source: libcfa/src/collections/string_res.cfa@ 65b851a

Last change on this file since 65b851a was 5764204, checked in by Peter A. Buhr <pabuhr@…>, 20 months ago

restrict nesting of manipulators and update manipulator test

  • Property mode set to 100644
File size: 44.6 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// string_res -- variable-length, mutable run of text, with resource semantics
8//
9// Author : Michael L. Brooks
10// Created On : Fri Sep 03 11:00:00 2021
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Mon Jan 22 23:12:42 2024
13// Update Count : 43
14//
15
16#include "string_res.hfa"
17#include "string_sharectx.hfa"
18#include "stdlib.hfa"
19#include <ctype.h>
20
21// Workaround for observed performance penalty from calling CFA's alloc.
22// Workaround is: EndVbyte = TEMP_ALLOC(char, CurrSize)
23// Should be: EndVbyte = alloc(CurrSize)
24#define TEMP_ALLOC(T, n) (( T * ) malloc( n * sizeof( T ) ))
25
26#include <assert.h>
27#include <complex.h> // creal, cimag
28
29//######################### VbyteHeap "header" #########################
30
31#ifdef VbyteDebug
32HandleNode *HeaderPtr;
33#endif // VbyteDebug
34
35struct VbyteHeap {
36 int NoOfCompactions; // number of compactions of the byte area
37 int NoOfExtensions; // number of extensions in the size of the byte area
38 int NoOfReductions; // number of reductions in the size of the byte area
39
40 int InitSize; // initial number of bytes in the byte-string area
41 int CurrSize; // current number of bytes in the byte-string area
42 char *StartVbyte; // pointer to the `st byte of the start of the byte-string area
43 char *EndVbyte; // pointer to the next byte after the end of the currently used portion of byte-string area
44 void *ExtVbyte; // pointer to the next byte after the end of the byte-string area
45
46 HandleNode Header; // header node for handle list
47}; // VbyteHeap
48
49
50static void compaction( VbyteHeap & ); // compaction of the byte area
51static void garbage( VbyteHeap &, int ); // garbage collect the byte area
52static void extend( VbyteHeap &, int ); // extend the size of the byte area
53static void reduce( VbyteHeap &, int ); // reduce the size of the byte area
54
55static void ?{}( VbyteHeap &, size_t = 1000 );
56static void ^?{}( VbyteHeap & );
57
58static int ByteCmp( char *, int, int, char *, int, int ); // compare 2 blocks of bytes
59static char *VbyteAlloc( VbyteHeap &, int ); // allocate a block bytes in the heap
60static char *VbyteTryAdjustLast( VbyteHeap &, int );
61
62static void AddThisAfter( HandleNode &, HandleNode & );
63static void DeleteNode( HandleNode & );
64static void MoveThisAfter( HandleNode &, const HandleNode & ); // move current handle after parameter handle
65
66
67// Allocate the storage for the variable sized area and intialize the heap variables.
68
69static void ?{}( VbyteHeap & s, size_t Size ) with(s) {
70#ifdef VbyteDebug
71 serr | "enter:VbyteHeap::VbyteHeap, s:" | &s | " Size:" | Size;
72#endif // VbyteDebug
73 NoOfCompactions = NoOfExtensions = NoOfReductions = 0;
74 InitSize = CurrSize = Size;
75 StartVbyte = EndVbyte = TEMP_ALLOC(char, CurrSize);
76 ExtVbyte = (void *)( StartVbyte + CurrSize );
77 Header.flink = Header.blink = &Header;
78 Header.ulink = &s;
79#ifdef VbyteDebug
80 HeaderPtr = &Header;
81 serr | "exit:VbyteHeap::VbyteHeap, s:" | &s;
82#endif // VbyteDebug
83} // VbyteHeap
84
85
86// Release the dynamically allocated storage for the byte area.
87
88static void ^?{}( VbyteHeap & s ) with(s) {
89 free( StartVbyte );
90} // ~VbyteHeap
91
92
93//######################### HandleNode #########################
94
95
96// Create a handle node. The handle is not linked into the handle list. This is the responsibilitiy of the handle
97// creator.
98
99static void ?{}( HandleNode & s ) with(s) {
100#ifdef VbyteDebug
101 serr | "enter:HandleNode::HandleNode, s:" | &s;
102#endif // VbyteDebug
103 s = 0;
104 lnth = 0;
105#ifdef VbyteDebug
106 serr | "exit:HandleNode::HandleNode, s:" | &s;
107#endif // VbyteDebug
108} // HandleNode
109
110// Create a handle node. The handle is linked into the handle list at the end. This means that this handle will NOT be
111// in order by string address, but this is not a problem because a string with length zero does nothing during garbage
112// collection.
113
114static void ?{}( HandleNode & s, VbyteHeap & vh ) with(s) {
115#ifdef VbyteDebug
116 serr | "enter:HandleNode::HandleNode, s:" | &s;
117#endif // VbyteDebug
118 s = 0;
119 lnth = 0;
120 ulink = &vh;
121 AddThisAfter( s, *vh.Header.blink );
122#ifdef VbyteDebug
123 serr | "exit:HandleNode::HandleNode, s:" | &s;
124#endif // VbyteDebug
125} // HandleNode
126
127
128// Delete a node from the handle list by unchaining it from the list. If the handle node was allocated dynamically, it
129// is the responsibility of the creator to destroy it.
130
131static void ^?{}( HandleNode & s ) with(s) {
132#ifdef VbyteDebug
133 serr | "enter:HandleNode::~HandleNode, s:" | & s;
134 {
135 serr | nlOff;
136 serr | " lnth:" | lnth | " s:" | (void *)s | ",\"";
137 for ( i; lnth ) {
138 serr | s[i];
139 } // for
140 serr | "\" flink:" | flink | " blink:" | blink | nl;
141 serr | nlOn;
142 }
143#endif // VbyteDebug
144 DeleteNode( s );
145} // ~HandleNode
146
147
148//######################### String Sharing Context #########################
149
150static string_sharectx * ambient_string_sharectx; // fickle top of stack
151static string_sharectx default_string_sharectx = {NEW_SHARING}; // stable bottom of stack
152
153void ?{}( string_sharectx & s, StringSharectx_Mode mode ) with( s ) {
154 (older){ ambient_string_sharectx };
155 if ( mode == NEW_SHARING ) {
156 (activeHeap){ new( (size_t) 1000 ) };
157 } else {
158 verify( mode == NO_SHARING );
159 (activeHeap){ 0p };
160 }
161 ambient_string_sharectx = & s;
162}
163
164void ^?{}( string_sharectx & s ) with( s ) {
165 if ( activeHeap ) delete( activeHeap );
166
167 // unlink s from older-list starting from ambient_string_sharectx
168 // usually, s==ambient_string_sharectx and the loop runs zero times
169 string_sharectx *& c = ambient_string_sharectx;
170 while ( c != &s ) &c = &c->older; // find s
171 c = s.older; // unlink
172}
173
174//######################### String Resource #########################
175
176
177VbyteHeap * DEBUG_string_heap() {
178 assert( ambient_string_sharectx->activeHeap && "No sharing context is active" );
179 return ambient_string_sharectx->activeHeap;
180}
181
182size_t DEBUG_string_bytes_avail_until_gc( VbyteHeap * heap ) {
183 return ((char *)heap->ExtVbyte) - heap->EndVbyte;
184}
185
186size_t DEBUG_string_bytes_in_heap( VbyteHeap * heap ) {
187 return heap->CurrSize;
188}
189
190const char * DEBUG_string_heap_start( VbyteHeap * heap ) {
191 return heap->StartVbyte;
192}
193
194// Returns the size of the string in bytes
195size_t size(const string_res & s) with(s) {
196 return Handle.lnth;
197}
198
199// Output operator
200ofstream & ?|?(ofstream & out, const string_res & s) {
201 // CFA string is NOT null terminated, so print exactly lnth characters in a minimum width of 0.
