source: libcfa/src/collections/string_res.cfa@ ed5023d1

Last change on this file since ed5023d1 was ed5023d1, checked in by Peter A. Buhr <pabuhr@…>, 7 months ago

fix substring error being outside of string, simplify comparison operations, start refactoring string search operations

  • Property mode set to 100644
File size: 40.0 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// string_res -- variable-length, mutable run of text, with resource semantics
8//
9// Author : Michael L. Brooks
10// Created On : Fri Sep 03 11:00:00 2021
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Sun Apr 6 07:38:02 2025
13// Update Count : 111
14//
15
16#include "string_res.hfa"
17#include "string_sharectx.hfa"
18#include "stdlib.hfa"
19#include <ctype.h>
20
21// Workaround for observed performance penalty from calling CFA's alloc.
22// Workaround is: EndVbyte = TEMP_ALLOC(char, CurrSize)
23// Should be: EndVbyte = alloc(CurrSize)
24#define TEMP_ALLOC(T, n) (( T * ) malloc( n * sizeof( T ) ))
25
26#include <assert.h>
27#include <complex.h> // creal, cimag
28
29//######################### VbyteHeap "header" #########################
30
31#ifdef VbyteDebug
32HandleNode *HeaderPtr;
33#endif // VbyteDebug
34
35struct VbyteHeap {
36 int NoOfCompactions; // number of compactions of the byte area
37 int NoOfExtensions; // number of extensions in the size of the byte area
38 int NoOfReductions; // number of reductions in the size of the byte area
39
40 int InitSize; // initial number of bytes in the byte-string area
41 int CurrSize; // current number of bytes in the byte-string area
42 char *StartVbyte; // pointer to the `st byte of the start of the byte-string area
43 char *EndVbyte; // pointer to the next byte after the end of the currently used portion of byte-string area
44 void *ExtVbyte; // pointer to the next byte after the end of the byte-string area
45
46 HandleNode Header; // header node for handle list
47}; // VbyteHeap
48
49
50static void compaction( VbyteHeap & ); // compaction of the byte area
51static void garbage( VbyteHeap &, int ); // garbage collect the byte area
52static void extend( VbyteHeap &, int ); // extend the size of the byte area
53static void reduce( VbyteHeap &, int ); // reduce the size of the byte area
54
55static void ?{}( VbyteHeap &, size_t = 1000 );
56static void ^?{}( VbyteHeap & );
57
58static int ByteCmp( char *, int, int, char *, int, int ); // compare 2 blocks of bytes
59static char *VbyteAlloc( VbyteHeap &, int ); // allocate a block bytes in the heap
60static char *VbyteTryAdjustLast( VbyteHeap &, int );
61
62static void AddThisAfter( HandleNode &, HandleNode & );
63static void DeleteNode( HandleNode & );
64static void MoveThisAfter( HandleNode &, const HandleNode & ); // move current handle after parameter handle
65
66
67// Allocate the storage for the variable sized area and intialize the heap variables.
68
69static void ?{}( VbyteHeap & s, size_t Size ) with(s) {
70#ifdef VbyteDebug
71 serr | "enter:VbyteHeap::VbyteHeap, s:" | &s | " Size:" | Size;
72#endif // VbyteDebug
73 NoOfCompactions = NoOfExtensions = NoOfReductions = 0;
74 InitSize = CurrSize = Size;
75 StartVbyte = EndVbyte = TEMP_ALLOC(char, CurrSize);
76 ExtVbyte = (void *)( StartVbyte + CurrSize );
77 Header.flink = Header.blink = &Header;
78 Header.ulink = &s;
79#ifdef VbyteDebug
80 HeaderPtr = &Header;
81 serr | "exit:VbyteHeap::VbyteHeap, s:" | &s;
82#endif // VbyteDebug
83} // VbyteHeap
84
85
86// Release the dynamically allocated storage for the byte area.
87
88static void ^?{}( VbyteHeap & s ) with(s) {
89 free( StartVbyte );
90} // ~VbyteHeap
91
92
93//######################### HandleNode #########################
94
95
96// Create a handle node. The handle is not linked into the handle list. This is the responsibilitiy of the handle
97// creator.
98
99static void ?{}( HandleNode & s ) with(s) {
100#ifdef VbyteDebug
101 serr | "enter:HandleNode::HandleNode, s:" | &s;
102#endif // VbyteDebug
103 s = 0;
104 lnth = 0;
105#ifdef VbyteDebug
106 serr | "exit:HandleNode::HandleNode, s:" | &s;
107#endif // VbyteDebug
108} // HandleNode
109
110// Create a handle node. The handle is linked into the handle list at the end. This means that this handle will NOT be
111// in order by string address, but this is not a problem because a string with length zero does nothing during garbage
112// collection.
113
114static void ?{}( HandleNode & s, VbyteHeap & vh ) with(s) {
115#ifdef VbyteDebug
116 serr | "enter:HandleNode::HandleNode, s:" | &s;
117#endif // VbyteDebug
118 s = 0;
119 lnth = 0;
120 ulink = &vh;
121 AddThisAfter( s, *vh.Header.blink );
122#ifdef VbyteDebug
123 serr | "exit:HandleNode::HandleNode, s:" | &s;
124#endif // VbyteDebug
125} // HandleNode
126
127
128// Delete a node from the handle list by unchaining it from the list. If the handle node was allocated dynamically, it
129// is the responsibility of the creator to destroy it.
