[70f8bcd2] | 1 | //
|
---|
| 2 | // Cforall Version 1.0.0 Copyright (C) 2020 University of Waterloo
|
---|
| 3 | //
|
---|
| 4 | // The contents of this file are covered under the licence agreement in the
|
---|
| 5 | // file "LICENCE" distributed with Cforall.
|
---|
| 6 | //
|
---|
[339e30a] | 7 | // concurrency/future.hfa --
|
---|
[70f8bcd2] | 8 | //
|
---|
[339e30a] | 9 | // Author : Thierry Delisle & Peiran Hong & Colby Parsons
|
---|
[70f8bcd2] | 10 | // Created On : Wed Jan 06 17:33:18 2021
|
---|
| 11 | // Last Modified By :
|
---|
| 12 | // Last Modified On :
|
---|
| 13 | // Update Count :
|
---|
| 14 | //
|
---|
| 15 |
|
---|
[339e30a] | 16 | // #pragma once
|
---|
[70f8bcd2] | 17 |
|
---|
| 18 | #include "bits/locks.hfa"
|
---|
| 19 | #include "monitor.hfa"
|
---|
[339e30a] | 20 | #include "select.hfa"
|
---|
[70f8bcd2] | 21 |
|
---|
[339e30a] | 22 | //----------------------------------------------------------------------------
|
---|
| 23 | // future
|
---|
| 24 | // I don't use future_t here since I need to use a lock for this future
|
---|
| 25 | // since it supports multiple consumers
|
---|
| 26 | // future_t is lockfree and uses atomics which aren't needed given we use locks here
|
---|
[fd54fef] | 27 | forall( T ) {
|
---|
[339e30a] | 28 | // enum(int) { FUTURE_EMPTY = 0, FUTURE_FULFILLED = 1 }; // Enums seem to be broken so feel free to add this back afterwards
|
---|
| 29 |
|
---|
| 30 | // temporary enum replacement
|
---|
| 31 | const int FUTURE_EMPTY = 0;
|
---|
| 32 | const int FUTURE_FULFILLED = 1;
|
---|
| 33 |
|
---|
[70f8bcd2] | 34 | struct future {
|
---|
[339e30a] | 35 | int state;
|
---|
| 36 | T result;
|
---|
| 37 | dlist( select_node ) waiters;
|
---|
| 38 | futex_mutex lock;
|
---|
| 39 | };
|
---|
| 40 |
|
---|
| 41 | struct future_node {
|
---|
| 42 | inline select_node;
|
---|
| 43 | T * my_result;
|
---|
| 44 | };
|
---|
| 45 |
|
---|
| 46 | // C_TODO: perhaps allow exceptions to be inserted like uC++?
|
---|
| 47 |
|
---|
| 48 | static inline {
|
---|
| 49 |
|
---|
| 50 | void ?{}( future_node(T) & this, thread$ * blocked_thread, T * my_result ) {
|
---|
| 51 | ((select_node &)this){ blocked_thread };
|
---|
| 52 | this.my_result = my_result;
|
---|
| 53 | }
|
---|
| 54 |
|
---|
| 55 | void ?{}(future(T) & this) {
|
---|
| 56 | this.waiters{};
|
---|
| 57 | this.state = FUTURE_EMPTY;
|
---|
| 58 | }
|
---|
| 59 |
|
---|
| 60 | // Reset future back to original state
|
---|
| 61 | void reset(future(T) & this) with(this)
|
---|
| 62 | {
|
---|
| 63 | lock( lock );
|
---|
| 64 | if( ! waiters`isEmpty )
|
---|
| 65 | abort("Attempting to reset a future with blocked waiters");
|
---|
| 66 | state = FUTURE_EMPTY;
|
---|
| 67 | unlock( lock );
|
---|
| 68 | }
|
---|
| 69 |
|
---|
| 70 | // check if the future is available
|
---|
| 71 | // currently no mutual exclusion because I can't see when you need this call to be synchronous or protected
|
---|
| 72 | bool available( future(T) & this ) { return this.state; }
|
---|