202 out | wd( 0, s.Handle.lnth, s.Handle.s ) | nonl;
203 return out;
204}
205
206void ?|?(ofstream & out, const string_res & s) {
207 (ofstream &)(out | s); ends( out );
208}
209
210// Input operator
211ifstream & ?|?(ifstream & in, string_res & s) {
212 // Reading into a temp before assigning to s is near zero overhead in typical cases because of sharing.
213 // If s is a substring of something larger, simple assignment takes care of that case correctly.
214 // But directly reading a variable amount of text into the middle of a larger context is not practical.
215 string_res temp;
216
217 // Read in chunks. Often, one chunk is enough. Keep the string that accumulates chunks last in the heap,
218 // so available room is rest of heap. When a chunk fills the heap, force growth then take the next chunk.
219 for (bool cont = true; cont; ) {
220 cont = false;
221
222 // Append dummy content to temp, forcing expansion when applicable (occurs always on subsequent loops)
223 // length 2 ensures room for at least one real char, plus scanf/pipe-cstr's null terminator
224 temp += "--";
225 assert( temp.Handle.ulink->EndVbyte == temp.Handle.s + temp.Handle.lnth ); // last in heap
226
227 // reset, to overwrite the appended "--"
228 temp.Handle.lnth -= 2;
229 temp.Handle.ulink->EndVbyte -= 2;
230
231 // rest of heap is available to read into
232 int lenReadable = (char *)temp.Handle.ulink->ExtVbyte - temp.Handle.ulink->EndVbyte;
233 assert (lenReadable >= 2);
234
235 // get bytes
236 try {
237 *(temp.Handle.ulink->EndVbyte) = '\0'; // pre-assign empty cstring
238 in | wdi( lenReadable, temp.Handle.ulink->EndVbyte );
239 } catch (cstring_length *) {
240 cont = true;
241 }
242 int lenWasRead = strlen(temp.Handle.ulink->EndVbyte);
243
244 // update metadata
245 temp.Handle.lnth += lenWasRead;
246 temp.Handle.ulink->EndVbyte += lenWasRead;
247 }
248
249 if ( temp.Handle.lnth > 0 ) s = temp;
250 return in;
251}
252
253void ?|?( ifstream & in, string_res & s ) {
254 (ifstream &)(in | s);
255}
256
257ifstream & ?|?( ifstream & is, _Istream_Rstr f ) {
258 // .---------------,
259 // | | | | |...|0|0| null terminator and guard if missing
260 // `---------------'
261 enum { gwd = 128 + 1, wd = gwd - 1 }; // guard and unguard width
262 char cstr[gwd]; // read in chunks
263 bool cont = false;
264
265 _Istream_Cwidth cf = { cstr, (_Istream_str_base)f };
266 if ( ! cf.flags.rwd ) cf.wd = wd;
267
268 cstr[wd] = '\0'; // guard null terminate string
269 try {
270 cstr[0] = '\0'; // pre-assign as empty cstring
271 is | cf;
272 } catch( cstring_length * ) {
273 cont = true;
274 } finally {
275 if ( ! cf.flags.ignore // ok to initialize string
276// && cstr[0] != '\0' // something was read
277 ) {
278 *(f.s) = cstr;
279 }
280 } // try
281 for ( ; cont; ) { // overflow read ?
282 cont = false;
283 try {
284 cstr[0] = '\0'; // pre-assign as empty cstring
285 is | cf;
286 } catch( cstring_length * ) {
287 cont = true; // continue not allowed
288 } finally {
289 if ( ! cf.flags.ignore && cstr[0] != '\0' ) { // something was read
290 *(f.s) += cstr; // build string chunk at a time
291 }
292 } // try
293 } // for
294 return is;
295} // ?|?
