source: libcfa/src/concurrency/future.hfa @ 339e30a

ADTast-experimental
Last change on this file since 339e30a was 339e30a, checked in by caparsons <caparson@…>, 16 months ago

added new future and added rudimentary select statement support for it

  • Property mode set to 100644
File size: 8.7 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2020 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// concurrency/future.hfa --
8//
9// Author           : Thierry Delisle & Peiran Hong & Colby Parsons
10// Created On       : Wed Jan 06 17:33:18 2021
11// Last Modified By :
12// Last Modified On :
13// Update Count     :
14//
15
16// #pragma once
17
18#include "bits/locks.hfa"
19#include "monitor.hfa"
20#include "select.hfa"
21
22//----------------------------------------------------------------------------
23// future
24// I don't use future_t here since I need to use a lock for this future
25//  since it supports multiple consumers
26//  future_t is lockfree and uses atomics which aren't needed given we use locks here
27forall( T ) {
28    // enum(int) { FUTURE_EMPTY = 0, FUTURE_FULFILLED = 1 }; // Enums seem to be broken so feel free to add this back afterwards
29
30    // temporary enum replacement
31    const int FUTURE_EMPTY = 0;
32    const int FUTURE_FULFILLED = 1;
33
34        struct future {
35                int state;
36                T result;
37                dlist( select_node ) waiters;
38        futex_mutex lock;
39        };
40
41    struct future_node {
42        inline select_node;
43        T * my_result;
44    };
45
46    // C_TODO: perhaps allow exceptions to be inserted like uC++?
47
48        static inline {
49
50        void ?{}( future_node(T) & this, thread$ * blocked_thread, T * my_result ) {
51            ((select_node &)this){ blocked_thread };
52            this.my_result = my_result;
53        }
54
55        void ?{}(future(T) & this) {
56                        this.waiters{};
57            this.state = FUTURE_EMPTY;
58                }
59
60                // Reset future back to original state
61                void reset(future(T) & this) with(this)
62        {
63            lock( lock );
64            if( ! waiters`isEmpty )
65                abort("Attempting to reset a future with blocked waiters");
66            state = FUTURE_EMPTY;
67            unlock( lock );
68        }
69
70                // check if the future is available
71        // currently no mutual exclusion because I can't see when you need this call to be synchronous or protected
72                bool available( future(T) & this ) { return this.state; }
73
74
75        // memcpy wrapper to help copy values
76        void copy_T( T & from, T & to ) {
77            memcpy((void *)&to, (void *)&from, sizeof(T));
78        }
79
80        // internal helper to signal waiters off of the future
81        void _internal_flush( future(T) & this ) with(this) {
82            while( ! waiters`isEmpty ) {
83                select_node &s = try_pop_front( waiters );
84
85                if ( s.race_flag == 0p )
86                    // poke in result so that woken threads do not need to reacquire any locks
87                    // *(((future_node(T) &)s).my_result) = result;
88                    copy_T( result, *(((future_node(T) &)s).my_result) );
89                else if ( !install_select_winner( s, &this ) ) continue;
90               
91                // only unpark if future is not selected
92                // or if it is selected we only unpark if we win the race
93                unpark( s.blocked_thread );
94            }
95        }
96
97                // Fulfil the future, returns whether or not someone was unblocked
98                bool fulfil( future(T) & this, T & val ) with(this) {
99            lock( lock );
100            if( state != FUTURE_EMPTY )
101                abort("Attempting to fulfil a future that has already been fulfilled");
102
103            copy_T( val, result );
104
105            bool ret_val = ! waiters`isEmpty;
106            state = FUTURE_FULFILLED;
107                        _internal_flush( this );
108            unlock( lock );
109            return ret_val;
110                }
111
112                // Wait for the future to be fulfilled
113                // Also return whether the thread had to block or not
114                [T, bool] get( future(T) & this ) with( this ) {
115            lock( lock );
116            T ret_val;
117            if( state == FUTURE_FULFILLED ) {
118                copy_T( result, ret_val );
119                unlock( lock );
120                return [ret_val, false];
121            }
122
123            future_node(T) node = { active_thread(), &ret_val };
124            insert_last( waiters, ((select_node &)node) );
125            unlock( lock );
126            park( );
127
128                        return [ret_val, true];
129                }
130
131                // Wait for the future to be fulfilled
132                T get( future(T) & this ) {
133                        [T, bool] tt;
134                        tt = get(this);
135                        return tt.0;
136                }
137
138        // Gets value if it is available and returns [ val, true ]
139        // otherwise returns [ default_val, false]
140        // will not block
141        [T, bool] try_get( future(T) & this ) with(this) {
142            lock( lock );
143            T ret_val;
144            if( state == FUTURE_FULFILLED ) {
145                copy_T( result, ret_val );
146                unlock( lock );
147                return [ret_val, true];
148            }
149            unlock( lock );
150            // cast to (T *) needed to trick the resolver to let me return *0p
151            return [ret_val, false];
152        }
153