130
131static void ^?{}( HandleNode & s ) with(s) {
132#ifdef VbyteDebug
133 serr | "enter:HandleNode::~HandleNode, s:" | & s;
134 {
135 serr | nlOff;
136 serr | " lnth:" | lnth | " s:" | (void *)s | ",\"";
137 for ( i; lnth ) {
138 serr | s[i];
139 } // for
140 serr | "\" flink:" | flink | " blink:" | blink | nl;
141 serr | nlOn;
142 }
143#endif // VbyteDebug
144 DeleteNode( s );
145} // ~HandleNode
146
147
148//######################### String Sharing Context #########################
149
150static string_sharectx * ambient_string_sharectx; // fickle top of stack
151static string_sharectx default_string_sharectx = {NEW_SHARING}; // stable bottom of stack
152
153void ?{}( string_sharectx & s, StringSharectx_Mode mode ) with( s ) {
154 (older){ ambient_string_sharectx };
155 if ( mode == NEW_SHARING ) {
156 (activeHeap){ new( (size_t) 1000 ) };
157 } else {
158 verify( mode == NO_SHARING );
159 (activeHeap){ 0p };
160 }
161 ambient_string_sharectx = & s;
162}
163
164void ^?{}( string_sharectx & s ) with( s ) {
165 if ( activeHeap ) delete( activeHeap );
166
167 // unlink s from older-list starting from ambient_string_sharectx
168 // usually, s==ambient_string_sharectx and the loop runs zero times
169 string_sharectx *& c = ambient_string_sharectx;
170 while ( c != &s ) &c = &c->older; // find s
171 c = s.older; // unlink
172}
173
174//######################### String Resource #########################
175
176
177VbyteHeap * DEBUG_string_heap() {
178 assert( ambient_string_sharectx->activeHeap && "No sharing context is active" );
179 return ambient_string_sharectx->activeHeap;
180}
181
182size_t DEBUG_string_bytes_avail_until_gc( VbyteHeap * heap ) {
183 return ((char *)heap->ExtVbyte) - heap->EndVbyte;
184}
185
186size_t DEBUG_string_bytes_in_heap( VbyteHeap * heap ) {
187 return heap->CurrSize;
188}
189
190const char * DEBUG_string_heap_start( VbyteHeap * heap ) {
191 return heap->StartVbyte;
192}
193
194// Returns the size of the string in bytes
195size_t len(const string_res & s) with(s) {
196 return Handle.lnth;
197}
198
199// Output operator
200ofstream & ?|?(ofstream & out, const string_res & s) {
201 // CFA string is NOT null terminated, so print exactly lnth characters in a minimum width of 0.
202 return out | wd( 0, s.Handle.lnth, s.Handle.s ) | nonl;
203}
204
205void ?|?(ofstream & out, const string_res & s) {
206 (ofstream &)(out | s); ends( out );
207}
208
209// Input operator
210ifstream & ?|?(ifstream & in, string_res & s) {
211 // Reading into a temp before assigning to s is near zero overhead in typical cases because of sharing.
212 // If s is a substring of something larger, simple assignment takes care of that case correctly.
213 // But directly reading a variable amount of text into the middle of a larger context is not practical.
214 string_res temp;
215
216 // Read in chunks. Often, one chunk is enough. Keep the string that accumulates chunks last in the heap,
217 // so available room is rest of heap. When a chunk fills the heap, force growth then take the next chunk.
218 for (bool cont = true; cont; ) {
219 cont = false;
220
221 // Append dummy content to temp, forcing expansion when applicable (occurs always on subsequent loops)
222 // length 2 ensures room for at least one real char, plus scanf/pipe-cstr's null terminator
223 temp += "--";
224 assert( temp.Handle.ulink->EndVbyte == temp.Handle.s + temp.Handle.lnth ); // last in heap
225
226 // reset, to overwrite the appended "--"
227 temp.Handle.lnth -= 2;
228 temp.Handle.ulink->EndVbyte -= 2;
229
230 // rest of heap is available to read into
231 int lenReadable = (char *)temp.Handle.ulink->ExtVbyte - temp.Handle.ulink->EndVbyte;
232 assert (lenReadable >= 2);
233
234 // get bytes
235 try {
236 *(temp.Handle.ulink->EndVbyte) = '\0'; // pre-assign empty cstring
237 in | wdi( lenReadable, temp.Handle.ulink->EndVbyte );
238 } catch (cstring_length *) {
239 cont = true;
240 }
241 int lenWasRead = strlen(temp.Handle.ulink->EndVbyte);
242
243 // update metadata
244 temp.Handle.lnth += lenWasRead;
245 temp.Handle.ulink->EndVbyte += lenWasRead;
246 }
247
248 if ( temp.Handle.lnth > 0 ) s = temp;
249 return in;
250}
251
252ifstream & ?|?( ifstream & is, _Istream_Rquoted f ) with( f.rstr ) {
253 if ( eof( is ) ) throwResume ExceptionInst( end_of_file );
254 int args;
255 fini: {
256 char rfmt[5] = { ' ', delimiters[0], '%', 'n', '\0' };
257 int l = -1; // may not be set in fmt
258 args = fmt( is, rfmt, &l ); // remove leading whitespace and quote
259 if ( eof( is ) || l == -1 ) break fini;
260
261 // Change the remainder of the read into a getline by reseting the closing delimiter.
262 if ( delimiters[1] != '\0' ) {
263 delimiters[0] = delimiters[1];
264 delimiters[1] = '\0';
265 } // if
266 flags.delimiter = true;
267 return is | *(_Istream_Rstr *)&f;
268 } // fini
269 // read failed => no pattern match => set string to null
270 if ( ! flags.ignore && s != 0p && args == 0 ) s[0] = '\0';
271 if ( args == 1 && eof( is ) ) { // data but scan ended at EOF
272 clear( is ); // => reset EOF => detect again on next read
273 } // if
274 return is;
275}
276
277ifstream & ?|?( ifstream & is, _Istream_Rstr f ) {
278 // .---------------,
279 // | | | | |...|0|0| null terminator and guard if missing
280 // `---------------'
281 enum { gwd = 128 + 1, wd = gwd - 1 }; // guard and unguard width
282 char cstr[gwd]; // read in chunks
283 bool cont = false;
284
285 _Istream_Cwidth cf = { cstr, (_Istream_str_base)f };
286 if ( ! cf.flags.rwd ) cf.wd = wd;
287
288 cstr[wd] = '\0'; // guard null terminate string
289 try {
290 cstr[0] = '\0'; // pre-assign as empty cstring
291 is | cf;
292 } catch( cstring_length * ) {
293 cont = true;
294 } finally {
295 if ( ! cf.flags.ignore // ok to initialize string
296// && cstr[0] != '\0' // something was read
297 ) {
298 *(f.s) = cstr;
299 }
300 } // try
301 for ( ; cont; ) { // overflow read ?
302 cont = false;
303 try {
304 cstr[0] = '\0'; // pre-assign as empty cstring
305 is | cf;
306 } catch( cstring_length * ) {
307 cont = true; // continue not allowed
308 } finally {
309 if ( ! cf.flags.ignore && cstr[0] != '\0' ) { // something was read
310 *(f.s) += cstr; // build string chunk at a time
311 }
312 } // try
313 } // for
314 return is;
315} // ?|?