296
297void ?|?( ifstream & in, _Istream_Rstr f ) {
298 (ifstream &)(in | f);
299}
300
301
302// Empty constructor
303void ?{}(string_res & s) with(s) {
304 if( ambient_string_sharectx->activeHeap ) {
305 (Handle){ * ambient_string_sharectx->activeHeap };
306 (shareEditSet_owns_ulink){ false };
307 verify( Handle.s == 0p && Handle.lnth == 0 );
308 } else {
309 (Handle){ * new( (size_t) 10 ) }; // TODO: can I lazily avoid allocating for empty string
310 (shareEditSet_owns_ulink){ true };
311 Handle.s = Handle.ulink->StartVbyte;
312 verify( Handle.lnth == 0 );
313 }
314 s.shareEditSet_prev = &s;
315 s.shareEditSet_next = &s;
316}
317
318static void eagerCopyCtorHelper(string_res & s, const char * rhs, size_t rhslnth) with(s) {
319 if( ambient_string_sharectx->activeHeap ) {
320 (Handle){ * ambient_string_sharectx->activeHeap };
321 (shareEditSet_owns_ulink){ false };
322 } else {
323 (Handle){ * new( rhslnth ) };
324 (shareEditSet_owns_ulink){ true };
325 }
326 Handle.s = VbyteAlloc(*Handle.ulink, rhslnth);
327 Handle.lnth = rhslnth;
328 memmove( Handle.s, rhs, rhslnth );
329 s.shareEditSet_prev = &s;
330 s.shareEditSet_next = &s;
331}
332
333// Constructor from a raw buffer and size
334void ?{}(string_res & s, const char * rhs, size_t rhslnth) with(s) {
335 eagerCopyCtorHelper(s, rhs, rhslnth);
336}
337
338void ?{}( string_res & s, ssize_t rhs ) {
339 char buf[64];
340 int len;
341 snprintf( buf, sizeof(buf)-1, "%zd%n", rhs, &len );
342 ( s ){ buf, len };
343}
344void ?{}( string_res & s, size_t rhs ) {
345 char buf[64];
346 int len;
347 snprintf( buf, sizeof(buf)-1, "%zu%n", rhs, &len );
348 ( s ){ buf, len };
349}
350void ?{}( string_res & s, double rhs ) {
351 char buf[64];
352 int len;
353 snprintf( buf, sizeof(buf)-1, "%g%n", rhs, &len );
354 ( s ){ buf, len };
355}
356void ?{}( string_res & s, long double rhs ) {
357 char buf[64];
358 int len;
359 snprintf( buf, sizeof(buf)-1, "%Lg%n", rhs, &len );
360 ( s ){ buf, len };
361}
362void ?{}( string_res & s, double _Complex rhs ) {
363 char buf[64];
364 int len;
365 snprintf( buf, sizeof(buf)-1, "%g+%gi%n", creal( rhs ), cimag( rhs ), &len );
366 ( s ){ buf, len };
367}
368void ?{}( string_res & s, long double _Complex rhs ) {
369 char buf[64];
370 int len;
371 snprintf( buf, sizeof(buf)-1, "%Lg+%Lgi%n", creall( rhs ), cimagl( rhs ), &len );
372 ( s ){ buf, len };
373}
374
375// private ctor (not in header): use specified heap (ignore ambient) and copy chars in
376void ?{}( string_res & s, VbyteHeap & heap, const char * rhs, size_t rhslnth ) with(s) {
377 (Handle){ heap };
378 Handle.s = VbyteAlloc(*Handle.ulink, rhslnth);
379 Handle.lnth = rhslnth;
380 (s.shareEditSet_owns_ulink){ false };
381 memmove( Handle.s, rhs, rhslnth );
382 s.shareEditSet_prev = &s;
383 s.shareEditSet_next = &s;
384}
385
386
387// General copy constructor
388void ?{}(string_res & s, const string_res & s2, StrResInitMode mode, size_t start, size_t len ) {
389
390 size_t end = start + len;
391 verify( start <= end && end <= s2.Handle.lnth );
392
393 if (s2.Handle.ulink != ambient_string_sharectx->activeHeap && mode == COPY_VALUE) {
394 // crossing heaps (including private): copy eagerly
395 eagerCopyCtorHelper(s, s2.Handle.s + start, end - start);
396 verify(s.shareEditSet_prev == &s);
397 verify(s.shareEditSet_next == &s);
398 } else {
399 (s.Handle){};
400 s.Handle.s = s2.Handle.s + start;
401 s.Handle.lnth = end - start;
402 s.Handle.ulink = s2.Handle.ulink;
403
404 AddThisAfter(s.Handle, s2.Handle ); // insert this handle after rhs handle
405 // ^ bug? skip others at early point in string
406
407 if (mode == COPY_VALUE) {
408 verify(s2.Handle.ulink == ambient_string_sharectx->activeHeap);
409 // requested logical copy in same heap: defer copy until write
410
411 (s.shareEditSet_owns_ulink){ false };
412
413 // make s alone in its shareEditSet
414 s.shareEditSet_prev = &s;
415 s.shareEditSet_next = &s;
416 } else {
417 verify( mode == SHARE_EDITS );
418 // sharing edits with source forces same heap as source (ignore context)
419
420 (s.shareEditSet_owns_ulink){ s2.shareEditSet_owns_ulink };
421
422 // s2 is logically const but not implementation const
423 string_res & s2mod = (string_res &) s2;
424
425 // insert s after s2 on shareEditSet
426 s.shareEditSet_next = s2mod.shareEditSet_next;
427 s.shareEditSet_prev = &s2mod;
428 s.shareEditSet_next->shareEditSet_prev = &s;
429 s.shareEditSet_prev->shareEditSet_next = &s;
430 }
431 }
432}
433
434static void assignEditSet(string_res & s, string_res * shareEditSetStartPeer, string_res * shareEditSetEndPeer,
435 char * resultSesStart,
436 size_t resultSesLnth,
437 HandleNode * resultPadPosition, size_t bsize ) {
438
439 char * beforeBegin = shareEditSetStartPeer->Handle.s;
440 size_t beforeLen = s.Handle.s - beforeBegin;
441
442 char * afterBegin = s.Handle.s + s.Handle.lnth;
443 size_t afterLen = shareEditSetEndPeer->Handle.s + shareEditSetEndPeer->Handle.lnth - afterBegin;
444
445 size_t oldLnth = s.Handle.lnth;
446
447 s.Handle.s = resultSesStart + beforeLen;
448 s.Handle.lnth = bsize;
449 if (resultPadPosition)
450 MoveThisAfter( s.Handle, *resultPadPosition );
451
452 // adjust all substring string and handle locations, and check if any substring strings are outside the new base string
453 char *limit = resultSesStart + resultSesLnth;
454 for ( string_res * p = s.shareEditSet_next; p != &s; p = p->shareEditSet_next ) {
455 verify (p->Handle.s >= beforeBegin);
456 if ( p->Handle.s >= afterBegin ) {
457 verify ( p->Handle.s <= afterBegin + afterLen );
458 verify ( p->Handle.s + p->Handle.lnth <= afterBegin + afterLen );
459 // p starts after the edit
460 // take start and end as end-anchored
461 size_t startOffsetFromEnd = afterBegin + afterLen - p->Handle.s;
462 p->Handle.s = limit - startOffsetFromEnd;
463 // p->Handle.lnth unaffected
464 } else if ( p->Handle.s <= beforeBegin + beforeLen ) {
