| 1 | //
|
|---|
| 2 | // Cforall Version 1.0.0 Copyright (C) 2020 University of Waterloo
|
|---|
| 3 | //
|
|---|
| 4 | // The contents of this file are covered under the licence agreement in the
|
|---|
| 5 | // file "LICENCE" distributed with Cforall.
|
|---|
| 6 | //
|
|---|
| 7 | // concurrency/future.hfa --
|
|---|
| 8 | //
|
|---|
| 9 | // Author : Thierry Delisle & Peiran Hong & Colby Parsons
|
|---|
| 10 | // Created On : Wed Jan 06 17:33:18 2021
|
|---|
| 11 | // Last Modified By : Peter A. Buhr
|
|---|
| 12 | // Last Modified On : Wed Apr 23 22:41:10 2025
|
|---|
| 13 | // Update Count : 22
|
|---|
| 14 | //
|
|---|
| 15 |
|
|---|
| 16 | #pragma once
|
|---|
| 17 |
|
|---|
| 18 | #include "bits/locks.hfa"
|
|---|
| 19 | #include "monitor.hfa"
|
|---|
| 20 | #include "select.hfa"
|
|---|
| 21 | #include "locks.hfa"
|
|---|
| 22 |
|
|---|
| 23 | //----------------------------------------------------------------------------
|
|---|
| 24 | // future
|
|---|
| 25 | // I don't use future_t here as I need to use a lock for this future since it supports multiple consumers.
|
|---|
| 26 | // future_t is lockfree and uses atomics which aren't needed given we use locks here
|
|---|
| 27 | forall( T ) {
|
|---|
| 28 | enum { FUTURE_EMPTY = 0, FUTURE_FULFILLED = 1 };
|
|---|
| 29 |
|
|---|
| 30 | struct future {
|
|---|
| 31 | int state;
|
|---|
| 32 | T result;
|
|---|
| 33 | exception_t * except;
|
|---|
| 34 | dlist( select_node ) waiters;
|
|---|
| 35 | futex_mutex lock;
|
|---|
| 36 | };
|
|---|
| 37 | __CFA_SELECT_GET_TYPE( future(T) );
|
|---|
| 38 |
|
|---|
| 39 | struct future_node {
|
|---|
| 40 | inline select_node;
|
|---|
| 41 | T * my_result;
|
|---|
| 42 | };
|
|---|
| 43 |
|
|---|
| 44 | static inline {
|
|---|
| 45 |
|
|---|
| 46 | void ?{}( future_node(T) & this, thread$ * blocked_thread, T * my_result ) {
|
|---|
| 47 | ((select_node &)this){ blocked_thread };
|
|---|
| 48 | this.my_result = my_result;
|
|---|
| 49 | }
|
|---|
| 50 |
|
|---|
| 51 | void ?{}( future(T) & this ) {
|
|---|
| 52 | this.waiters{};
|
|---|
| 53 | this.except = 0p;
|
|---|
| 54 | this.state = FUTURE_EMPTY;
|
|---|
| 55 | this.lock{};
|
|---|
| 56 | }
|
|---|
| 57 |
|
|---|
| 58 | void ^?{}( future(T) & this ) {
|
|---|
| 59 | free( this.except );
|
|---|
| 60 | }
|
|---|
| 61 |
|
|---|
| 62 | // Reset future back to original state
|
|---|
| 63 | void reset( future(T) & this ) with(this) {
|
|---|
| 64 | lock( lock );
|
|---|
| 65 | if ( ! isEmpty( waiters ) )
|
|---|
| 66 | abort("Attempting to reset a future with blocked waiters");
|
|---|
| 67 | state = FUTURE_EMPTY;
|
|---|
| 68 | free( except );
|
|---|
| 69 | except = 0p;
|
|---|
| 70 | unlock( lock );
|
|---|
| 71 | }
|
|---|
| 72 |
|
|---|
| 73 | // check if the future is available
|
|---|
| 74 | // currently no mutual exclusion because I can't see when you need this call to be synchronous or protected
|
|---|
| 75 | bool available( future(T) & this ) { return __atomic_load_n( &this.state, __ATOMIC_RELAXED ); }
|
|---|
| 76 |
|
|---|
| 77 |
|
|---|
| 78 | // memcpy wrapper to help copy values
|
|---|
| 79 | void copy_T( T & from, T & to ) {
|
|---|
| 80 | memcpy((void *)&to, (void *)&from, sizeof(T));
|
|---|
| 81 | }
|
|---|
| 82 |
|
|---|
| 83 | bool fulfil$( future(T) & this ) with(this) { // helper
|
|---|
| 84 | bool ret_val = ! isEmpty( waiters );
|
|---|
| 85 | state = FUTURE_FULFILLED;
|
|---|