| 73 |
|
---|
| 74 |
|
---|
| 75 | // memcpy wrapper to help copy values
|
---|
| 76 | void copy_T( T & from, T & to ) {
|
---|
| 77 | memcpy((void *)&to, (void *)&from, sizeof(T));
|
---|
| 78 | }
|
---|
| 79 |
|
---|
| 80 | // internal helper to signal waiters off of the future
|
---|
| 81 | void _internal_flush( future(T) & this ) with(this) {
|
---|
| 82 | while( ! waiters`isEmpty ) {
|
---|
| 83 | select_node &s = try_pop_front( waiters );
|
---|
| 84 |
|
---|
| 85 | if ( s.race_flag == 0p )
|
---|
| 86 | // poke in result so that woken threads do not need to reacquire any locks
|
---|
| 87 | // *(((future_node(T) &)s).my_result) = result;
|
---|
| 88 | copy_T( result, *(((future_node(T) &)s).my_result) );
|
---|
| 89 | else if ( !install_select_winner( s, &this ) ) continue;
|
---|
| 90 |
|
---|
| 91 | // only unpark if future is not selected
|
---|
| 92 | // or if it is selected we only unpark if we win the race
|
---|
| 93 | unpark( s.blocked_thread );
|
---|
| 94 | }
|
---|
| 95 | }
|
---|
| 96 |
|
---|
| 97 | // Fulfil the future, returns whether or not someone was unblocked
|
---|
| 98 | bool fulfil( future(T) & this, T & val ) with(this) {
|
---|
| 99 | lock( lock );
|
---|
| 100 | if( state != FUTURE_EMPTY )
|
---|
| 101 | abort("Attempting to fulfil a future that has already been fulfilled");
|
---|
| 102 |
|
---|
| 103 | copy_T( val, result );
|
---|
| 104 |
|
---|
| 105 | bool ret_val = ! waiters`isEmpty;
|
---|
| 106 | state = FUTURE_FULFILLED;
|
---|
| 107 | _internal_flush( this );
|
---|
| 108 | unlock( lock );
|
---|
| 109 | return ret_val;
|
---|
| 110 | }
|
---|
| 111 |
|
---|
| 112 | // Wait for the future to be fulfilled
|
---|
| 113 | // Also return whether the thread had to block or not
|
---|
| 114 | [T, bool] get( future(T) & this ) with( this ) {
|
---|
| 115 | lock( lock );
|
---|
| 116 | T ret_val;
|
---|
| 117 | if( state == FUTURE_FULFILLED ) {
|
---|
| 118 | copy_T( result, ret_val );
|
---|
| 119 | unlock( lock );
|
---|
| 120 | return [ret_val, false];
|
---|
| 121 | }
|
---|
| 122 |
|
---|
| 123 | future_node(T) node = { active_thread(), &ret_val };
|
---|
| 124 | insert_last( waiters, ((select_node &)node) );
|
---|
| 125 | unlock( lock );
|
---|
| 126 | park( );
|
---|
| 127 |
|
---|
| 128 | return [ret_val, true];
|
---|
| 129 | }
|
---|
| 130 |
|
---|
| 131 | // Wait for the future to be fulfilled
|
---|
| 132 | T get( future(T) & this ) {
|
---|
| 133 | [T, bool] tt;
|
---|
| 134 | tt = get(this);
|
---|
| 135 | return tt.0;
|
---|
| 136 | }
|
---|
| 137 |
|
---|
| 138 | // Gets value if it is available and returns [ val, true ]
|
---|
| 139 | // otherwise returns [ default_val, false]
|
---|
| 140 | // will not block
|
---|
| 141 | [T, bool] try_get( future(T) & this ) with(this) {
|
---|
| 142 | lock( lock );
|
---|
| 143 | T ret_val;
|
---|
| 144 | if( state == FUTURE_FULFILLED ) {
|
---|
| 145 | copy_T( result, ret_val );
|
---|
| 146 | unlock( lock );
|
---|
| 147 | return [ret_val, true];
|
---|