465 // p starts before, or at the start of, the edit
466 if ( p->Handle.s + p->Handle.lnth <= beforeBegin + beforeLen ) {
467 // p ends before the edit
468 // take end as start-anchored too
469 // p->Handle.lnth unaffected
470 } else if ( p->Handle.s + p->Handle.lnth < afterBegin ) {
471 // p ends during the edit; p does not include the last character replaced
472 // clip end of p to end at start of edit
473 p->Handle.lnth = beforeLen - ( p->Handle.s - beforeBegin );
474 } else {
475 // p ends after the edit
476 verify ( p->Handle.s + p->Handle.lnth <= afterBegin + afterLen );
477 // take end as end-anchored
478 // stretch-shrink p according to the edit
479 p->Handle.lnth += s.Handle.lnth;
480 p->Handle.lnth -= oldLnth;
481 }
482 // take start as start-anchored
483 size_t startOffsetFromStart = p->Handle.s - beforeBegin;
484 p->Handle.s = resultSesStart + startOffsetFromStart;
485 } else {
486 verify ( p->Handle.s < afterBegin );
487 // p starts during the edit
488 verify( p->Handle.s + p->Handle.lnth >= beforeBegin + beforeLen );
489 if ( p->Handle.s + p->Handle.lnth < afterBegin ) {
490 // p ends during the edit; p does not include the last character replaced
491 // set p to empty string at start of edit
492 p->Handle.s = s.Handle.s;
493 p->Handle.lnth = 0;
494 } else {
495 // p includes the end of the edit
496 // clip start of p to start at end of edit
497 int charsToClip = afterBegin - p->Handle.s;
498 p->Handle.s = s.Handle.s + s.Handle.lnth;
499 p->Handle.lnth -= charsToClip;
500 }
501 }
502 if (resultPadPosition)
503 MoveThisAfter( p->Handle, *resultPadPosition ); // move substring handle to maintain sorted order by string position
504 }
505}
506
507// traverse the share-edit set (SES) to recover the range of a base string to which `s` belongs
508static void locateInShareEditSet( string_res & s, string_res *& shareEditSetStartPeer, string_res *& shareEditSetEndPeer ) {
509 shareEditSetStartPeer = & s;
510 shareEditSetEndPeer = & s;
511 for (string_res * editPeer = s.shareEditSet_next; editPeer != &s; editPeer = editPeer->shareEditSet_next) {
512 if ( editPeer->Handle.s < shareEditSetStartPeer->Handle.s ) {
513 shareEditSetStartPeer = editPeer;
514 }
515 if ( shareEditSetEndPeer->Handle.s + shareEditSetEndPeer->Handle.lnth < editPeer->Handle.s + editPeer->Handle.lnth) {
516 shareEditSetEndPeer = editPeer;
517 }
518 }
519}
520
521static string_res & assign_(string_res & s, const char * buffer, size_t bsize, const string_res & valSrc) {
522
523 string_res * shareEditSetStartPeer;
524 string_res * shareEditSetEndPeer;
525 locateInShareEditSet( s, shareEditSetStartPeer, shareEditSetEndPeer );
526
527 verify( shareEditSetEndPeer->Handle.s >= shareEditSetStartPeer->Handle.s );
528 size_t origEditSetLength = shareEditSetEndPeer->Handle.s + shareEditSetEndPeer->Handle.lnth - shareEditSetStartPeer->Handle.s;
529 verify( origEditSetLength >= s.Handle.lnth );
530
531 if ( s.shareEditSet_owns_ulink ) { // assigning to private context
532 // ok to overwrite old value within LHS
533 char * prefixStartOrig = shareEditSetStartPeer->Handle.s;
534 int prefixLen = s.Handle.s - prefixStartOrig;
535 char * suffixStartOrig = s.Handle.s + s.Handle.lnth;
536 int suffixLen = shareEditSetEndPeer->Handle.s + shareEditSetEndPeer->Handle.lnth - suffixStartOrig;
537
538 int delta = bsize - s.Handle.lnth;
539 if ( char * oldBytes = VbyteTryAdjustLast( *s.Handle.ulink, delta ) ) {
540 // growing: copy from old to new
541 char * dest = VbyteAlloc( *s.Handle.ulink, origEditSetLength + delta );
542 char *destCursor = dest; memcpy(destCursor, prefixStartOrig, prefixLen);
543 destCursor += prefixLen; memcpy(destCursor, buffer , bsize );
544 destCursor += bsize; memcpy(destCursor, suffixStartOrig, suffixLen);
545 assignEditSet(s, shareEditSetStartPeer, shareEditSetEndPeer,
546 dest,
547 origEditSetLength + delta,
548 0p, bsize);
549 free( oldBytes );
550 } else {
551 // room is already allocated in-place: bubble suffix and overwite middle
552 memmove( suffixStartOrig + delta, suffixStartOrig, suffixLen );
553 memcpy( s.Handle.s, buffer, bsize );
554
555 assignEditSet(s, shareEditSetStartPeer, shareEditSetEndPeer,
556 shareEditSetStartPeer->Handle.s,
557 origEditSetLength + delta,
558 0p, bsize);
559 }
560
561 } else if ( // assigning to shared context
562 s.Handle.lnth == origEditSetLength && // overwriting entire run of SES
563 & valSrc && // sourcing from a managed string
564 valSrc.Handle.ulink == s.Handle.ulink ) { // sourcing from same heap
565
566 // SES's result will only use characters from the source string => reuse source
567 assignEditSet(s, shareEditSetStartPeer, shareEditSetEndPeer,
568 valSrc.Handle.s,
569 valSrc.Handle.lnth,
570 &((string_res&)valSrc).Handle, bsize);
571
572 } else {
573 // overwriting a proper substring of some string: mash characters from old and new together (copy on write)
574 // OR we are importing characters: need to copy eagerly (can't refer to source)
575
576 // full string is from start of shareEditSetStartPeer thru end of shareEditSetEndPeer
577 // `s` occurs in the middle of it, to be replaced
578 // build up the new text in `pasting`
579
580 string_res pasting = {
581 * s.Handle.ulink, // maintain same heap, regardless of context
582 shareEditSetStartPeer->Handle.s, // start of SES
583 s.Handle.s - shareEditSetStartPeer->Handle.s }; // length of SES, before s
584 append( pasting,
585 buffer, // start of replacement for s
586 bsize ); // length of replacement for s
587 append( pasting,
588 s.Handle.s + s.Handle.lnth, // start of SES after s
589 shareEditSetEndPeer->Handle.s + shareEditSetEndPeer->Handle.lnth -
590 (s.Handle.s + s.Handle.lnth) ); // length of SES, after s
591
592 // The above string building can trigger compaction.
593 // The reference points (that are arguments of the string building) may move during that building.
594 // From s point on, they are stable.