| 86 | while ( ! isEmpty( waiters ) ) {
|
|---|
| 87 | if ( !__handle_waituntil_OR( waiters ) ) // handle special waituntil OR case
|
|---|
| 88 | break; // if handle_OR returns false then waiters is empty so break
|
|---|
| 89 | select_node &s = remove_first( waiters );
|
|---|
| 90 |
|
|---|
| 91 | if ( s.clause_status == 0p ) // poke in result so that woken threads do not need to reacquire any locks
|
|---|
| 92 | copy_T( result, *(((future_node(T) &)s).my_result) );
|
|---|
| 93 |
|
|---|
| 94 | wake_one( waiters, s );
|
|---|
| 95 | }
|
|---|
| 96 | unlock( lock );
|
|---|
| 97 | return ret_val;
|
|---|
| 98 | }
|
|---|
| 99 |
|
|---|
| 100 | // Fulfil the future, returns whether or not someone was unblocked
|
|---|
| 101 | bool fulfil( future(T) & this, T val ) with(this) {
|
|---|
| 102 | lock( lock );
|
|---|
| 103 | if ( state != FUTURE_EMPTY )
|
|---|
| 104 | abort("Attempting to fulfil a future that has already been fulfilled");
|
|---|
| 105 |
|
|---|
| 106 | copy_T( val, result );
|
|---|
| 107 | return fulfil$( this );
|
|---|
| 108 | }
|
|---|
| 109 |
|
|---|
| 110 | bool ?()( future(T) & this, T val ) { // alternate interface
|
|---|
| 111 | return fulfil( this, val );
|
|---|
| 112 | }
|
|---|
| 113 |
|
|---|
| 114 | // Load an exception to the future, returns whether or not someone was unblocked
|
|---|
| 115 | bool fulfil( future(T) & this, exception_t * ex ) with(this) {
|
|---|
| 116 | lock( lock );
|
|---|
| 117 | if ( state != FUTURE_EMPTY )
|
|---|
| 118 | abort("Attempting to fulfil a future that has already been fulfilled");
|
|---|
| 119 |
|
|---|
| 120 | except = ( exception_t * ) malloc( ex->virtual_table->size );
|
|---|
| 121 | ex->virtual_table->copy( except, ex );
|
|---|
| 122 | return fulfil$( this );
|
|---|
| 123 | }
|
|---|
| 124 |
|
|---|
| 125 | bool ?()( future(T) & this, exception_t * ex ) { // alternate interface
|
|---|
| 126 | return fulfil( this, ex );
|
|---|
| 127 | }
|
|---|
| 128 |
|
|---|
| 129 | // Wait for the future to be fulfilled
|
|---|
| 130 | // Also return whether the thread had to block or not
|
|---|
| 131 | [T, bool] get( future(T) & this ) with( this ) {
|
|---|
| 132 | void exceptCheck() { // helper
|
|---|
| 133 | if ( except ) {
|
|---|
| 134 | exception_t * ex = ( exception_t * ) alloca( except->virtual_table->size );
|
|---|
| 135 | except->virtual_table->copy( ex, except );
|
|---|
| 136 | unlock( lock );
|
|---|
| 137 | throwResume * ex;
|
|---|
| 138 | }
|
|---|
| 139 | }
|
|---|
| 140 |
|
|---|
| 141 | lock( lock );
|
|---|
| 142 | T ret_val;
|
|---|
| 143 | if ( state == FUTURE_FULFILLED ) {
|
|---|
| 144 | exceptCheck();
|
|---|
| 145 | copy_T( result, ret_val );
|
|---|
| 146 | unlock( lock );
|
|---|
| 147 | return [ret_val, false];
|
|---|
| 148 | }
|
|---|
| 149 |
|
|---|
| 150 | future_node(T) node = { active_thread(), &ret_val };
|
|---|
| 151 | insert_last( waiters, ((select_node &)node) );
|
|---|
| 152 | unlock( lock );
|
|---|
| 153 | park( );
|
|---|
| 154 | exceptCheck();
|
|---|
| 155 |
|
|---|
| 156 | return [ret_val, true];
|
|---|
| 157 | }
|
|---|
| 158 |
|
|---|
| 159 | // Wait for the future to be fulfilled
|
|---|
| 160 | T get( future(T) & this ) {
|
|---|
| 161 | [T, bool] tt;
|
|---|
| 162 | tt = get(this);
|
|---|
| 163 | return tt.0;
|
|---|
| 164 | }
|
|---|
| 165 |
|
|---|
| 166 | T ?()( future(T) & this ) { // alternate interface
|
|---|
| 167 | return get( this );