| 148 | }
|
---|
| 149 | unlock( lock );
|
---|
| 150 | // cast to (T *) needed to trick the resolver to let me return *0p
|
---|
| 151 | return [ret_val, false];
|
---|
| 152 | }
|
---|
| 153 |
|
---|
| 154 | void * register_select( future(T) & this, select_node & s ) with(this) {
|
---|
| 155 | lock( lock );
|
---|
| 156 |
|
---|
| 157 | // future not ready -> insert select node and return 0p
|
---|
| 158 | if( state == FUTURE_EMPTY ) {
|
---|
| 159 | insert_last( waiters, s );
|
---|
| 160 | unlock( lock );
|
---|
| 161 | return 0p;
|
---|
| 162 | }
|
---|
| 163 |
|
---|
| 164 | // future ready and we won race to install it as the select winner return 1p
|
---|
| 165 | if ( install_select_winner( s, &this ) ) {
|
---|
| 166 | unlock( lock );
|
---|
| 167 | return 1p;
|
---|
| 168 | }
|
---|
| 169 |
|
---|
| 170 | unlock( lock );
|
---|
| 171 | // future ready and we lost race to install it as the select winner
|
---|
| 172 | return 2p;
|
---|
| 173 | }
|
---|
| 174 |
|
---|
| 175 | void unregister_select( future(T) & this, select_node & s ) with(this) {
|
---|
| 176 | lock( lock );
|
---|
| 177 | if ( s`isListed ) remove( s );
|
---|
| 178 | unlock( lock );
|
---|
| 179 | }
|
---|
| 180 |
|
---|
| 181 | }
|
---|
| 182 | }
|
---|
| 183 |
|
---|
| 184 | //--------------------------------------------------------------------------------------------------------
|
---|
| 185 | // These futures below do not support select statements so they may not be as useful as 'future'
|
---|
| 186 | // however the 'single_future' is cheap and cheerful and is most likely more performant than 'future'
|
---|
| 187 | // since it uses raw atomics and no locks afaik
|
---|
| 188 | //
|
---|
| 189 | // As far as 'multi_future' goes I can't see many use cases as it will be less performant than 'future'
|
---|
| 190 | // since it is monitor based and also is not compatible with select statements
|
---|
| 191 | //--------------------------------------------------------------------------------------------------------
|
---|
| 192 |
|
---|
| 193 | forall( T ) {
|
---|
| 194 | struct single_future {
|
---|
[70f8bcd2] | 195 | inline future_t;
|
---|
| 196 | T result;
|
---|
| 197 | };
|
---|
| 198 |
|
---|
| 199 | static inline {
|
---|
| 200 | // Reset future back to original state
|
---|
[339e30a] | 201 | void reset(single_future(T) & this) { reset( (future_t&)this ); }
|
---|
[70f8bcd2] | 202 |
|
---|
| 203 | // check if the future is available
|
---|
[339e30a] | 204 | bool available( single_future(T) & this ) { return available( (future_t&)this ); }
|
---|
[70f8bcd2] | 205 |
|
---|
| 206 | // Mark the future as abandoned, meaning it will be deleted by the server
|
---|
| 207 | // This doesn't work beause of the potential need for a destructor
|
---|
[339e30a] | 208 | void abandon( single_future(T) & this );
|
---|
[70f8bcd2] | 209 |
|
---|
| 210 | // Fulfil the future, returns whether or not someone was unblocked
|
---|
[339e30a] | 211 | thread$ * fulfil( single_future(T) & this, T result ) {