595
596 assignEditSet(s, shareEditSetStartPeer, shareEditSetEndPeer,
597 pasting.Handle.s,
598 pasting.Handle.lnth,
599 &pasting.Handle, bsize);
600 }
601
602 return s;
603}
604
605string_res & assign(string_res & s, const string_res & src, size_t maxlen) {
606 return assign_(s, src.Handle.s, min(src.Handle.lnth, maxlen), *0p);
607}
608
609string_res & assign(string_res & s, const char * buffer, size_t bsize) {
610 return assign_(s, buffer, bsize, *0p);
611}
612
613string_res & ?=?(string_res & s, char c) {
614 return assign(s, &c, 1);
615}
616
617string_res & ?=?( string_res & s, ssize_t rhs ) {
618 string_res rhs2 = rhs;
619 s = rhs2;
620 return s;
621}
622string_res & ?=?( string_res & s, size_t rhs ) {
623 string_res rhs2 = rhs;
624 s = rhs2;
625 return s;
626}
627string_res & ?=?( string_res & s, double rhs ) {
628 string_res rhs2 = rhs;
629 s = rhs2;
630 return s;
631}
632string_res & ?=?( string_res & s, long double rhs ) {
633 string_res rhs2 = rhs;
634 s = rhs2;
635 return s;
636}
637string_res & ?=?( string_res & s, double _Complex rhs ) {
638 string_res rhs2 = rhs;
639 s = rhs2;
640 return s;
641}
642string_res & ?=?( string_res & s, long double _Complex rhs ) {
643 string_res rhs2 = rhs;
644 s = rhs2;
645 return s;
646}
647
648// Copy assignment operator
649string_res & ?=?(string_res & s, const string_res & rhs) with( s ) {
650 return assign_(s, rhs.Handle.s, rhs.Handle.lnth, rhs);
651}
652
653string_res & ?=?(string_res & s, string_res & rhs) with( s ) {
654 const string_res & rhs2 = rhs;
655 return s = rhs2;
656}
657
658
659// Destructor
660void ^?{}(string_res & s) with(s) {
661 // much delegated to implied ^VbyteSM
662
663 // sever s from its share-edit peers, if any (four no-ops when already solo)
664 s.shareEditSet_prev->shareEditSet_next = s.shareEditSet_next;
665 s.shareEditSet_next->shareEditSet_prev = s.shareEditSet_prev;
666 // s.shareEditSet_next = &s;
667 // s.shareEditSet_prev = &s;
668
669 if (shareEditSet_owns_ulink && s.shareEditSet_next == &s) { // last one out
670 delete( s.Handle.ulink );
671 }
672}
673
674
675// Returns the character at the given index
676// With unicode support, this may be different from just the byte at the given
677// offset from the start of the string.
678char ?[?](const string_res & s, size_t index) with(s) {
679 //TODO: Check if index is valid (no exceptions yet)
680 return Handle.s[index];
681}
682
683void assignAt(const string_res & s, size_t index, char val) {
684 // caution: not tested (not reachable by string-api-coverage interface)
685 // equivalent form at string level is `s[index] = val`,
686 // which uses the overload that returns a length-1 string
687 string_res editZone = { s, SHARE_EDITS, index, 1 };
688 assign(editZone, &val, 1);
689}
690
691
692///////////////////////////////////////////////////////////////////
693// Concatenation
694
695void append(string_res & str1, const char * buffer, size_t bsize) {
696 size_t clnth = str1.Handle.lnth + bsize;
697 if ( str1.Handle.s + str1.Handle.lnth == buffer ) { // already juxtapose ?
698 // no-op
699 } else { // must copy some text
700 if ( str1.Handle.s + str1.Handle.lnth == VbyteAlloc(*str1.Handle.ulink, 0) ) { // str1 at end of string area ?
701 VbyteAlloc( *str1.Handle.ulink, bsize ); // create room for 2nd part at the end of string area
702 } else { // copy the two parts
703 char * str1newBuf = VbyteAlloc( *str1.Handle.ulink, clnth );
704 char * str1oldBuf = str1.Handle.s; // must read after VbyteAlloc call in case it gs's
705 str1.Handle.s = str1newBuf;
706 memcpy( str1.Handle.s, str1oldBuf, str1.Handle.lnth );
707 } // if
708 memcpy( str1.Handle.s + str1.Handle.lnth, buffer, bsize );
709 } // if
710 str1.Handle.lnth = clnth;
711}
712
713void ?+=?(string_res & str1, const string_res & str2) {
714 append( str1, str2.Handle.s, str2.Handle.lnth );
715}
716
717void append(string_res & str1, const string_res & str2, size_t maxlen) {
718 append( str1, str2.Handle.s, min(str2.Handle.lnth, maxlen) );
719}
720
721void ?+=?(string_res & s, char c) {
722 append( s, & c, 1 );
723}
724void ?+=?(string_res & s, const char * c) {
725 append( s, c, strlen(c) );
726}
727
728///////////////////////////////////////////////////////////////////
729// Repetition
730
731void ?*=?(string_res & s, size_t factor) {
732 string_res s2 = { s, COPY_VALUE };
733 s = "";
734 for (factor) s += s2;
735}
736
737//////////////////////////////////////////////////////////
738// Comparisons
739
740int strcmp(const string_res & s1, const string_res & s2) {
741 // return 0;
742 int ans1 = memcmp(s1.Handle.s, s2.Handle.s, min(s1.Handle.lnth, s2.Handle.lnth));
743 if (ans1 != 0) return ans1;
744 return s1.Handle.lnth - s2.Handle.lnth;
745}
746
747bool ?==?(const string_res & s1, const string_res & s2) { return strcmp(s1, s2) == 0; }
748bool ?!=?(const string_res & s1, const string_res & s2) { return strcmp(s1, s2) != 0; }
749bool ?>? (const string_res & s1, const string_res & s2) { return strcmp(s1, s2) > 0; }
750bool ?>=?(const string_res & s1, const string_res & s2) { return strcmp(s1, s2) >= 0; }
751bool ?<=?(const string_res & s1, const string_res & s2) { return strcmp(s1, s2) <= 0; }
752bool ?<? (const string_res & s1, const string_res & s2) { return strcmp(s1, s2) < 0; }
753
754int strcmp (const string_res & s1, const char * s2) {
755 string_res s2x = s2;
756 return strcmp(s1, s2x);
757}
758
759bool ?==?(const string_res & s1, const char * s2) { return strcmp(s1, s2) == 0; }
760bool ?!=?(const string_res & s1, const char * s2) { return strcmp(s1, s2) != 0; }
761bool ?>? (const string_res & s1, const char * s2) { return strcmp(s1, s2) > 0; }
762bool ?>=?(const string_res & s1, const char * s2) { return strcmp(s1, s2) >= 0; }
763bool ?<=?(const string_res & s1, const char * s2) { return strcmp(s1, s2) <= 0; }
764bool ?<? (const string_res & s1, const char * s2) { return strcmp(s1, s2) < 0; }
765
766int strcmp (const char * s1, const string_res & s2) {
767 string_res s1x = s1;
768 return strcmp(s1x, s2);
769}
770
771bool ?==?(const char * s1, const string_res & s2) { return strcmp(s1, s2) == 0; }
772bool ?!=?(const char * s1, const string_res & s2) { return strcmp(s1, s2) != 0; }
773bool ?>? (const char * s1, const string_res & s2) { return strcmp(s1, s2) > 0; }
774bool ?>=?(const char * s1, const string_res & s2) { return strcmp(s1, s2) >= 0; }
775bool ?<=?(const char * s1, const string_res & s2) { return strcmp(s1, s2) <= 0; }
776bool ?<? (const char * s1, const string_res & s2) { return strcmp(s1, s2) < 0; }
777
778
779
780//////////////////////////////////////////////////////////
781// Search
782
783bool contains(const string_res & s, char ch) {
784 for ( i; size(s) ) {
785 if (s[i] == ch) return true;
786 }
787 return false;
788}
789
790int find(const string_res & s, char search) {
791 return findFrom(s, 0, search);
792}
793
794int findFrom(const string_res & s, size_t fromPos, char search) {
795 // FIXME: This paricular overload (find of single char) is optimized to use memchr.