|
|---|
| 168 | }
|
|---|
| 169 |
|
|---|
| 170 | // Gets value if it is available and returns [ val, true ]
|
|---|
| 171 | // otherwise returns [ default_val, false]
|
|---|
| 172 | // will not block
|
|---|
| 173 | [T, bool] try_get( future(T) & this ) with(this) {
|
|---|
| 174 | lock( lock );
|
|---|
| 175 | T ret_val;
|
|---|
| 176 | if ( state == FUTURE_FULFILLED ) {
|
|---|
| 177 | copy_T( result, ret_val );
|
|---|
| 178 | unlock( lock );
|
|---|
| 179 | return [ret_val, true];
|
|---|
| 180 | }
|
|---|
| 181 | unlock( lock );
|
|---|
| 182 |
|
|---|
| 183 | return [ret_val, false];
|
|---|
| 184 | }
|
|---|
| 185 |
|
|---|
| 186 | bool register_select( future(T) & this, select_node & s ) with(this) {
|
|---|
| 187 | lock( lock );
|
|---|
| 188 |
|
|---|
| 189 | // check if we can complete operation. If so race to establish winner in special OR case
|
|---|
| 190 | if ( !s.park_counter && state != FUTURE_EMPTY ) {
|
|---|
| 191 | if ( !__make_select_node_available( s ) ) { // we didn't win the race so give up on registering
|
|---|
| 192 | unlock( lock );
|
|---|
| 193 | return false;
|
|---|
| 194 | }
|
|---|
| 195 | }
|
|---|
| 196 |
|
|---|
| 197 | // future not ready -> insert select node and return
|
|---|
| 198 | if ( state == FUTURE_EMPTY ) {
|
|---|
| 199 | insert_last( waiters, s );
|
|---|
| 200 | unlock( lock );
|
|---|
| 201 | return false;
|
|---|
| 202 | }
|
|---|
| 203 |
|
|---|
| 204 | __make_select_node_available( s );
|
|---|
| 205 | unlock( lock );
|
|---|
| 206 | return true;
|
|---|
| 207 | }
|
|---|
| 208 |
|
|---|
| 209 | bool unregister_select( future(T) & this, select_node & s ) with(this) {
|
|---|
| 210 | if ( ! isListed( s ) ) return false;
|
|---|
| 211 | lock( lock );
|
|---|
| 212 | if ( isListed( s ) ) remove( s );
|
|---|
| 213 | unlock( lock );
|
|---|
| 214 | return false;
|
|---|
| 215 | }
|
|---|
| 216 |
|
|---|
| 217 | bool on_selected( future(T) &, select_node & ) { return true; }
|
|---|
| 218 | }
|
|---|
| 219 | }
|
|---|
| 220 |
|
|---|
| 221 | //--------------------------------------------------------------------------------------------------------
|
|---|
| 222 | // These futures below do not support select statements so they may not have as many features as 'future'
|
|---|
| 223 | // however the 'single_future' is cheap and cheerful and is most likely more performant than 'future'
|
|---|
| 224 | // since it uses raw atomics and no locks
|
|---|
| 225 | //
|
|---|
| 226 | // As far as 'multi_future' goes I can't see many use cases as it will be less performant than 'future'
|
|---|
| 227 | // since it is monitor based and also is not compatible with select statements
|
|---|
| 228 | //--------------------------------------------------------------------------------------------------------
|
|---|
| 229 |
|
|---|
| 230 | forall( T ) {
|
|---|
| 231 | struct single_future {
|
|---|
| 232 | inline future_t;
|
|---|
| 233 | T result;
|
|---|
| 234 | };
|
|---|
| 235 |
|
|---|
| 236 | static inline {
|
|---|
| 237 | // Reset future back to original state
|
|---|
| 238 | void reset(single_future(T) & this) { reset( (future_t&)this ); }
|
|---|
| 239 |
|
|---|
| 240 | // check if the future is available
|
|---|
| 241 | bool available( single_future(T) & this ) { return available( (future_t&)this ); }
|
|---|
| 242 |
|
|---|
| 243 | // Mark the future as abandoned, meaning it will be deleted by the server
|