316
317// Empty constructor
318void ?{}(string_res & s) with(s) {
319 if( ambient_string_sharectx->activeHeap ) {
320 (Handle){ * ambient_string_sharectx->activeHeap };
321 (shareSet_owns_ulink){ false };
322 verify( Handle.s == 0p && Handle.lnth == 0 );
323 } else {
324 (Handle){ * new( (size_t) 10 ) }; // TODO: can I lazily avoid allocating for empty string
325 (shareSet_owns_ulink){ true };
326 Handle.s = Handle.ulink->StartVbyte;
327 verify( Handle.lnth == 0 );
328 }
329 s.shareSet_prev = &s;
330 s.shareSet_next = &s;
331 }
332
333static void eagerCopyCtorHelper(string_res & s, const char * rhs, size_t rhslnth) with(s) {
334 if( ambient_string_sharectx->activeHeap ) {
335 (Handle){ * ambient_string_sharectx->activeHeap };
336 (shareSet_owns_ulink){ false };
337 } else {
338 (Handle){ * new( rhslnth ) };
339 (shareSet_owns_ulink){ true };
340 }
341 Handle.s = VbyteAlloc(*Handle.ulink, rhslnth);
342 Handle.lnth = rhslnth;
343 memmove( Handle.s, rhs, rhslnth );
344 s.shareSet_prev = &s;
345 s.shareSet_next = &s;
346}
347
348// Constructor from a raw buffer and size
349void ?{}(string_res & s, const char * rhs, size_t rhslnth) with(s) {
350 eagerCopyCtorHelper(s, rhs, rhslnth);
351}
352
353void ?{}( string_res & s, ssize_t rhs ) {
354 char buf[64];
355 int l;
356 snprintf( buf, sizeof(buf)-1, "%zd%n", rhs, &l );
357 ( s ){ buf, l };
358}
359void ?{}( string_res & s, size_t rhs ) {
360 char buf[64];
361 int l;
362 snprintf( buf, sizeof(buf)-1, "%zu%n", rhs, &l );
363 ( s ){ buf, l };
364}
365void ?{}( string_res & s, double rhs ) {
366 char buf[64];
367 int l;
368 snprintf( buf, sizeof(buf)-1, "%g%n", rhs, &l );
369 ( s ){ buf, l };
370}
371void ?{}( string_res & s, long double rhs ) {
372 char buf[64];
373 int l;
374 snprintf( buf, sizeof(buf)-1, "%Lg%n", rhs, &l );
375 ( s ){ buf, l };
376}
377void ?{}( string_res & s, double _Complex rhs ) {
378 char buf[64];
379 int l;
380 snprintf( buf, sizeof(buf)-1, "%g+%gi%n", creal( rhs ), cimag( rhs ), &l );
381 ( s ){ buf, l };
382}
383void ?{}( string_res & s, long double _Complex rhs ) {
384 char buf[64];
385 int l;
386 snprintf( buf, sizeof(buf)-1, "%Lg+%Lgi%n", creall( rhs ), cimagl( rhs ), &l );
387 ( s ){ buf, l };
388}
389
390// private ctor (not in header): use specified heap (ignore ambient) and copy chars in
391void ?{}( string_res & s, VbyteHeap & heap, const char * rhs, size_t rhslnth ) with(s) {
392 (Handle){ heap };
393 Handle.s = VbyteAlloc(*Handle.ulink, rhslnth);
394 Handle.lnth = rhslnth;
395 (s.shareSet_owns_ulink){ false };
396 memmove( Handle.s, rhs, rhslnth );
397 s.shareSet_prev = &s;
398 s.shareSet_next = &s;
399}
400
401
402// General copy constructor
403void ?{}(string_res & s, const string_res & s2, StrResInitMode mode, size_t start, size_t len ) {
404 size_t end = start + len;
405 verify( start <= end && end <= s2.Handle.lnth );
406
407 if (s2.Handle.ulink != ambient_string_sharectx->activeHeap && mode == COPY_VALUE) {
408 // crossing heaps (including private): copy eagerly
409 eagerCopyCtorHelper(s, s2.Handle.s + start, end - start);
410 verify(s.shareSet_prev == &s);
411 verify(s.shareSet_next == &s);
412 } else {
413 (s.Handle){};
414 s.Handle.s = s2.Handle.s + start;
415 s.Handle.lnth = end - start;
416 s.Handle.ulink = s2.Handle.ulink;
417
418 AddThisAfter(s.Handle, s2.Handle ); // insert this handle after rhs handle
419 // ^ bug? skip others at early point in string
420
421 if (mode == COPY_VALUE) {
422 verify(s2.Handle.ulink == ambient_string_sharectx->activeHeap);
423 // requested logical copy in same heap: defer copy until write
424
425 (s.shareSet_owns_ulink){ false };
426
427 // make s alone in its shareSet
428 s.shareSet_prev = &s;
429 s.shareSet_next = &s;
430 } else {
431 verify( mode == SHARE_EDITS );
432 // sharing edits with source forces same heap as source (ignore context)
433
434 (s.shareSet_owns_ulink){ s2.shareSet_owns_ulink };
435
436 // s2 is logically const but not implementation const
437 string_res & s2mod = (string_res &) s2;
438
439 // insert s after s2 on shareSet
440 s.shareSet_next = s2mod.shareSet_next;
441 s.shareSet_prev = &s2mod;
442 s.shareSet_next->shareSet_prev = &s;
443 s.shareSet_prev->shareSet_next = &s;
444 }
445 }
446}
447
448static void assignEditSet(string_res & s, string_res * shareSetStartPeer, string_res * shareSetEndPeer,
449 char * resultSesStart,
450 size_t resultSesLnth,
451 HandleNode * resultPadPosition, size_t bsize ) {
452
453 char * beforeBegin = shareSetStartPeer->Handle.s;
454 size_t beforeLen = s.Handle.s - beforeBegin;
455
456 char * afterBegin = s.Handle.s + s.Handle.lnth;
457 size_t afterLen = shareSetEndPeer->Handle.s + shareSetEndPeer->Handle.lnth - afterBegin;
458
459 size_t oldLnth = s.Handle.lnth;
460
461 s.Handle.s = resultSesStart + beforeLen;
462 s.Handle.lnth = bsize;
463 if (resultPadPosition)
464 MoveThisAfter( s.Handle, *resultPadPosition );
465
466 // adjust all substring string and handle locations, and check if any substring strings are outside the new base string
467 char *limit = resultSesStart + resultSesLnth;
468 for ( string_res * p = s.shareSet_next; p != &s; p = p->shareSet_next ) {
469 verify (p->Handle.s >= beforeBegin);
470 if ( p->Handle.s >= afterBegin ) {
471 verify ( p->Handle.s <= afterBegin + afterLen );
472 verify ( p->Handle.s + p->Handle.lnth <= afterBegin + afterLen );
473 // p starts after the edit
474 // take start and end as end-anchored
475 size_t startOffsetFromEnd = afterBegin + afterLen - p->Handle.s;
476 p->Handle.s = limit - startOffsetFromEnd;
477 // p->Handle.lnth unaffected
478 } else if ( p->Handle.s <= beforeBegin + beforeLen ) {