796 // The general overload (find of string, memchr applying to its first character) and `contains` should be adjusted to match.
797 char * searchFrom = s.Handle.s + fromPos;
798 size_t searchLnth = s.Handle.lnth - fromPos;
799 int searchVal = search;
800 char * foundAt = (char *) memchr(searchFrom, searchVal, searchLnth);
801 if (foundAt == 0p) return s.Handle.lnth;
802 else return foundAt - s.Handle.s;
803}
804
805int find(const string_res & s, const string_res & search) {
806 return findFrom(s, 0, search);
807}
808
809int findFrom(const string_res & s, size_t fromPos, const string_res & search) {
810 return findFrom(s, fromPos, search.Handle.s, search.Handle.lnth);
811}
812
813int find(const string_res & s, const char * search) {
814 return findFrom(s, 0, search);
815}
816int findFrom(const string_res & s, size_t fromPos, const char * search) {
817 return findFrom(s, fromPos, search, strlen(search));
818}
819
820int find(const string_res & s, const char * search, size_t searchsize) {
821 return findFrom(s, 0, search, searchsize);
822}
823
824int findFrom(const string_res & s, size_t fromPos, const char * search, size_t searchsize) {
825
826 /* Remaining implementations essentially ported from Sunjay's work */
827
828
829 // FIXME: This is a naive algorithm. We probably want to switch to someting
830 // like Boyer-Moore in the future.
831 // https://en.wikipedia.org/wiki/String_searching_algorithm
832
833 // Always find the empty string
834 if (searchsize == 0) {
835 return 0;
836 }
837
838 for ( i; fromPos ~ s.Handle.lnth ) {
839 size_t remaining = s.Handle.lnth - i;
840 // Never going to find the search string if the remaining string is
841 // smaller than search
842 if (remaining < searchsize) {
843 break;
844 }
845
846 bool matched = true;
847 for ( j; searchsize ) {
848 if (search[j] != s.Handle.s[i + j]) {
849 matched = false;
850 break;
851 }
852 }
853 if (matched) {
854 return i;
855 }
856 }
857
858 return s.Handle.lnth;
859}
860
861bool includes(const string_res & s, const string_res & search) {
862 return includes(s, search.Handle.s, search.Handle.lnth);
863}
864
865bool includes(const string_res & s, const char * search) {
866 return includes(s, search, strlen(search));
867}
868
869bool includes(const string_res & s, const char * search, size_t searchsize) {
870 return find(s, search, searchsize) < s.Handle.lnth;
871}
872
873bool startsWith(const string_res & s, const string_res & prefix) {
874 return startsWith(s, prefix.Handle.s, prefix.Handle.lnth);
875}
876
877bool startsWith(const string_res & s, const char * prefix) {
878 return startsWith(s, prefix, strlen(prefix));
879}
880
881bool startsWith(const string_res & s, const char * prefix, size_t prefixsize) {
882 if (s.Handle.lnth < prefixsize) {
883 return false;
884 }
885 return memcmp(s.Handle.s, prefix, prefixsize) == 0;
886}
887
888bool endsWith(const string_res & s, const string_res & suffix) {
889 return endsWith(s, suffix.Handle.s, suffix.Handle.lnth);
890}
891
892bool endsWith(const string_res & s, const char * suffix) {
893 return endsWith(s, suffix, strlen(suffix));
894}
895
896bool endsWith(const string_res & s, const char * suffix, size_t suffixsize) {
897 if (s.Handle.lnth < suffixsize) {
898 return false;
899 }
900 // Amount to offset the bytes pointer so that we are comparing the end of s
901 // to suffix. s.bytes + offset should be the first byte to compare against suffix
902 size_t offset = s.Handle.lnth - suffixsize;
903 return memcmp(s.Handle.s + offset, suffix, suffixsize) == 0;
904}
905
906 /* Back to Mike's work */
907
908
909///////////////////////////////////////////////////////////////////////////
910// charclass, include, exclude
911
912void ?{}( charclass_res & s, const string_res & chars) {
913 (s){ chars.Handle.s, chars.Handle.lnth };
914}
915
916void ?{}( charclass_res & s, const char * chars ) {
917 (s){ chars, strlen(chars) };
918}
919
920void ?{}( charclass_res & s, const char * chars, size_t charssize ) {
921 (s.chars){ chars, charssize };
922 // now sort it ?
923}
924
925void ^?{}( charclass_res & s ) {
926 ^(s.chars){};
927}
928
929static bool test( const charclass_res & mask, char c ) {
930 // instead, use sorted char list?
931 return contains( mask.chars, c );
932}
933
934int exclude(const string_res & s, const charclass_res & mask) {
935 for ( i; size(s) ) {
936 if ( test(mask, s[i]) ) return i;
937 }
938 return size(s);
939}
940
941int include(const string_res & s, const charclass_res & mask) {
942 for ( i; size(s) ) {
943 if ( ! test(mask, s[i]) ) return i;
944 }
945 return size(s);
946}
947
948//######################### VbyteHeap "implementation" #########################
949
950
951// Add a new HandleNode node n after the current HandleNode node.
952
953static void AddThisAfter( HandleNode & s, HandleNode & n ) with(s) {
954#ifdef VbyteDebug
955 serr | "enter:AddThisAfter, s:" | &s | " n:" | &n;
956#endif // VbyteDebug
957 // Performance note: we are on the critical path here. MB has ensured that the verifies don't contribute to runtime (are compiled away, like they're supposed to be).
958 verify( n.ulink != 0p );
959 verify( s.ulink == n.ulink );
960 flink = n.flink;
961 blink = &n;
962 n.flink->blink = &s;
963 n.flink = &s;
964#ifdef VbyteDebug
965 {
966 serr | "HandleList:";
967 serr | nlOff;
968 for ( HandleNode *ni = HeaderPtr->flink; ni != HeaderPtr; ni = ni->flink ) {
969 serr | "\tnode:" | ni | " lnth:" | ni->lnth | " s:" | (void *)ni->s | ",\"";
970 for ( i; ni->lnth ) {
971 serr | ni->s[i];
972 } // for
973 serr | "\" flink:" | ni->flink | " blink:" | ni->blink | nl;
974 } // for
975 serr | nlOn;
976 }
977 serr | "exit:AddThisAfter";
978#endif // VbyteDebug
979} // AddThisAfter
980
981
982// Delete the current HandleNode node.
