1 | //
|
---|
2 | // Cforall Version 1.0.0 Copyright (C) 2020 University of Waterloo
|
---|
3 | //
|
---|
4 | // The contents of this file are covered under the licence agreement in the
|
---|
5 | // file "LICENCE" distributed with Cforall.
|
---|
6 | //
|
---|
7 | // concurrency/future.hfa --
|
---|
8 | //
|
---|
9 | // Author : Thierry Delisle & Peiran Hong & Colby Parsons
|
---|
10 | // Created On : Wed Jan 06 17:33:18 2021
|
---|
11 | // Last Modified By : Peter A. Buhr
|
---|
12 | // Last Modified On : Sun Mar 2 14:45:56 2025
|
---|
13 | // Update Count : 19
|
---|
14 | //
|
---|
15 |
|
---|
16 | #pragma once
|
---|
17 |
|
---|
18 | #include "bits/locks.hfa"
|
---|
19 | #include "monitor.hfa"
|
---|
20 | #include "select.hfa"
|
---|
21 | #include "locks.hfa"
|
---|
22 |
|
---|
23 | //----------------------------------------------------------------------------
|
---|
24 | // future
|
---|
25 | // I don't use future_t here as I need to use a lock for this future since it supports multiple consumers.
|
---|
26 | // future_t is lockfree and uses atomics which aren't needed given we use locks here
|
---|
27 | forall( T ) {
|
---|
28 | enum { FUTURE_EMPTY = 0, FUTURE_FULFILLED = 1 };
|
---|
29 |
|
---|
30 | struct future {
|
---|
31 | int state;
|
---|
32 | T result;
|
---|
33 | exception_t * except;
|
---|
34 | dlist( select_node ) waiters;
|
---|
35 | futex_mutex lock;
|
---|
36 | };
|
---|
37 | __CFA_SELECT_GET_TYPE( future(T) );
|
---|
38 |
|
---|
39 | struct future_node {
|
---|
40 | inline select_node;
|
---|
41 | T * my_result;
|
---|
42 | };
|
---|
43 |
|
---|
44 | static inline {
|
---|
45 |
|
---|
46 | void ?{}( future_node(T) & this, thread$ * blocked_thread, T * my_result ) {
|
---|
47 | ((select_node &)this){ blocked_thread };
|
---|
48 | this.my_result = my_result;
|
---|
49 | }
|
---|
50 |
|
---|
51 | void ?{}( future(T) & this ) {
|
---|
52 | this.waiters{};
|
---|
53 | this.except = 0p;
|
---|
54 | this.state = FUTURE_EMPTY;
|
---|
55 | this.lock{};
|
---|
56 | }
|
---|
57 |
|
---|
58 | void ^?{}( future(T) & this ) {
|
---|
59 | free( this.except );
|
---|
60 | }
|
---|
61 |
|
---|
62 | // Reset future back to original state
|
---|
63 | void reset( future(T) & this ) with(this) {
|
---|
64 | lock( lock );
|
---|
65 | if ( ! waiters`isEmpty )
|
---|
66 | abort("Attempting to reset a future with blocked waiters");
|
---|
67 | state = FUTURE_EMPTY;
|
---|
68 | free( except );
|
---|
69 | except = 0p;
|
---|
70 | unlock( lock );
|
---|
71 | }
|
---|
72 |
|
---|
73 | // check if the future is available
|
---|
74 | // currently no mutual exclusion because I can't see when you need this call to be synchronous or protected
|
---|
75 | bool available( future(T) & this ) { return __atomic_load_n( &this.state, __ATOMIC_RELAXED ); }
|
---|
76 |
|
---|
77 |
|
---|
78 | // memcpy wrapper to help copy values
|
---|
79 | void copy_T( T & from, T & to ) {
|
---|
80 | memcpy((void *)&to, (void *)&from, sizeof(T));
|
---|
81 | }
|
---|
82 |
|
---|
83 | bool fulfil$( future(T) & this ) with(this) { // helper
|
---|
84 | bool ret_val = ! waiters`isEmpty;
|
---|
85 | state = FUTURE_FULFILLED;
|
---|
86 | while ( ! waiters`isEmpty ) {