479 // p starts before, or at the start of, the edit
480 if ( p->Handle.s + p->Handle.lnth <= beforeBegin + beforeLen ) {
481 // p ends before the edit
482 // take end as start-anchored too
483 // p->Handle.lnth unaffected
484 } else if ( p->Handle.s + p->Handle.lnth < afterBegin ) {
485 // p ends during the edit; p does not include the last character replaced
486 // clip end of p to end at start of edit
487 p->Handle.lnth = beforeLen - ( p->Handle.s - beforeBegin );
488 } else {
489 // p ends after the edit
490 verify ( p->Handle.s + p->Handle.lnth <= afterBegin + afterLen );
491 // take end as end-anchored
492 // stretch-shrink p according to the edit
493 p->Handle.lnth += s.Handle.lnth;
494 p->Handle.lnth -= oldLnth;
495 }
496 // take start as start-anchored
497 size_t startOffsetFromStart = p->Handle.s - beforeBegin;
498 p->Handle.s = resultSesStart + startOffsetFromStart;
499 } else {
500 verify ( p->Handle.s < afterBegin );
501 // p starts during the edit
502 verify( p->Handle.s + p->Handle.lnth >= beforeBegin + beforeLen );
503 if ( p->Handle.s + p->Handle.lnth < afterBegin ) {
504 // p ends during the edit; p does not include the last character replaced
505 // set p to empty string at start of edit
506 p->Handle.s = s.Handle.s;
507 p->Handle.lnth = 0;
508 } else {
509 // p includes the end of the edit
510 // clip start of p to start at end of edit
511 int charsToClip = afterBegin - p->Handle.s;
512 p->Handle.s = s.Handle.s + s.Handle.lnth;
513 p->Handle.lnth -= charsToClip;
514 }
515 }
516 if (resultPadPosition)
517 MoveThisAfter( p->Handle, *resultPadPosition ); // move substring handle to maintain sorted order by string position
518 }
519}
520
521// traverse the share-edit set (SES) to recover the range of a base string to which `s` belongs
522static void locateInShareSet( string_res & s, string_res *& shareSetStartPeer, string_res *& shareSetEndPeer ) {
523 shareSetStartPeer = & s;
524 shareSetEndPeer = & s;
525 for (string_res * editPeer = s.shareSet_next; editPeer != &s; editPeer = editPeer->shareSet_next) {
526 if ( editPeer->Handle.s < shareSetStartPeer->Handle.s ) {
527 shareSetStartPeer = editPeer;
528 }
529 if ( shareSetEndPeer->Handle.s + shareSetEndPeer->Handle.lnth < editPeer->Handle.s + editPeer->Handle.lnth) {
530 shareSetEndPeer = editPeer;
531 }
532 }
533}
534
535static string_res & assign_(string_res & s, const char * buffer, size_t bsize, const string_res & valSrc) {
536 string_res * shareSetStartPeer;
537 string_res * shareSetEndPeer;
538 locateInShareSet( s, shareSetStartPeer, shareSetEndPeer );
539
540 verify( shareSetEndPeer->Handle.s >= shareSetStartPeer->Handle.s );
541 size_t origEditSetLength = shareSetEndPeer->Handle.s + shareSetEndPeer->Handle.lnth - shareSetStartPeer->Handle.s;
542 verify( origEditSetLength >= s.Handle.lnth );
543
544 if ( s.shareSet_owns_ulink ) { // assigning to private context
545 // ok to overwrite old value within LHS
546 char * prefixStartOrig = shareSetStartPeer->Handle.s;
547 int prefixLen = s.Handle.s - prefixStartOrig;
548 char * suffixStartOrig = s.Handle.s + s.Handle.lnth;
549 int suffixLen = shareSetEndPeer->Handle.s + shareSetEndPeer->Handle.lnth - suffixStartOrig;
550
551 int delta = bsize - s.Handle.lnth;
552 if ( char * oldBytes = VbyteTryAdjustLast( *s.Handle.ulink, delta ) ) {
553 // growing: copy from old to new
554 char * dest = VbyteAlloc( *s.Handle.ulink, origEditSetLength + delta );
555 char *destCursor = dest; memcpy(destCursor, prefixStartOrig, prefixLen);
556 destCursor += prefixLen; memcpy(destCursor, buffer , bsize );
557 destCursor += bsize; memcpy(destCursor, suffixStartOrig, suffixLen);
558 assignEditSet(s, shareSetStartPeer, shareSetEndPeer,
559 dest,
560 origEditSetLength + delta,
561 0p, bsize);
562 free( oldBytes );
563 } else {
564 // room is already allocated in-place: bubble suffix and overwite middle
565 memmove( suffixStartOrig + delta, suffixStartOrig, suffixLen );
566 memcpy( s.Handle.s, buffer, bsize );
567
568 assignEditSet(s, shareSetStartPeer, shareSetEndPeer,
569 shareSetStartPeer->Handle.s,
570 origEditSetLength + delta,
571 0p, bsize);
572 }
573
574 } else if ( // assigning to shared context
575 s.Handle.lnth == origEditSetLength && // overwriting entire run of SES
576 & valSrc && // sourcing from a managed string
577 valSrc.Handle.ulink == s.Handle.ulink ) { // sourcing from same heap
578
579 // SES's result will only use characters from the source string => reuse source
580 assignEditSet(s, shareSetStartPeer, shareSetEndPeer,
581 valSrc.Handle.s,
582 valSrc.Handle.lnth,
583 &((string_res&)valSrc).Handle, bsize);
584
585 } else {
586 // overwriting a proper substring of some string: mash characters from old and new together (copy on write)
587 // OR we are importing characters: need to copy eagerly (can't refer to source)
588
589 // full string is from start of shareSetStartPeer thru end of shareSetEndPeer
590 // `s` occurs in the middle of it, to be replaced
591 // build up the new text in `pasting`
592
593 string_res pasting = {
594 * s.Handle.ulink, // maintain same heap, regardless of context
595 shareSetStartPeer->Handle.s, // start of SES
596 s.Handle.s - shareSetStartPeer->Handle.s }; // length of SES, before s
597 append( pasting,
598 buffer, // start of replacement for s
599 bsize ); // length of replacement for s
600 append( pasting,
601 s.Handle.s + s.Handle.lnth, // start of SES after s
602 shareSetEndPeer->Handle.s + shareSetEndPeer->Handle.lnth -
603 (s.Handle.s + s.Handle.lnth) ); // length of SES, after s
604
605 // The above string building can trigger compaction.