154        void * register_select( future(T) & this, select_node & s ) with(this) {
155            lock( lock );
156
157            // future not ready -> insert select node and return 0p
158            if( state == FUTURE_EMPTY ) {
159                insert_last( waiters, s );
160                unlock( lock );
161                return 0p;
162            }
163
164            // future ready and we won race to install it as the select winner return 1p
165            if ( install_select_winner( s, &this ) ) {
166                unlock( lock );
167                return 1p;
168            }
169
170            unlock( lock );
171            // future ready and we lost race to install it as the select winner
172            return 2p;
173        }
174
175        void unregister_select( future(T) & this, select_node & s ) with(this) {
176            lock( lock );
177            if ( s`isListed ) remove( s );
178            unlock( lock );
179        }
180               
181        }
182}
183
184//--------------------------------------------------------------------------------------------------------
185// These futures below do not support select statements so they may not be as useful as 'future'
186//  however the 'single_future' is cheap and cheerful and is most likely more performant than 'future'
187//  since it uses raw atomics and no locks afaik
188//
189// As far as 'multi_future' goes I can't see many use cases as it will be less performant than 'future'
190//  since it is monitor based and also is not compatible with select statements
191//--------------------------------------------------------------------------------------------------------
192
193forall( T ) {
194        struct single_future {
195                inline future_t;
196                T result;
197        };
198
199        static inline {
200                // Reset future back to original state
201                void reset(single_future(T) & this) { reset( (future_t&)this ); }
202
203                // check if the future is available
204                bool available( single_future(T) & this ) { return available( (future_t&)this ); }
205
206                // Mark the future as abandoned, meaning it will be deleted by the server
207                // This doesn't work beause of the potential need for a destructor
208                void abandon( single_future(T) & this );
209
210                // Fulfil the future, returns whether or not someone was unblocked
211                thread$ * fulfil( single_future(T) & this, T result ) {
212                        this.result = result;
213                        return fulfil( (future_t&)this );
214                }
215
216                // Wait for the future to be fulfilled
217                // Also return whether the thread had to block or not
218                [T, bool] wait( single_future(T) & this ) {
219                        bool r = wait( (future_t&)this );
220                        return [this.result, r];
221                }
222
223                // Wait for the future to be fulfilled
224                T wait( single_future(T) & this ) {
225                        [T, bool] tt;
226                        tt = wait(this);
227                        return tt.0;
228                }
229        }
230}
231
232forall( T ) {
233        monitor multi_future {
234                inline future_t;
235                condition blocked;
236                bool has_first;
237                T result;
238        };
239
240        static inline {
241                void ?{}(multi_future(T) & this) {
242                        this.has_first = false;
243                }
244
245                bool $first( multi_future(T) & mutex this ) {
246                        if (this.has_first) {
247                                wait( this.blocked );
248                                return false;
249                        }
250
251                        this.has_first = true;
252                        return true;
253                }
254
255                void $first_done( multi_future(T) & mutex this ) {
256                        this.has_first = false;
257                        signal_all( this.blocked );
258                }
259
260                // Reset future back to original state
261                void reset(multi_future(T) & mutex this) {
262                        if( this.has_first != false) abort("Attempting to reset a multi_future with at least one blocked threads");
263                        if( !is_empty(this.blocked) ) abort("Attempting to reset a multi_future with multiple blocked threads");
264                        reset( (future_t&)this );
265                }
266
267                // Fulfil the future, returns whether or not someone was unblocked
268                bool fulfil( multi_future(T) & this, T result ) {
269                        this.result = result;
270                        return fulfil( (future_t&)this ) != 0p;
271                }
272
273                // Wait for the future to be fulfilled
274                // Also return whether the thread had to block or not
275                [T, bool] wait( multi_future(T) & this ) {
276                        bool sw = $first( this );
277                        bool w = !sw;
278                        if ( sw ) {
279                                w = wait( (future_t&)this );
280                                $first_done( this );
281                        }
282
283                        return [this.result, w];
284                }
285
286                // Wait for the future to be fulfilled
287                T wait( multi_future(T) & this ) {
288                        return wait(this).0;
289                }
290        }
291}
Note: See TracBrowser for help on using the repository browser.