983
984static void DeleteNode( HandleNode & s ) with(s) {
985#ifdef VbyteDebug
986 serr | "enter:DeleteNode, s:" | &s;
987#endif // VbyteDebug
988 flink->blink = blink;
989 blink->flink = flink;
990#ifdef VbyteDebug
991 serr | "exit:DeleteNode";
992#endif // VbyteDebug
993} // DeleteNode
994
995
996// Allocates specified storage for a string from byte-string area. If not enough space remains to perform the
997// allocation, the garbage collection routine is called.
998
999static char * VbyteAlloc( VbyteHeap & s, int size ) with(s) {
1000#ifdef VbyteDebug
1001 serr | "enter:VbyteAlloc, size:" | size;
1002#endif // VbyteDebug
1003 uintptr_t NoBytes;
1004 char *r;
1005
1006 NoBytes = ( uintptr_t )EndVbyte + size;
1007 if ( NoBytes > ( uintptr_t )ExtVbyte ) { // enough room for new byte-string ?
1008 garbage( s, size ); // firer up the garbage collector
1009 verify( (( uintptr_t )EndVbyte + size) <= ( uintptr_t )ExtVbyte && "garbage run did not free up required space" );
1010 } // if
1011 r = EndVbyte;
1012 EndVbyte += size;
1013#ifdef VbyteDebug
1014 serr | "exit:VbyteAlloc, r:" | (void *)r | " EndVbyte:" | (void *)EndVbyte | " ExtVbyte:" | ExtVbyte;
1015#endif // VbyteDebug
1016 return r;
1017} // VbyteAlloc
1018
1019
1020// Adjusts the last allocation in this heap by delta bytes, or resets this heap to be able to offer
1021// new allocations of its original size + delta bytes. Positive delta means bigger;
1022// negative means smaller. A null return indicates that the original heap location has room for
1023// the requested growth. A non-null return indicates that copying to a new location is required
1024// but has not been done; the returned value is the old heap storage location; `this` heap is
1025// modified to reference the new location. In the copy-requred case, the caller should use
1026// VbyteAlloc to claim the new space, while doing optimal copying from old to new, then free old.
1027
1028static char * VbyteTryAdjustLast( VbyteHeap & s, int delta ) with(s) {
1029 if ( ( uintptr_t )EndVbyte + delta <= ( uintptr_t )ExtVbyte ) {
1030 // room available
1031 EndVbyte += delta;
1032 return 0p;
1033 }
1034
1035 char *oldBytes = StartVbyte;
1036
1037 NoOfExtensions += 1;
1038 CurrSize *= 2;
1039 StartVbyte = EndVbyte = TEMP_ALLOC(char, CurrSize);
1040 ExtVbyte = StartVbyte + CurrSize;
1041
1042 return oldBytes;
1043}
1044
1045
1046// Move an existing HandleNode node h somewhere after the current HandleNode node so that it is in ascending order by
1047// the address in the byte string area.
1048
1049static void MoveThisAfter( HandleNode & s, const HandleNode & h ) with(s) {
1050#ifdef VbyteDebug
1051 serr | "enter:MoveThisAfter, s:" | & s | " h:" | & h;
1052#endif // VbyteDebug
1053 verify( h.ulink != 0p );
1054 verify( s.ulink == h.ulink );
1055 if ( s < h.s ) { // check argument values
1056 // serr | "VbyteSM: Error - Cannot move byte string starting at:" | s | " after byte string starting at:"
1057 // | ( h->s ) | " and keep handles in ascending order";
1058 // exit(-1 );
1059 verify( 0 && "VbyteSM: Error - Cannot move byte strings as requested and keep handles in ascending order");
1060 } // if
1061
1062 HandleNode *i;
1063 for ( i = h.flink; i->s != 0 && s > ( i->s ); i = i->flink ); // find the position for this node after h
1064 if ( & s != i->blink ) {
1065 DeleteNode( s );
1066 AddThisAfter( s, *i->blink );
1067 } // if
1068#ifdef VbyteDebug
1069 {
1070 serr | "HandleList:";
1071 serr | nlOff;
1072 for ( HandleNode *n = HeaderPtr->flink; n != HeaderPtr; n = n->flink ) {
1073 serr | "\tnode:" | n | " lnth:" | n->lnth | " s:" | (void *)n->s | ",\"";
1074 for ( i; n->lnth ) {
1075 serr | n->s[i];
1076 } // for
1077 serr | "\" flink:" | n->flink | " blink:" | n->blink | nl;
1078 } // for
1079 serr | nlOn;
1080 }
1081 serr | "exit:MoveThisAfter";
1082#endif // VbyteDebug
1083} // MoveThisAfter
1084
1085
1086
1087
1088
1089//######################### VbyteHeap #########################
1090
1091// Compare two byte strings in the byte-string area. The routine returns the following values:
1092//
1093// 1 => Src1-byte-string > Src2-byte-string
1094// 0 => Src1-byte-string = Src2-byte-string
1095// -1 => Src1-byte-string < Src2-byte-string
1096
1097int ByteCmp( char *Src1, int Src1Start, int Src1Lnth, char *Src2, int Src2Start, int Src2Lnth ) {
1098#ifdef VbyteDebug
1099 serr | "enter:ByteCmp, Src1Start:" | Src1Start | " Src1Lnth:" | Src1Lnth | " Src2Start:" | Src2Start | " Src2Lnth:" | Src2Lnth;
1100#endif // VbyteDebug
1101 int cmp;
1102
1103 CharZip: for ( int i = 0; ; i += 1 ) {
1104 if ( i == Src2Lnth - 1 ) {
1105 for ( ; ; i += 1 ) {
1106 if ( i == Src1Lnth - 1 ) {
1107 cmp = 0;
1108 break CharZip;
1109 } // exit
1110 if ( Src1[Src1Start + i] != ' ') {
1111 // SUSPECTED BUG: this could be be why Peter got the bug report about == " " (why is this case here at all?)
1112 cmp = 1;
1113 break CharZip;
1114 } // exit
1115 } // for
1116 } // exit
1117 if ( i == Src1Lnth - 1 ) {
1118 for ( ; ; i += 1 ) {
1119 if ( i == Src2Lnth - 1 ) {
1120 cmp = 0;
1121 break CharZip;
1122 } // exit
1123 if ( Src2[Src2Start + i] != ' ') {
1124 cmp = -1;
1125 break CharZip;
1126 } // exit
1127 } // for
1128 } // exit
1129 if ( Src2[Src2Start + i] != Src1[Src1Start+ i]) {
1130 cmp = Src1[Src1Start + i] > Src2[Src2Start + i] ? 1 : -1;
1131 break CharZip;
1132 } // exit
1133 } // for
1134#ifdef VbyteDebug
1135 serr | "exit:ByteCmp, cmp:" | cmp;
1136#endif // VbyteDebug
1137 return cmp;
1138} // ByteCmp
1139
1140
1141// The compaction moves all of the byte strings currently in use to the beginning of the byte-string area and modifies
1142// the handles to reflect the new positions of the byte strings. Compaction assumes that the handle list is in ascending
1143// order by pointers into the byte-string area. The strings associated with substrings do not have to be moved because
1144// the containing string has been moved. Hence, they only require that their string pointers be adjusted.