606 // The reference points (that are arguments of the string building) may move during that building.
607 // From s point on, they are stable.
608
609 assignEditSet(s, shareSetStartPeer, shareSetEndPeer,
610 pasting.Handle.s,
611 pasting.Handle.lnth,
612 &pasting.Handle, bsize);
613 }
614
615 return s;
616}
617
618string_res & assign(string_res & s, const string_res & src, size_t maxlen) {
619 return assign_(s, src.Handle.s, min(src.Handle.lnth, maxlen), *0p);
620}
621
622string_res & assign(string_res & s, const char * buffer, size_t bsize) {
623 return assign_(s, buffer, bsize, *0p);
624}
625
626string_res & ?=?(string_res & s, char c) {
627 return assign(s, &c, 1);
628}
629
630string_res & ?=?( string_res & s, ssize_t rhs ) {
631 string_res rhs2 = rhs;
632 s = rhs2;
633 return s;
634}
635string_res & ?=?( string_res & s, size_t rhs ) {
636 string_res rhs2 = rhs;
637 s = rhs2;
638 return s;
639}
640string_res & ?=?( string_res & s, double rhs ) {
641 string_res rhs2 = rhs;
642 s = rhs2;
643 return s;
644}
645string_res & ?=?( string_res & s, long double rhs ) {
646 string_res rhs2 = rhs;
647 s = rhs2;
648 return s;
649}
650string_res & ?=?( string_res & s, double _Complex rhs ) {
651 string_res rhs2 = rhs;
652 s = rhs2;
653 return s;
654}
655string_res & ?=?( string_res & s, long double _Complex rhs ) {
656 string_res rhs2 = rhs;
657 s = rhs2;
658 return s;
659}
660
661// Copy assignment operator
662string_res & ?=?(string_res & s, const string_res & rhs) with( s ) {
663 return assign_(s, rhs.Handle.s, rhs.Handle.lnth, rhs);
664}
665
666string_res & ?=?(string_res & s, string_res & rhs) with( s ) {
667 const string_res & rhs2 = rhs;
668 return s = rhs2;
669}
670
671
672// Destructor
673void ^?{}(string_res & s) with(s) {
674 // much delegated to implied ^VbyteSM
675
676 // sever s from its share-edit peers, if any (four no-ops when already solo)
677 s.shareSet_prev->shareSet_next = s.shareSet_next;
678 s.shareSet_next->shareSet_prev = s.shareSet_prev;
679 // s.shareSet_next = &s;
680 // s.shareSet_prev = &s;
681
682 if (shareSet_owns_ulink && s.shareSet_next == &s) { // last one out
683 delete( s.Handle.ulink );
684 }
685}
686
687
688// Returns the character at the given index
689// With unicode support, this may be different from just the byte at the given
690// offset from the start of the string.
691char ?[?](const string_res & s, size_t index) with(s) {
692 //TODO: Check if index is valid (no exceptions yet)
693 return Handle.s[index];
694}
695
696void assignAt(const string_res & s, size_t index, char val) {
697 // caution: not tested (not reachable by string-api-coverage interface)
698 // equivalent form at string level is `s[index] = val`,
699 // which uses the overload that returns a length-1 string
700 string_res editZone = { s, SHARE_EDITS, index, 1 };
701 assign(editZone, &val, 1);
702}
703
704
705///////////////////////////////////////////////////////////////////
706// Concatenation
707
708void append(string_res & str1, const char * buffer, size_t bsize) {
709 size_t clnth = str1.Handle.lnth + bsize;
710 if ( str1.Handle.s + str1.Handle.lnth == buffer ) { // already juxtapose ?
711 // no-op
712 } else { // must copy some text
713 if ( str1.Handle.s + str1.Handle.lnth == VbyteAlloc(*str1.Handle.ulink, 0) ) { // str1 at end of string area ?
714 VbyteAlloc( *str1.Handle.ulink, bsize ); // create room for 2nd part at the end of string area
715 } else { // copy the two parts
716 char * str1newBuf = VbyteAlloc( *str1.Handle.ulink, clnth );
717 char * str1oldBuf = str1.Handle.s; // must read after VbyteAlloc call in case it gs's
718 str1.Handle.s = str1newBuf;
719 memcpy( str1.Handle.s, str1oldBuf, str1.Handle.lnth );
720 } // if
721 memcpy( str1.Handle.s + str1.Handle.lnth, buffer, bsize );
722 } // if
723 str1.Handle.lnth = clnth;
724}
725
726void append( string_res & s, const string_res & s2, size_t maxlen ) {
727 append( s, s2.Handle.s, min( s2.Handle.lnth, maxlen ) );
728}
729
730///////////////////////////////////////////////////////////////////
731// Repetition
732
733void ?*=?(string_res & s, size_t factor) {
734 string_res s2 = { s, COPY_VALUE };
735 s = "";
736 for (factor) s += s2;
737}
738
739//////////////////////////////////////////////////////////
740// Comparisons
741
742int strcmp$( const char * s1, size_t l1, const char * s2, size_t l2 ) {
743 int ret = memcmp( s1, s2, min( l1, l2 ) );
744 if ( ret != 0 ) return ret;
745 return l1 - l2;
746}
747
748//////////////////////////////////////////////////////////
749// Search
750
751bool contains(const string_res & s, char ch) {
752 for ( i; len(s) ) {
753 if (s[i] == ch) return true;
754 }
755 return false;
756}
757
758int find(const string_res & s, char search) {
759 return findFrom(s, 0, search);
760}
761
762int findFrom(const string_res & s, size_t fromPos, char search) {
763 // FIXME: This paricular overload (find of single char) is optimized to use memchr.
764 // The general overload (find of string, memchr applying to its first character) and `contains` should be adjusted to match.