|
---|
87 | if ( !__handle_waituntil_OR( waiters ) ) // handle special waituntil OR case
|
---|
88 | break; // if handle_OR returns false then waiters is empty so break
|
---|
89 | select_node &s = try_pop_front( waiters );
|
---|
90 |
|
---|
91 | if ( s.clause_status == 0p ) // poke in result so that woken threads do not need to reacquire any locks
|
---|
92 | copy_T( result, *(((future_node(T) &)s).my_result) );
|
---|
93 |
|
---|
94 | wake_one( waiters, s );
|
---|
95 | }
|
---|
96 | unlock( lock );
|
---|
97 | return ret_val;
|
---|
98 | }
|
---|
99 |
|
---|
100 | // Fulfil the future, returns whether or not someone was unblocked
|
---|
101 | bool fulfil( future(T) & this, T val ) with(this) {
|
---|
102 | lock( lock );
|
---|
103 | if ( state != FUTURE_EMPTY )
|
---|
104 | abort("Attempting to fulfil a future that has already been fulfilled");
|
---|
105 |
|
---|
106 | copy_T( val, result );
|
---|
107 | return fulfil$( this );
|
---|
108 | }
|
---|
109 |
|
---|
110 | bool ?()( future(T) & this, T val ) { // alternate interface
|
---|
111 | return fulfil( this, val );
|
---|
112 | }
|
---|
113 |
|
---|
114 | // Load an exception to the future, returns whether or not someone was unblocked
|
---|
115 | bool fulfil( future(T) & this, exception_t * ex ) with(this) {
|
---|
116 | lock( lock );
|
---|
117 | if ( state != FUTURE_EMPTY )
|
---|
118 | abort("Attempting to fulfil a future that has already been fulfilled");
|
---|
119 |
|
---|
120 | except = ( exception_t * ) malloc( ex->virtual_table->size );
|
---|
121 | ex->virtual_table->copy( except, ex );
|
---|
122 | return fulfil$( this );
|
---|
123 | }
|
---|
124 |
|
---|
125 | bool ?()( future(T) & this, exception_t * ex ) { // alternate interface
|
---|
126 | return fulfil( this, ex );
|
---|
127 | }
|
---|
128 |
|
---|
129 | // Wait for the future to be fulfilled
|
---|
130 | // Also return whether the thread had to block or not
|
---|
131 | [T, bool] get( future(T) & this ) with( this ) {
|
---|
132 | void exceptCheck() { // helper
|
---|
133 | if ( except ) {
|
---|
134 | exception_t * ex = ( exception_t * ) alloca( except->virtual_table->size );
|
---|
135 | except->virtual_table->copy( ex, except );
|
---|
136 | unlock( lock );
|
---|
137 | throwResume * ex;
|
---|
138 | }
|
---|
139 | }
|
---|
140 |
|
---|
141 | lock( lock );
|
---|
142 | T ret_val;
|
---|
143 | if ( state == FUTURE_FULFILLED ) {
|
---|
144 | exceptCheck();
|
---|
145 | copy_T( result, ret_val );
|
---|
146 | unlock( lock );
|
---|
147 | return [ret_val, false];
|
---|
148 | }
|
---|
149 |
|
---|
150 | future_node(T) node = { active_thread(), &ret_val };
|
---|
151 | insert_last( waiters, ((select_node &)node) );
|
---|
152 | unlock( lock );
|
---|
153 | park( );
|
---|
154 | exceptCheck();
|
---|
155 |
|
---|
156 | return [ret_val, true];
|
---|
157 | }
|
---|
158 |
|
---|
159 | // Wait for the future to be fulfilled
|
---|
160 | T get( future(T) & this ) {
|
---|
161 | [T, bool] tt;
|
---|
162 | tt = get(this);
|
---|
163 | return tt.0;
|
---|
164 | }
|
---|
165 |
|
---|
166 | T ?()( future(T) & this ) { // alternate interface
|
---|
167 | return get( this );
|
---|
