1 | //
|
---|
2 | // Cforall Version 1.0.0 Copyright (C) 2020 University of Waterloo
|
---|
3 | //
|
---|
4 | // The contents of this file are covered under the licence agreement in the
|
---|
5 | // file "LICENCE" distributed with Cforall.
|
---|
6 | //
|
---|
7 | // concurrency/future.hfa --
|
---|
8 | //
|
---|
9 | // Author : Thierry Delisle & Peiran Hong & Colby Parsons
|
---|
10 | // Created On : Wed Jan 06 17:33:18 2021
|
---|
11 | // Last Modified By :
|
---|
12 | // Last Modified On :
|
---|
13 | // Update Count :
|
---|
14 | //
|
---|
15 |
|
---|
16 | #pragma once
|
---|
17 |
|
---|
18 | #include "bits/locks.hfa"
|
---|
19 | #include "monitor.hfa"
|
---|
20 | #include "select.hfa"
|
---|
21 | #include "locks.hfa"
|
---|
22 |
|
---|
23 | //----------------------------------------------------------------------------
|
---|
24 | // future
|
---|
25 | // I don't use future_t here since I need to use a lock for this future
|
---|
26 | // since it supports multiple consumers
|
---|
27 | // future_t is lockfree and uses atomics which aren't needed given we use locks here
|
---|
28 | forall( T ) {
|
---|
29 | // enum { FUTURE_EMPTY = 0, FUTURE_FULFILLED = 1 }; // Enums seem to be broken so feel free to add this back afterwards
|
---|
30 |
|
---|
31 | // temporary enum replacement
|
---|
32 | const int FUTURE_EMPTY = 0;
|
---|
33 | const int FUTURE_FULFILLED = 1;
|
---|
34 |
|
---|
35 | struct future {
|
---|
36 | int state;
|
---|
37 | T result;
|
---|
38 | dlist( select_node ) waiters;
|
---|
39 | futex_mutex lock;
|
---|
40 | };
|
---|
41 |
|
---|
42 | struct future_node {
|
---|
43 | inline select_node;
|
---|
44 | T * my_result;
|
---|
45 | };
|
---|
46 |
|
---|
47 | static inline {
|
---|
48 |
|
---|
49 | void ?{}( future_node(T) & this, thread$ * blocked_thread, T * my_result ) {
|
---|
50 | ((select_node &)this){ blocked_thread };
|
---|
51 | this.my_result = my_result;
|
---|
52 | }
|
---|
53 |
|
---|
54 | void ?{}( future(T) & this ) {
|
---|
55 | this.waiters{};
|
---|
56 | this.state = FUTURE_EMPTY;
|
---|
57 | this.lock{};
|
---|
58 | }
|
---|
59 |
|
---|
60 | // Reset future back to original state
|
---|
61 | void reset( future(T) & this ) with(this)
|
---|
62 | {
|
---|
63 | lock( lock );
|
---|
64 | if( ! waiters`isEmpty )
|
---|
65 | abort("Attempting to reset a future with blocked waiters");
|
---|
66 | state = FUTURE_EMPTY;
|
---|
67 | unlock( lock );
|
---|
68 | }
|
---|
69 |
|
---|
70 | // check if the future is available
|
---|
71 | // currently no mutual exclusion because I can't see when you need this call to be synchronous or protected
|
---|
72 | bool available( future(T) & this ) { return this.state; }
|
---|
73 |
|
---|
74 |
|
---|
75 | // memcpy wrapper to help copy values
|
---|
76 | void copy_T( T & from, T & to ) {
|
---|
77 | memcpy((void *)&to, (void *)&from, sizeof(T));
|
---|
78 | }
|
---|
79 |
|
---|
80 | // internal helper to signal waiters off of the future
|
---|
81 | void _internal_flush( future(T) & this ) with(this) {
|
---|
82 | while( ! waiters`isEmpty ) {
|
---|
83 | if ( !__handle_waituntil_OR( waiters ) ) // handle special waituntil OR case
|
---|
84 | break; // if handle_OR returns false then waiters is empty so break
|
---|
85 | select_node &s = try_pop_front( waiters );
|
---|
86 |
|
---|
87 | if ( s.clause_status == 0p ) // poke in result so that woken threads do not need to reacquire any locks
|
---|
88 | copy_T( result, *(((future_node(T) &)s).my_result) );
|
---|
89 |
|
---|
90 | wake_one( waiters, s );
|
---|
91 | }
|
---|
92 | }
|
---|
93 |
|
---|
94 | // Fulfil the future, returns whether or not someone was unblocked
|
---|
95 | bool fulfil( future(T) & this, T val ) with(this) {
|
---|
96 | lock( lock );