765 char * searchFrom = s.Handle.s + fromPos;
766 size_t searchLnth = s.Handle.lnth - fromPos;
767 int searchVal = search;
768 char * foundAt = (char *) memchr(searchFrom, searchVal, searchLnth);
769 if (foundAt == 0p) return s.Handle.lnth;
770 else return foundAt - s.Handle.s;
771}
772
773int find(const string_res & s, const string_res & search) {
774 return findFrom(s, 0, search);
775}
776
777int findFrom(const string_res & s, size_t fromPos, const string_res & search) {
778 return findFrom(s, fromPos, search.Handle.s, search.Handle.lnth);
779}
780
781int find(const string_res & s, const char * search) {
782 return findFrom(s, 0, search);
783}
784int findFrom(const string_res & s, size_t fromPos, const char * search) {
785 return findFrom(s, fromPos, search, strlen(search));
786}
787
788int find(const string_res & s, const char * search, size_t searchsize) {
789 return findFrom(s, 0, search, searchsize);
790}
791
792int findFrom(const string_res & s, size_t fromPos, const char * search, size_t searchsize) {
793 /* Remaining implementations essentially ported from Sunjay's work */
794
795 // FIXME: This is a naive algorithm. We probably want to switch to someting
796 // like Boyer-Moore in the future.
797 // https://en.wikipedia.org/wiki/String_searching_algorithm
798
799 // Always find the empty string
800 if (searchsize == 0) {
801 return 0;
802 }
803
804 for ( i; fromPos ~ s.Handle.lnth ) {
805 size_t remaining = s.Handle.lnth - i;
806 // Never going to find the search string if the remaining string is
807 // smaller than search
808 if (remaining < searchsize) {
809 break;
810 }
811
812 bool matched = true;
813 for ( j; searchsize ) {
814 if (search[j] != s.Handle.s[i + j]) {
815 matched = false;
816 break;
817 }
818 }
819 if (matched) {
820 return i;
821 }
822 }
823 return s.Handle.lnth;
824}
825
826bool includes(const string_res & s, const string_res & search) {
827 return includes(s, search.Handle.s, search.Handle.lnth);
828}
829
830bool includes(const string_res & s, const char * search) {
831 return includes(s, search, strlen(search));
832}
833
834bool includes(const string_res & s, const char * search, size_t searchsize) {
835 return find(s, search, searchsize) < s.Handle.lnth;
836}
837
838bool startsWith(const string_res & s, const string_res & prefix) {
839 return startsWith(s, prefix.Handle.s, prefix.Handle.lnth);
840}
841
842bool startsWith(const string_res & s, const char * prefix) {
843 return startsWith(s, prefix, strlen(prefix));
844}
845
846bool startsWith(const string_res & s, const char * prefix, size_t prefixsize) {
847 if (s.Handle.lnth < prefixsize) {
848 return false;
849 }
850 return memcmp(s.Handle.s, prefix, prefixsize) == 0;
851}
852
853bool endsWith(const string_res & s, const string_res & suffix) {
854 return endsWith(s, suffix.Handle.s, suffix.Handle.lnth);
855}
856
857bool endsWith(const string_res & s, const char * suffix) {
858 return endsWith(s, suffix, strlen(suffix));
859}
860
861bool endsWith(const string_res & s, const char * suffix, size_t suffixsize) {
862 if (s.Handle.lnth < suffixsize) {
863 return false;
864 }
865 // Amount to offset the bytes pointer so that we are comparing the end of s
866 // to suffix. s.bytes + offset should be the first byte to compare against suffix
867 size_t offset = s.Handle.lnth - suffixsize;
868 return memcmp(s.Handle.s + offset, suffix, suffixsize) == 0;
869}
870
871/* Back to Mike's work */
872
873///////////////////////////////////////////////////////////////////////////
874// charclass, include, exclude
875
876void ?{}( charclass_res & s, const string_res & chars) {
877 (s){ chars.Handle.s, chars.Handle.lnth };
878}
879
880void ?{}( charclass_res & s, const char * chars ) {
881 (s){ chars, strlen(chars) };
882}
883
884void ?{}( charclass_res & s, const char * chars, size_t charssize ) {
885 (s.chars){ chars, charssize };
886 // now sort it ?
887}
888
889void ^?{}( charclass_res & s ) {
890 ^(s.chars){};
891}
892
893static bool test( const charclass_res & mask, char c ) {
894 // instead, use sorted char list?
895 return contains( mask.chars, c );
896}
897
898int exclude(const string_res & s, const charclass_res & mask) {
899 for ( i; len(s) ) {
900 if ( test(mask, s[i]) ) return i;
901 }
902 return len(s);
903}
904
905int include(const string_res & s, const charclass_res & mask) {
906 for ( i; len(s) ) {
907 if ( ! test(mask, s[i]) ) return i;
908 }
909 return len(s);
910}
911
912//######################### VbyteHeap "implementation" #########################
913
914
915// Add a new HandleNode node n after the current HandleNode node.
916
917static void AddThisAfter( HandleNode & s, HandleNode & n ) with(s) {
918#ifdef VbyteDebug
919 serr | "enter:AddThisAfter, s:" | &s | " n:" | &n;
920#endif // VbyteDebug
921 // Performance note: we are on the critical path here. MB has ensured that the verifies don't contribute to runtime (are compiled away, like they're supposed to be).
922 verify( n.ulink != 0p );
923 verify( s.ulink == n.ulink );
924 flink = n.flink;
925 blink = &n;
926 n.flink->blink = &s;
927 n.flink = &s;
928#ifdef VbyteDebug
929 {
930 serr | "HandleList:";
931 serr | nlOff;
932 for ( HandleNode *ni = HeaderPtr->flink; ni != HeaderPtr; ni = ni->flink ) {
933 serr | "\tnode:" | ni | " lnth:" | ni->lnth | " s:" | (void *)ni->s | ",\"";
934 for ( i; ni->lnth ) {
935 serr | ni->s[i];
936 } // for
937 serr | "\" flink:" | ni->flink | " blink:" | ni->blink | nl;
938 } // for
939 serr | nlOn;
940 }
941 serr | "exit:AddThisAfter";
942#endif // VbyteDebug
943} // AddThisAfter
944
945
946// Delete the current HandleNode node.
947
948static void DeleteNode( HandleNode & s ) with(s) {
949#ifdef VbyteDebug
950 serr | "enter:DeleteNode, s:" | &s;
951#endif // VbyteDebug
952 flink->blink = blink;
953 blink->flink = flink;
954#ifdef VbyteDebug
955 serr | "exit:DeleteNode";
956#endif // VbyteDebug
957} // DeleteNode
958
959
960// Allocates specified storage for a string from byte-string area. If not enough space remains to perform the
961// allocation, the garbage collection routine is called.