168 | }
|
---|
169 |
|
---|
170 | // Gets value if it is available and returns [ val, true ]
|
---|
171 | // otherwise returns [ default_val, false]
|
---|
172 | // will not block
|
---|
173 | [T, bool] try_get( future(T) & this ) with(this) {
|
---|
174 | lock( lock );
|
---|
175 | T ret_val;
|
---|
176 | if ( state == FUTURE_FULFILLED ) {
|
---|
177 | copy_T( result, ret_val );
|
---|
178 | unlock( lock );
|
---|
179 | return [ret_val, true];
|
---|
180 | }
|
---|
181 | unlock( lock );
|
---|
182 |
|
---|
183 | return [ret_val, false];
|
---|
184 | }
|
---|
185 |
|
---|
186 | bool register_select( future(T) & this, select_node & s ) with(this) {
|
---|
187 | lock( lock );
|
---|
188 |
|
---|
189 | // check if we can complete operation. If so race to establish winner in special OR case
|
---|
190 | if ( !s.park_counter && state != FUTURE_EMPTY ) {
|
---|
191 | if ( !__make_select_node_available( s ) ) { // we didn't win the race so give up on registering
|
---|
192 | unlock( lock );
|
---|
193 | return false;
|
---|
194 | }
|
---|
195 | }
|
---|
196 |
|
---|
197 | // future not ready -> insert select node and return
|
---|
198 | if ( state == FUTURE_EMPTY ) {
|
---|
199 | insert_last( waiters, s );
|
---|
200 | unlock( lock );
|
---|
201 | return false;
|
---|
202 | }
|
---|
203 |
|
---|
204 | __make_select_node_available( s );
|
---|
205 | unlock( lock );
|
---|
206 | return true;
|
---|
207 | }
|
---|
208 |
|
---|
209 | bool unregister_select( future(T) & this, select_node & s ) with(this) {
|
---|
210 | if ( ! s`isListed ) return false;
|
---|
211 | lock( lock );
|
---|
212 | if ( s`isListed ) remove( s );
|
---|
213 | unlock( lock );
|
---|
214 | return false;
|
---|
215 | }
|
---|
216 |
|
---|
217 | bool on_selected( future(T) &, select_node & ) { return true; }
|
---|
218 | }
|
---|
219 | }
|
---|
220 |
|
---|
221 | //--------------------------------------------------------------------------------------------------------
|
---|
222 | // These futures below do not support select statements so they may not have as many features as 'future'
|
---|
223 | // however the 'single_future' is cheap and cheerful and is most likely more performant than 'future'
|
---|
224 | // since it uses raw atomics and no locks
|
---|
225 | //
|
---|
226 | // As far as 'multi_future' goes I can't see many use cases as it will be less performant than 'future'
|
---|
227 | // since it is monitor based and also is not compatible with select statements
|
---|
228 | //--------------------------------------------------------------------------------------------------------
|
---|
229 |
|
---|
230 | forall( T ) {
|
---|
231 | struct single_future {
|
---|
232 | inline future_t;
|
---|
233 | T result;
|
---|
234 | };
|
---|
235 |
|
---|
236 | static inline {
|
---|
237 | // Reset future back to original state
|
---|
238 | void reset(single_future(T) & this) { reset( (future_t&)this ); }
|
---|
239 |
|
---|
240 | // check if the future is available
|
---|
241 | bool available( single_future(T) & this ) { return available( (future_t&)this ); }
|
---|
242 |
|
---|
243 | // Mark the future as abandoned, meaning it will be deleted by the server
