) {
228                        [T, bool] tt;
229                        tt = wait(this);
230                        return tt.0;
231                }
232        }
233}
234
235forall( T ) {
236        monitor multi_future {
237                inline future_t;
238                condition blocked;
239                bool has_first;
240                T result;
241        };
242
243        static inline {
244                void ?{}(multi_future(T) & this) {
245                        this.has_first = false;
246                }
247
248                bool $first( multi_future(T) & mutex this ) {
249                        if (this.has_first) {
250                                wait( this.blocked );
251                                return false;
252                        }
253
254                        this.has_first = true;
255                        return true;
256                }
257
258                void $first_done( multi_future(T) & mutex this ) {
259                        this.has_first = false;
260                        signal_all( this.blocked );
261                }
262
263                // Reset future back to original state
264                void reset(multi_future(T) & mutex this) {
265                        if( this.has_first != false) abort("Attempting to reset a multi_future with at least one blocked threads");
266                        if( !is_empty(this.blocked) ) abort("Attempting to reset a multi_future with multiple blocked threads");
267                        reset( (future_t&)this );
268                }
269
270                // Fulfil the future, returns whether or not someone was unblocked
271                bool fulfil( multi_future(T) & this, T result ) {
272                        this.result = result;
273                        return fulfil( (future_t&)this ) != 0p;
274                }
275
276                // Wait for the future to be fulfilled
277                // Also return whether the thread had to block or not
278                [T, bool] wait( multi_future(T) & this ) {
279                        bool sw = $first( this );
280                        bool w = !sw;
281                        if ( sw ) {
282                                w = wait( (future_t&)this );
283                                $first_done( this );
284                        }
285
286                        return [this.result, w];
287                }
288
289                // Wait for the future to be fulfilled
290                T wait( multi_future(T) & this ) {
291                        return wait(this).0;
292                }
293        }
294}
Note: See TracBrowser for help on using the repository browser.