|
---|
[70f8bcd2] | 212 | this.result = result;
|
---|
| 213 | return fulfil( (future_t&)this );
|
---|
| 214 | }
|
---|
| 215 |
|
---|
| 216 | // Wait for the future to be fulfilled
|
---|
| 217 | // Also return whether the thread had to block or not
|
---|
[339e30a] | 218 | [T, bool] wait( single_future(T) & this ) {
|
---|
[70f8bcd2] | 219 | bool r = wait( (future_t&)this );
|
---|
| 220 | return [this.result, r];
|
---|
| 221 | }
|
---|
| 222 |
|
---|
| 223 | // Wait for the future to be fulfilled
|
---|
[339e30a] | 224 | T wait( single_future(T) & this ) {
|
---|
[70f8bcd2] | 225 | [T, bool] tt;
|
---|
| 226 | tt = wait(this);
|
---|
| 227 | return tt.0;
|
---|
| 228 | }
|
---|
| 229 | }
|
---|
| 230 | }
|
---|
| 231 |
|
---|
[fd54fef] | 232 | forall( T ) {
|
---|
[70f8bcd2] | 233 | monitor multi_future {
|
---|
| 234 | inline future_t;
|
---|
| 235 | condition blocked;
|
---|
| 236 | bool has_first;
|
---|
| 237 | T result;
|
---|
| 238 | };
|
---|
| 239 |
|
---|
| 240 | static inline {
|
---|
| 241 | void ?{}(multi_future(T) & this) {
|
---|
| 242 | this.has_first = false;
|
---|
| 243 | }
|
---|
| 244 |
|
---|
| 245 | bool $first( multi_future(T) & mutex this ) {
|
---|
| 246 | if (this.has_first) {
|
---|
| 247 | wait( this.blocked );
|
---|
| 248 | return false;
|
---|
| 249 | }
|
---|
| 250 |
|
---|
| 251 | this.has_first = true;
|
---|
| 252 | return true;
|
---|
| 253 | }
|
---|
| 254 |
|
---|
| 255 | void $first_done( multi_future(T) & mutex this ) {
|
---|
| 256 | this.has_first = false;
|
---|
| 257 | signal_all( this.blocked );
|
---|
| 258 | }
|
---|
| 259 |
|
---|
| 260 | // Reset future back to original state
|
---|
| 261 | void reset(multi_future(T) & mutex this) {
|
---|
| 262 | if( this.has_first != false) abort("Attempting to reset a multi_future with at least one blocked threads");
|
---|
| 263 | if( !is_empty(this.blocked) ) abort("Attempting to reset a multi_future with multiple blocked threads");
|
---|
| 264 | reset( (future_t&)this );
|
---|
| 265 | }
|
---|
| 266 |
|
---|
| 267 | // Fulfil the future, returns whether or not someone was unblocked
|
---|
| 268 | bool fulfil( multi_future(T) & this, T result ) {
|
---|
| 269 | this.result = result;
|
---|
[c323837] | 270 | return fulfil( (future_t&)this ) != 0p;
|
---|
[70f8bcd2] | 271 | }
|
---|
| 272 |
|
---|
| 273 | // Wait for the future to be fulfilled
|
---|
| 274 | // Also return whether the thread had to block or not
|
---|
| 275 | [T, bool] wait( multi_future(T) & this ) {
|
---|
| 276 | bool sw = $first( this );
|
---|
| 277 | bool w = !sw;
|
---|
| 278 | if ( sw ) {
|
---|
| 279 | w = wait( (future_t&)this );
|
---|
| 280 | $first_done( this );
|
---|
| 281 | }
|
---|
| 282 |
|
---|
| 283 | return [this.result, w];
|
---|
| 284 | }
|
---|
| 285 |
|
---|
| 286 | // Wait for the future to be fulfilled
|
---|
| 287 | T wait( multi_future(T) & this ) {
|
---|
| 288 | return wait(this).0;
|
---|
| 289 | }
|
---|
| 290 | }
|
---|
[339e30a] | 291 | }
|
---|