962
963static char * VbyteAlloc( VbyteHeap & s, int size ) with(s) {
964#ifdef VbyteDebug
965 serr | "enter:VbyteAlloc, size:" | size;
966#endif // VbyteDebug
967 uintptr_t NoBytes;
968 char *r;
969
970 NoBytes = ( uintptr_t )EndVbyte + size;
971 if ( NoBytes > ( uintptr_t )ExtVbyte ) { // enough room for new byte-string ?
972 garbage( s, size ); // firer up the garbage collector
973 verify( (( uintptr_t )EndVbyte + size) <= ( uintptr_t )ExtVbyte && "garbage run did not free up required space" );
974 } // if
975 r = EndVbyte;
976 EndVbyte += size;
977#ifdef VbyteDebug
978 serr | "exit:VbyteAlloc, r:" | (void *)r | " EndVbyte:" | (void *)EndVbyte | " ExtVbyte:" | ExtVbyte;
979#endif // VbyteDebug
980 return r;
981} // VbyteAlloc
982
983
984// Adjusts the last allocation in this heap by delta bytes, or resets this heap to be able to offer
985// new allocations of its original size + delta bytes. Positive delta means bigger;
986// negative means smaller. A null return indicates that the original heap location has room for
987// the requested growth. A non-null return indicates that copying to a new location is required
988// but has not been done; the returned value is the old heap storage location; `this` heap is
989// modified to reference the new location. In the copy-requred case, the caller should use
990// VbyteAlloc to claim the new space, while doing optimal copying from old to new, then free old.
991
992static char * VbyteTryAdjustLast( VbyteHeap & s, int delta ) with(s) {
993 if ( ( uintptr_t )EndVbyte + delta <= ( uintptr_t )ExtVbyte ) {
994 // room available
995 EndVbyte += delta;
996 return 0p;
997 }
998
999 char *oldBytes = StartVbyte;
1000
1001 NoOfExtensions += 1;
1002 CurrSize *= 2;
1003 StartVbyte = EndVbyte = TEMP_ALLOC(char, CurrSize);
1004 ExtVbyte = StartVbyte + CurrSize;
1005
1006 return oldBytes;
1007}
1008
1009
1010// Move an existing HandleNode node h somewhere after the current HandleNode node so that it is in ascending order by
1011// the address in the byte string area.
1012
1013static void MoveThisAfter( HandleNode & s, const HandleNode & h ) with(s) {
1014#ifdef VbyteDebug
1015 serr | "enter:MoveThisAfter, s:" | & s | " h:" | & h;
1016#endif // VbyteDebug
1017 verify( h.ulink != 0p );
1018 verify( s.ulink == h.ulink );
1019 if ( s < h.s ) { // check argument values
1020 // serr | "VbyteSM: Error - Cannot move byte string starting at:" | s | " after byte string starting at:"
1021 // | ( h->s ) | " and keep handles in ascending order";
1022 // exit(-1 );
1023 verify( 0 && "VbyteSM: Error - Cannot move byte strings as requested and keep handles in ascending order");
1024 } // if
1025
1026 HandleNode *i;
1027 for ( i = h.flink; i->s != 0 && s > ( i->s ); i = i->flink ); // find the position for this node after h
1028 if ( & s != i->blink ) {
1029 DeleteNode( s );
1030 AddThisAfter( s, *i->blink );
1031 } // if
1032#ifdef VbyteDebug
1033 {
1034 serr | "HandleList:";
1035 serr | nlOff;
1036 for ( HandleNode *n = HeaderPtr->flink; n != HeaderPtr; n = n->flink ) {
1037 serr | "\tnode:" | n | " lnth:" | n->lnth | " s:" | (void *)n->s | ",\"";
1038 for ( i; n->lnth ) {
1039 serr | n->s[i];
1040 } // for
1041 serr | "\" flink:" | n->flink | " blink:" | n->blink | nl;
1042 } // for
1043 serr | nlOn;
1044 }
1045 serr | "exit:MoveThisAfter";
1046#endif // VbyteDebug
1047} // MoveThisAfter
1048
1049
1050//######################### VbyteHeap #########################
1051
1052// Compare two byte strings in the byte-string area. The routine returns the following values:
1053//
1054// 1 => Src1-byte-string > Src2-byte-string
1055// 0 => Src1-byte-string = Src2-byte-string
1056// -1 => Src1-byte-string < Src2-byte-string
1057
1058int ByteCmp( char *Src1, int Src1Start, int Src1Lnth, char *Src2, int Src2Start, int Src2Lnth ) {
1059#ifdef VbyteDebug
1060 serr | "enter:ByteCmp, Src1Start:" | Src1Start | " Src1Lnth:" | Src1Lnth | " Src2Start:" | Src2Start | " Src2Lnth:" | Src2Lnth;
1061#endif // VbyteDebug
1062 int cmp;
1063
1064 CharZip: for ( int i = 0; ; i += 1 ) {
1065 if ( i == Src2Lnth - 1 ) {
1066 for ( ; ; i += 1 ) {
1067 if ( i == Src1Lnth - 1 ) {
1068 cmp = 0;
1069 break CharZip;
1070 } // exit
1071 if ( Src1[Src1Start + i] != ' ') {
1072 // SUSPECTED BUG: this could be be why Peter got the bug report about == " " (why is this case here at all?)
1073 cmp = 1;
1074 break CharZip;
1075 } // exit
1076 } // for
1077 } // exit
1078 if ( i == Src1Lnth - 1 ) {
1079 for ( ; ; i += 1 ) {
1080 if ( i == Src2Lnth - 1 ) {
1081 cmp = 0;
1082 break CharZip;
1083 } // exit
1084 if ( Src2[Src2Start + i] != ' ') {
1085 cmp = -1;
1086 break CharZip;
1087 } // exit
1088 } // for
1089 } // exit
1090 if ( Src2[Src2Start + i] != Src1[Src1Start+ i]) {
1091 cmp = Src1[Src1Start + i] > Src2[Src2Start + i] ? 1 : -1;
1092 break CharZip;
1093 } // exit
1094 } // for
1095#ifdef VbyteDebug
1096 serr | "exit:ByteCmp, cmp:" | cmp;
1097#endif // VbyteDebug
1098 return cmp;
1099} // ByteCmp
1100
1101
1102// The compaction moves all of the byte strings currently in use to the beginning of the byte-string area and modifies
1103// the handles to reflect the new positions of the byte strings. Compaction assumes that the handle list is in ascending
1104// order by pointers into the byte-string area. The strings associated with substrings do not have to be moved because
1105// the containing string has been moved. Hence, they only require that their string pointers be adjusted.