1145
1146void compaction(VbyteHeap & s) with(s) {
1147 HandleNode *h;
1148 char *obase, *nbase, *limit;
1149
1150 NoOfCompactions += 1;
1151 EndVbyte = StartVbyte;
1152 h = Header.flink; // ignore header node
1153 for () {
1154 memmove( EndVbyte, h->s, h->lnth );
1155 obase = h->s;
1156 h->s = EndVbyte;
1157 nbase = h->s;
1158 EndVbyte += h->lnth;
1159 limit = obase + h->lnth;
1160 h = h->flink;
1161
1162 // check if any substrings are allocated within a string
1163
1164 for () {
1165 if ( h == &Header ) break; // end of header list ?
1166 if ( h->s >= limit ) break; // outside of current string ?
1167 h->s = nbase + (( uintptr_t )h->s - ( uintptr_t )obase );
1168 h = h->flink;
1169 } // for
1170 if ( h == &Header ) break; // end of header list ?
1171 } // for
1172} // compaction
1173
1174
1175static double heap_expansion_freespace_threshold = 0.1; // default inherited from prior work: expand heap when less than 10% "free" (i.e. garbage)
1176 // probably an unreasonable default, but need to assess early-round tests on changing it
1177
1178void TUNING_set_string_heap_liveness_threshold( double val ) {
1179 heap_expansion_freespace_threshold = 1.0 - val;
1180}
1181
1182
1183// Garbage determines the amount of free space left in the heap and then reduces, leave the same, or extends the size of
1184// the heap. The heap is then compacted in the existing heap or into the newly allocated heap.
1185
1186void garbage(VbyteHeap & s, int minreq ) with(s) {
1187#ifdef VbyteDebug
1188 serr | "enter:garbage";
1189 {
1190 serr | "HandleList:";
1191 for ( HandleNode *n = Header.flink; n != &Header; n = n->flink ) {
1192 serr | nlOff;
1193 serr | "\tnode:" | n | " lnth:" | n->lnth | " s:" | (void *)n->s | ",\"";
1194 for ( i; n->lnth ) {
1195 serr | n->s[i];
1196 } // for
1197 serr | nlOn;
1198 serr | "\" flink:" | n->flink | " blink:" | n->blink;
1199 } // for
1200 }
1201#endif // VbyteDebug
1202 int AmountUsed, AmountFree;
1203
1204 AmountUsed = 0;
1205 for ( HandleNode *i = Header.flink; i != &Header; i = i->flink ) { // calculate amount of byte area used
1206 AmountUsed += i->lnth;
1207 } // for
1208 AmountFree = ( uintptr_t )ExtVbyte - ( uintptr_t )StartVbyte - AmountUsed;
1209
1210 if ( ( double ) AmountFree < ( CurrSize * heap_expansion_freespace_threshold ) || AmountFree < minreq ) { // free space less than threshold or not enough to serve cur request
1211
1212 extend( s, max( CurrSize, minreq ) ); // extend the heap
1213
1214 // Peter says, "This needs work before it should be used."
1215 // } else if ( AmountFree > CurrSize / 2 ) { // free space greater than 3 times the initial allocation ?
1216 // reduce(( AmountFree / CurrSize - 3 ) * CurrSize ); // reduce the memory
1217
1218 // `extend` implies a `compaction` during the copy
1219
1220 } else {
1221 compaction(s); // in-place
1222 }// if
1223#ifdef VbyteDebug
1224 {
1225 serr | "HandleList:";
1226 for ( HandleNode *n = Header.flink; n != &Header; n = n->flink ) {
1227 serr | nlOff;
1228 serr | "\tnode:" | n | " lnth:" | n->lnth | " s:" | (void *)n->s | ",\"";
1229 for ( i; n->lnth ) {
1230 serr | n->s[i];
1231 } // for
1232 serr | nlOn;
1233 serr | "\" flink:" | n->flink | " blink:" | n->blink;
1234 } // for
1235 }
1236 serr | "exit:garbage";
1237#endif // VbyteDebug
1238} // garbage
1239
1240#undef VbyteDebug
1241
1242
1243
1244// Extend the size of the byte-string area by creating a new area and copying the old area into it. The old byte-string
1245// area is deleted.
1246
1247void extend( VbyteHeap & s, int size ) with (s) {
1248#ifdef VbyteDebug
1249 serr | "enter:extend, size:" | size;
1250#endif // VbyteDebug
1251 char *OldStartVbyte;
1252
1253 NoOfExtensions += 1;
1254 OldStartVbyte = StartVbyte; // save previous byte area
1255
1256 CurrSize += size > InitSize ? size : InitSize; // minimum extension, initial size
1257 StartVbyte = EndVbyte = TEMP_ALLOC(char, CurrSize);
1258 ExtVbyte = (void *)( StartVbyte + CurrSize );
1259 compaction(s); // copy from old heap to new & adjust pointers to new heap
1260 free( OldStartVbyte ); // release old heap
1261#ifdef VbyteDebug
1262 serr | "exit:extend, CurrSize:" | CurrSize;
1263#endif // VbyteDebug
1264} // extend
1265
1266//WIP
1267#if 0
1268
1269// Extend the size of the byte-string area by creating a new area and copying the old area into it. The old byte-string
1270// area is deleted.
1271
1272void VbyteHeap::reduce( int size ) {
1273#ifdef VbyteDebug
1274 serr | "enter:reduce, size:" | size;
1275#endif // VbyteDebug
1276 char *OldStartVbyte;
1277
1278 NoOfReductions += 1;
1279 OldStartVbyte = StartVbyte; // save previous byte area
1280
1281 CurrSize -= size;
1282 StartVbyte = EndVbyte = new char[CurrSize];
1283 ExtVbyte = (void *)( StartVbyte + CurrSize );
1284 compaction(); // copy from old heap to new & adjust pointers to new heap
1285 delete OldStartVbyte; // release old heap
1286#ifdef VbyteDebug
1287 serr | "exit:reduce, CurrSize:" | CurrSize;
1288#endif // VbyteDebug
1289} // reduce
1290
1291
1292#endif
Note: See TracBrowser for help on using the repository browser.