|
---|
244 | // This doesn't work beause of the potential need for a destructor
|
---|
245 | // void abandon( single_future(T) & this );
|
---|
246 |
|
---|
247 | // Fulfil the future, returns whether or not someone was unblocked
|
---|
248 | thread$ * fulfil( single_future(T) & this, T result ) {
|
---|
249 | this.result = result;
|
---|
250 | return fulfil( (future_t&)this );
|
---|
251 | }
|
---|
252 |
|
---|
253 | // Wait for the future to be fulfilled
|
---|
254 | // Also return whether the thread had to block or not
|
---|
255 | [T, bool] wait( single_future(T) & this ) {
|
---|
256 | bool r = wait( (future_t&)this );
|
---|
257 | return [this.result, r];
|
---|
258 | }
|
---|
259 |
|
---|
260 | // Wait for the future to be fulfilled
|
---|
261 | T wait( single_future(T) & this ) {
|
---|
262 | [T, bool] tt;
|
---|
263 | tt = wait(this);
|
---|
264 | return tt.0;
|
---|
265 | }
|
---|
266 | }
|
---|
267 | }
|
---|
268 |
|
---|
269 | forall( T ) {
|
---|
270 | monitor multi_future {
|
---|
271 | inline future_t;
|
---|
272 | condition blocked;
|
---|
273 | bool has_first;
|
---|
274 | T result;
|
---|
275 | };
|
---|
276 |
|
---|
277 | static inline {
|
---|
278 | void ?{}(multi_future(T) & this) {
|
---|
279 | this.has_first = false;
|
---|
280 | }
|
---|
281 |
|
---|
282 | bool $first( multi_future(T) & mutex this ) {
|
---|
283 | if ( this.has_first ) {
|
---|
284 | wait( this.blocked );
|
---|
285 | return false;
|
---|
286 | }
|
---|
287 |
|
---|
288 | this.has_first = true;
|
---|
289 | return true;
|
---|
290 | }
|
---|
291 |
|
---|
292 | void $first_done( multi_future(T) & mutex this ) {
|
---|
293 | this.has_first = false;
|
---|
294 | signal_all( this.blocked );
|
---|
295 | }
|
---|
296 |
|
---|
297 | // Reset future back to original state
|
---|
298 | void reset(multi_future(T) & mutex this) {
|
---|
299 | if ( this.has_first != false ) abort("Attempting to reset a multi_future with at least one blocked threads");
|
---|
300 | if ( !is_empty(this.blocked) ) abort("Attempting to reset a multi_future with multiple blocked threads");
|
---|
301 | reset( (future_t&)*(future_t*)((uintptr_t)&this + sizeof(monitor$)) );
|
---|
302 | }
|
---|
303 |
|
---|
304 | // Fulfil the future, returns whether or not someone was unblocked
|
---|
305 | bool fulfil( multi_future(T) & this, T result ) {
|
---|
306 | this.result = result;
|
---|
307 | return fulfil( (future_t&)*(future_t*)((uintptr_t)&this + sizeof(monitor$)) ) != 0p;
|
---|
308 | }
|
---|
309 |
|
---|
310 | // Wait for the future to be fulfilled
|
---|
311 | // Also return whether the thread had to block or not
|
---|
312 | [T, bool] wait( multi_future(T) & this ) {
|
---|
313 | bool sw = $first( this );
|
---|
314 | bool w = !sw;
|
---|
315 | if ( sw ) {
|
---|
316 | w = wait( (future_t&)*(future_t*)((uintptr_t)&this + sizeof(monitor$)) );
|
---|
317 | $first_done( this );
|
---|
318 | }
|
---|
319 |
|
---|
320 | return [this.result, w];
|
---|
321 | }
|
---|
322 |
|
---|
323 | // Wait for the future to be fulfilled
|
---|
324 | T wait( multi_future(T) & this ) {
|
---|
325 | return wait(this).0;
|
---|
326 | }
|
---|
327 | }
|
---|
328 | }
|
---|