|
---|
97 | if( state != FUTURE_EMPTY )
|
---|
98 | abort("Attempting to fulfil a future that has already been fulfilled");
|
---|
99 |
|
---|
100 | copy_T( val, result );
|
---|
101 |
|
---|
102 | bool ret_val = ! waiters`isEmpty;
|
---|
103 | state = FUTURE_FULFILLED;
|
---|
104 | _internal_flush( this );
|
---|
105 | unlock( lock );
|
---|
106 | return ret_val;
|
---|
107 | }
|
---|
108 |
|
---|
109 | // Wait for the future to be fulfilled
|
---|
110 | // Also return whether the thread had to block or not
|
---|
111 | [T, bool] get( future(T) & this ) with( this ) {
|
---|
112 | lock( lock );
|
---|
113 | T ret_val;
|
---|
114 | if( state == FUTURE_FULFILLED ) {
|
---|
115 | copy_T( result, ret_val );
|
---|
116 | unlock( lock );
|
---|
117 | return [ret_val, false];
|
---|
118 | }
|
---|
119 |
|
---|
120 | future_node(T) node = { active_thread(), &ret_val };
|
---|
121 | insert_last( waiters, ((select_node &)node) );
|
---|
122 | unlock( lock );
|
---|
123 | park( );
|
---|
124 |
|
---|
125 | return [ret_val, true];
|
---|
126 | }
|
---|
127 |
|
---|
128 | // Wait for the future to be fulfilled
|
---|
129 | T get( future(T) & this ) {
|
---|
130 | [T, bool] tt;
|
---|
131 | tt = get(this);
|
---|
132 | return tt.0;
|
---|
133 | }
|
---|
134 |
|
---|
135 | // Gets value if it is available and returns [ val, true ]
|
---|
136 | // otherwise returns [ default_val, false]
|
---|
137 | // will not block
|
---|
138 | [T, bool] try_get( future(T) & this ) with(this) {
|
---|
139 | lock( lock );
|
---|
140 | T ret_val;
|
---|
141 | if( state == FUTURE_FULFILLED ) {
|
---|
142 | copy_T( result, ret_val );
|
---|
143 | unlock( lock );
|
---|
144 | return [ret_val, true];
|
---|
145 | }
|
---|
146 | unlock( lock );
|
---|
147 |
|
---|
148 | return [ret_val, false];
|
---|
149 | }
|
---|
150 |
|
---|
151 | bool register_select( future(T) & this, select_node & s ) with(this) {
|
---|
152 | lock( lock );
|
---|
153 |
|
---|
154 | // check if we can complete operation. If so race to establish winner in special OR case
|
---|
155 | if ( !s.park_counter && state != FUTURE_EMPTY ) {
|
---|
156 | if ( !__make_select_node_available( s ) ) { // we didn't win the race so give up on registering
|
---|
157 | unlock( lock );
|
---|
158 | return false;
|
---|
159 | }
|
---|
160 | }
|
---|
161 |
|
---|
162 | // future not ready -> insert select node and return
|
---|
163 | if( state == FUTURE_EMPTY ) {
|
---|
164 | insert_last( waiters, s );
|
---|
165 | unlock( lock );
|
---|
166 | return false;
|
---|
167 | }
|
---|
168 |
|
---|
169 | __make_select_node_available( s );
|
---|
170 | unlock( lock );
|
---|
171 | return true;
|
---|
172 | }
|
---|
173 |
|
---|
174 | bool unregister_select( future(T) & this, select_node & s ) with(this) {
|
---|
175 | if ( ! s`isListed ) return false;
|
---|
176 | lock( lock );
|
---|
177 | if ( s`isListed ) remove( s );
|
---|
178 | unlock( lock );
|
---|
179 | return false;
|
---|
180 | }
|
---|
181 |
|
---|
182 | bool on_selected( future(T) & this, select_node & node ) { return true; }
|
---|
183 | }
|
---|
184 | }
|
---|
185 |
|
---|
186 | //--------------------------------------------------------------------------------------------------------
|
---|
187 | // These futures below do not support select statements so they may not be as useful as 'future'
|
---|
188 | // however the 'single_future' is cheap and cheerful and is most likely more performant than 'future'
|
---|
189 | // since it uses raw atomics and no locks
|
---|
190 | //
|
---|
191 | // As far as 'multi_future' goes I can't see many use cases as it will be less performant than 'future'
|
---|
192 | // since it is monitor based and also is not compatible with select statements