1106
1107void compaction(VbyteHeap & s) with(s) {
1108 HandleNode *h;
1109 char *obase, *nbase, *limit;
1110
1111 NoOfCompactions += 1;
1112 EndVbyte = StartVbyte;
1113 h = Header.flink; // ignore header node
1114 for () {
1115 memmove( EndVbyte, h->s, h->lnth );
1116 obase = h->s;
1117 h->s = EndVbyte;
1118 nbase = h->s;
1119 EndVbyte += h->lnth;
1120 limit = obase + h->lnth;
1121 h = h->flink;
1122
1123 // check if any substrings are allocated within a string
1124
1125 for () {
1126 if ( h == &Header ) break; // end of header list ?
1127 if ( h->s >= limit ) break; // outside of current string ?
1128 h->s = nbase + (( uintptr_t )h->s - ( uintptr_t )obase );
1129 h = h->flink;
1130 } // for
1131 if ( h == &Header ) break; // end of header list ?
1132 } // for
1133} // compaction
1134
1135
1136static double heap_expansion_freespace_threshold = 0.1; // default inherited from prior work: expand heap when less than 10% "free" (i.e. garbage)
1137 // probably an unreasonable default, but need to assess early-round tests on changing it
1138
1139void TUNING_set_string_heap_liveness_threshold( double val ) {
1140 heap_expansion_freespace_threshold = 1.0 - val;
1141}
1142
1143
1144// Garbage determines the amount of free space left in the heap and then reduces, leave the same, or extends the size of
1145// the heap. The heap is then compacted in the existing heap or into the newly allocated heap.
1146
1147void garbage(VbyteHeap & s, int minreq ) with(s) {
1148#ifdef VbyteDebug
1149 serr | "enter:garbage";
1150 {
1151 serr | "HandleList:";
1152 for ( HandleNode *n = Header.flink; n != &Header; n = n->flink ) {
1153 serr | nlOff;
1154 serr | "\tnode:" | n | " lnth:" | n->lnth | " s:" | (void *)n->s | ",\"";
1155 for ( i; n->lnth ) {
1156 serr | n->s[i];
1157 } // for
1158 serr | nlOn;
1159 serr | "\" flink:" | n->flink | " blink:" | n->blink;
1160 } // for
1161 }
1162#endif // VbyteDebug
1163 int AmountUsed, AmountFree;
1164
1165 AmountUsed = 0;
1166 for ( HandleNode *i = Header.flink; i != &Header; i = i->flink ) { // calculate amount of byte area used
1167 AmountUsed += i->lnth;
1168 } // for
1169 AmountFree = ( uintptr_t )ExtVbyte - ( uintptr_t )StartVbyte - AmountUsed;
1170
1171 if ( ( double ) AmountFree < ( CurrSize * heap_expansion_freespace_threshold ) || AmountFree < minreq ) { // free space less than threshold or not enough to serve cur request
1172
1173 extend( s, max( CurrSize, minreq ) ); // extend the heap
1174
1175 // Peter says, "This needs work before it should be used."
1176 // } else if ( AmountFree > CurrSize / 2 ) { // free space greater than 3 times the initial allocation ?
1177 // reduce(( AmountFree / CurrSize - 3 ) * CurrSize ); // reduce the memory
1178
1179 // `extend` implies a `compaction` during the copy
1180
1181 } else {
1182 compaction(s); // in-place
1183 }// if
1184#ifdef VbyteDebug
1185 {
1186 serr | "HandleList:";
1187 for ( HandleNode *n = Header.flink; n != &Header; n = n->flink ) {
1188 serr | nlOff;
1189 serr | "\tnode:" | n | " lnth:" | n->lnth | " s:" | (void *)n->s | ",\"";
1190 for ( i; n->lnth ) {
1191 serr | n->s[i];
1192 } // for
1193 serr | nlOn;
1194 serr | "\" flink:" | n->flink | " blink:" | n->blink;
1195 } // for
1196 }
1197 serr | "exit:garbage";
1198#endif // VbyteDebug
1199} // garbage
1200
1201#undef VbyteDebug
1202
1203
1204
1205// Extend the size of the byte-string area by creating a new area and copying the old area into it. The old byte-string
1206// area is deleted.
1207
1208void extend( VbyteHeap & s, int size ) with (s) {
1209#ifdef VbyteDebug
1210 serr | "enter:extend, size:" | size;
1211#endif // VbyteDebug
1212 char *OldStartVbyte;
1213
1214 NoOfExtensions += 1;
1215 OldStartVbyte = StartVbyte; // save previous byte area
1216
1217 CurrSize += size > InitSize ? size : InitSize; // minimum extension, initial size
1218 StartVbyte = EndVbyte = TEMP_ALLOC(char, CurrSize);
1219 ExtVbyte = (void *)( StartVbyte + CurrSize );
1220 compaction(s); // copy from old heap to new & adjust pointers to new heap
1221 free( OldStartVbyte ); // release old heap
1222#ifdef VbyteDebug
1223 serr | "exit:extend, CurrSize:" | CurrSize;
1224#endif // VbyteDebug
1225} // extend
1226
1227//WIP
1228#if 0
1229
1230// Extend the size of the byte-string area by creating a new area and copying the old area into it. The old byte-string
1231// area is deleted.
1232
1233void VbyteHeap::reduce( int size ) {
1234#ifdef VbyteDebug
1235 serr | "enter:reduce, size:" | size;
1236#endif // VbyteDebug
1237 char *OldStartVbyte;
1238
1239 NoOfReductions += 1;
1240 OldStartVbyte = StartVbyte; // save previous byte area
1241
1242 CurrSize -= size;
1243 StartVbyte = EndVbyte = new char[CurrSize];
1244 ExtVbyte = (void *)( StartVbyte + CurrSize );
1245 compaction(); // copy from old heap to new & adjust pointers to new heap
1246 delete OldStartVbyte; // release old heap
1247#ifdef VbyteDebug
1248 !serr | "exit:reduce, CurrSize:" | CurrSize;
1249#endif // VbyteDebug
1250} // reduce
1251
1252
1253#endif
Note: See TracBrowser for help on using the repository browser.