|---|
| 244 | // This doesn't work beause of the potential need for a destructor
|
|---|
| 245 | // void abandon( single_future(T) & this );
|
|---|
| 246 |
|
|---|
| 247 | // Fulfil the future, returns whether or not someone was unblocked
|
|---|
| 248 | thread$ * fulfil( single_future(T) & this, T result ) {
|
|---|
| 249 | this.result = result;
|
|---|
| 250 | return fulfil( (future_t&)this );
|
|---|
| 251 | }
|
|---|
| 252 |
|
|---|
| 253 | // Wait for the future to be fulfilled
|
|---|
| 254 | // Also return whether the thread had to block or not
|
|---|
| 255 | [T, bool] wait( single_future(T) & this ) {
|
|---|
| 256 | bool r = wait( (future_t&)this );
|
|---|
| 257 | return [this.result, r];
|
|---|
| 258 | }
|
|---|
| 259 |
|
|---|
| 260 | // Wait for the future to be fulfilled
|
|---|
| 261 | T wait( single_future(T) & this ) {
|
|---|
| 262 | [T, bool] tt;
|
|---|
| 263 | tt = wait(this);
|
|---|
| 264 | return tt.0;
|
|---|
| 265 | }
|
|---|
| 266 | }
|
|---|
| 267 | }
|
|---|
| 268 |
|
|---|
| 269 | forall( T ) {
|
|---|
| 270 | monitor multi_future {
|
|---|
| 271 | inline future_t;
|
|---|
| 272 | condition blocked;
|
|---|
| 273 | bool has_first;
|
|---|
| 274 | T result;
|
|---|
| 275 | };
|
|---|
| 276 |
|
|---|
| 277 | static inline {
|
|---|
| 278 | void ?{}(multi_future(T) & this) {
|
|---|
| 279 | this.has_first = false;
|
|---|
| 280 | }
|
|---|
| 281 |
|
|---|
| 282 | bool $first( multi_future(T) & mutex this ) {
|
|---|
| 283 | if ( this.has_first ) {
|
|---|
| 284 | wait( this.blocked );
|
|---|
| 285 | return false;
|
|---|
| 286 | }
|
|---|
| 287 |
|
|---|
| 288 | this.has_first = true;
|
|---|
| 289 | return true;
|
|---|
| 290 | }
|
|---|
| 291 |
|
|---|
| 292 | void $first_done( multi_future(T) & mutex this ) {
|
|---|
| 293 | this.has_first = false;
|
|---|
| 294 | signal_all( this.blocked );
|
|---|
| 295 | }
|
|---|
| 296 |
|
|---|
| 297 | // Reset future back to original state
|
|---|
| 298 | void reset(multi_future(T) & mutex this) {
|
|---|
| 299 | if ( this.has_first != false ) abort("Attempting to reset a multi_future with at least one blocked threads");
|
|---|
| 300 | if ( !is_empty(this.blocked) ) abort("Attempting to reset a multi_future with multiple blocked threads");
|
|---|
| 301 | reset( (future_t&)*(future_t*)((uintptr_t)&this + sizeof(monitor$)) );
|
|---|
| 302 | }
|
|---|
| 303 |
|
|---|
| 304 | // Fulfil the future, returns whether or not someone was unblocked
|
|---|
| 305 | bool fulfil( multi_future(T) & this, T result ) {
|
|---|
| 306 | this.result = result;
|
|---|
| 307 | return fulfil( (future_t&)*(future_t*)((uintptr_t)&this + sizeof(monitor$)) ) != 0p;
|
|---|
| 308 | }
|
|---|
| 309 |
|
|---|
| 310 | // Wait for the future to be fulfilled
|
|---|
| 311 | // Also return whether the thread had to block or not
|
|---|
| 312 | [T, bool] wait( multi_future(T) & this ) {
|
|---|
| 313 | bool sw = $first( this );
|
|---|
| 314 | bool w = !sw;
|
|---|
| 315 | if ( sw ) {
|
|---|
| 316 | w = wait( (future_t&)*(future_t*)((uintptr_t)&this + sizeof(monitor$)) );
|
|---|
| 317 | $first_done( this );
|
|---|
| 318 | }
|
|---|
| 319 |
|
|---|
| 320 | return [this.result, w];
|
|---|
| 321 | }
|
|---|
| 322 |
|
|---|
| 323 | // Wait for the future to be fulfilled
|
|---|
| 324 | T wait( multi_future(T) & this ) {
|
|---|
| 325 | return wait(this).0;
|
|---|
| 326 | }
|
|---|
| 327 | }
|
|---|
| 328 | }
|
|---|