|
---|
193 | //--------------------------------------------------------------------------------------------------------
|
---|
194 |
|
---|
195 | forall( T ) {
|
---|
196 | struct single_future {
|
---|
197 | inline future_t;
|
---|
198 | T result;
|
---|
199 | };
|
---|
200 |
|
---|
201 | static inline {
|
---|
202 | // Reset future back to original state
|
---|
203 | void reset(single_future(T) & this) { reset( (future_t&)this ); }
|
---|
204 |
|
---|
205 | // check if the future is available
|
---|
206 | bool available( single_future(T) & this ) { return available( (future_t&)this ); }
|
---|
207 |
|
---|
208 | // Mark the future as abandoned, meaning it will be deleted by the server
|
---|
209 | // This doesn't work beause of the potential need for a destructor
|
---|
210 | void abandon( single_future(T) & this );
|
---|
211 |
|
---|
212 | // Fulfil the future, returns whether or not someone was unblocked
|
---|
213 | thread$ * fulfil( single_future(T) & this, T result ) {
|
---|
214 | this.result = result;
|
---|
215 | return fulfil( (future_t&)this );
|
---|
216 | }
|
---|
217 |
|
---|
218 | // Wait for the future to be fulfilled
|
---|
219 | // Also return whether the thread had to block or not
|
---|
220 | [T, bool] wait( single_future(T) & this ) {
|
---|
221 | bool r = wait( (future_t&)this );
|
---|
222 | return [this.result, r];
|
---|
223 | }
|
---|
224 |
|
---|
225 | // Wait for the future to be fulfilled
|
---|
226 | T wait( single_future(T) & this ) {
|
---|
227 | [T, bool] tt;
|
---|
228 | tt = wait(this);
|
---|
229 | return tt.0;
|
---|
230 | }
|
---|
231 | }
|
---|
232 | }
|
---|
233 |
|
---|
234 | forall( T ) {
|
---|
235 | monitor multi_future {
|
---|
236 | inline future_t;
|
---|
237 | condition blocked;
|
---|
238 | bool has_first;
|
---|
239 | T result;
|
---|
240 | };
|
---|
241 |
|
---|
242 | static inline {
|
---|
243 | void ?{}(multi_future(T) & this) {
|
---|
244 | this.has_first = false;
|
---|
245 | }
|
---|
246 |
|
---|
247 | bool $first( multi_future(T) & mutex this ) {
|
---|
248 | if (this.has_first) {
|
---|
249 | wait( this.blocked );
|
---|
250 | return false;
|
---|
251 | }
|
---|
252 |
|
---|
253 | this.has_first = true;
|
---|
254 | return true;
|
---|
255 | }
|
---|
256 |
|
---|
257 | void $first_done( multi_future(T) & mutex this ) {
|
---|
258 | this.has_first = false;
|
---|
259 | signal_all( this.blocked );
|
---|
260 | }
|
---|
261 |
|
---|
262 | // Reset future back to original state
|
---|
263 | void reset(multi_future(T) & mutex this) {
|
---|
264 | if( this.has_first != false) abort("Attempting to reset a multi_future with at least one blocked threads");
|
---|
265 | if( !is_empty(this.blocked) ) abort("Attempting to reset a multi_future with multiple blocked threads");
|
---|
266 | reset( (future_t&)this );
|
---|
267 | }
|
---|
268 |
|
---|
269 | // Fulfil the future, returns whether or not someone was unblocked
|
---|
270 | bool fulfil( multi_future(T) & this, T result ) {
|
---|
271 | this.result = result;
|
---|
272 | return fulfil( (future_t&)this ) != 0p;
|
---|
273 | }
|
---|
274 |
|
---|
275 | // Wait for the future to be fulfilled
|
---|
276 | // Also return whether the thread had to block or not
|
---|
277 | [T, bool] wait( multi_future(T) & this ) {
|
---|
278 | bool sw = $first( this );
|
---|
279 | bool w = !sw;
|
---|
280 | if ( sw ) {
|
---|
281 | w = wait( (future_t&)this );
|
---|
282 | $first_done( this );
|
---|
283 | }
|
---|
284 |
|
---|
285 | return [this.result, w];
|
---|
286 | }
|
---|
287 |
|
---|
288 | // Wait for the future to be fulfilled
|
---|
289 | T wait( multi_future(T) & this ) {
|
---|
290 | return wait(this).0;
|
---|
291 | }
|
---|
292 | }
|
---|
293 | }
|
---|