1 | //
|
---|
2 | // Cforall Version 1.0.0 Copyright (C) 2020 University of Waterloo
|
---|
3 | //
|
---|
4 | // The contents of this file are covered under the licence agreement in the
|
---|
5 | // file "LICENCE" distributed with Cforall.
|
---|
6 | //
|
---|
7 | // list -- lets a user-defined stuct form intrusive linked lists
|
---|
8 | //
|
---|
9 | // Author : Michael Brooks
|
---|
10 | // Created On : Wed Apr 22 18:00:00 2020
|
---|
11 | // Last Modified By : Peter A. Buhr
|
---|
12 | // Last Modified On : Thu Apr 24 18:12:59 2025
|
---|
13 | // Update Count : 72
|
---|
14 | //
|
---|
15 |
|
---|
16 | #pragma once
|
---|
17 |
|
---|
18 | #include <assert.h>
|
---|
19 |
|
---|
20 | forall( Decorator &, T & )
|
---|
21 | struct tytagref {
|
---|
22 | inline T &;
|
---|
23 | };
|
---|
24 |
|
---|
25 | forall( tOuter &, tMid &, tInner & )
|
---|
26 | trait embedded {
|
---|
27 | tytagref( tMid, tInner ) ?`inner( tOuter & );
|
---|
28 | };
|
---|
29 |
|
---|
30 | // embedded is reflexive, with no info (void) as the type tag
|
---|
31 | forall( T & )
|
---|
32 | static inline tytagref(void, T) ?`inner ( T & this ) { tytagref( void, T ) ret = {this}; return ret; }
|
---|
33 |
|
---|
34 |
|
---|
35 | //
|
---|
36 | // P9_EMBEDDED: Use on every case of plan-9 inheritance, to make "implements embedded" be a closure of plan-9 inheritance.
|
---|
37 | //
|
---|
38 | // struct foo {
|
---|
39 | // int a, b, c;
|
---|
40 | // inline (bar);
|
---|
41 | // };
|
---|
42 | // P9_EMBEDDED( foo, bar )
|
---|
43 | //
|
---|
44 |
|
---|
45 | // usual version, for structs that are top-level declarations
|
---|
46 | #define P9_EMBEDDED( derived, immedBase ) P9_EMBEDDED_DECL_( derived, immedBase, static ) P9_EMBEDDED_BDY_( immedBase )
|
---|
47 |
|
---|
48 | // special version, for structs that are declared in functions
|
---|
49 | #define P9_EMBEDDED_INFUNC( derived, immedBase ) P9_EMBEDDED_DECL_( derived, immedBase, ) P9_EMBEDDED_BDY_( immedBase )
|
---|
50 |
|
---|
51 | // forward declarations of both the above; generally not needed
|
---|
52 | // may help you control where the P9_EMBEEDED cruft goes, in case "right after the stuct" isn't where you want it
|
---|
53 | #define P9_EMBEDDED_FWD( derived, immedBase ) P9_EMBEDDED_DECL_( derived, immedBase, static ) ;
|
---|
54 | #define P9_EMBEDDED_FWD_INFUNC( derived, immedBase ) auto P9_EMBEDDED_DECL_( derived, immedBase, ) ;
|
---|
55 |
|
---|
56 | // private helpers
|
---|
57 | #define P9_EMBEDDED_DECL_( derived, immedBase, STORAGE ) \
|
---|
58 | forall( Tbase &, TdiscardPath & | { tytagref( TdiscardPath, Tbase ) ?`inner( immedBase & ); } ) \
|
---|
59 | STORAGE inline tytagref( immedBase, Tbase ) ?`inner( derived & this )
|
---|
60 |
|
---|
61 | #define P9_EMBEDDED_BDY_( immedBase ) { \
|
---|
62 | immedBase & ib = this; \
|
---|
63 | Tbase & b = ib`inner; \
|
---|
64 | tytagref( immedBase, Tbase ) result = { b }; \
|
---|
65 | return result; \
|
---|
66 | }
|
---|
67 |
|
---|
68 | #define EMBEDDED_VIA( OUTER, MID, INNER ) (struct { tytagref( MID, INNER ) ( * ?`inner ) ( OUTER & ); }){ ?`inner }
|
---|
69 |
|
---|
70 | #define DLINK_VIA( TE, TLINK ) EMBEDDED_VIA( TE, TLINK, dlink( TE ) )
|
---|
71 |
|
---|
72 |
|
---|
73 | // The origin is the position encountered at the start of iteration, signifying, "need to advance to the first element,"
|
---|
74 | // and at the end of iteration, signifying, "no more elements." Normal comsumption of an iterator runs "advance" as
|
---|
75 | // the first step, and uses the return of "advance" as a guard, before dereferencing the iterator. So normal
|
---|
76 | // consumption of an iterator does not dereference an iterator in origin position. The value of a pointer (underlying a
|
---|
77 | // refence) that is exposed publicly as an iteraor, and also a pointer stored internally in a link field, is tagged, to
|
---|
78 | // indicate "is the origin" (internally, is the list-head sentinel node), or untagged, to indicate "is a regular node."
|
---|
79 | // Intent is to help a user who dereferences an iterator in origin position (which would be an API-use error on their
|
---|
80 | // part), by failing fast.
|
---|
81 |
|
---|
82 | #ifdef __EXPERIMENTAL_DISABLE_OTAG__ // Perf experimention alt mode
|
---|
83 |
|
---|
84 | // With origin tagging disabled, iteration never reports "no more elements."
|
---|
85 | // In this mode, the list API is buggy.
|
---|
86 | // This mode is used to quantify the cost of the normal tagging scheme.
|
---|
87 |
|
---|
88 | #define ORIGIN_TAG_SET(p) (p)
|
---|
89 | #define ORIGIN_TAG_CLEAR(p) (p)
|
---|
90 | #define ORIGIN_TAG_QUERY(p) 0
|
---|
91 | #define ORIGIN_TAG_ASGN(p, v) (p)
|
---|
92 | #define ORIGIN_TAG_EITHER(p, v) (p)
|
---|
93 | #define ORIGIN_TAG_NEQ(v1, v2) 0
|
---|
94 |
|
---|
95 | #else // Normal
|
---|
96 |
|
---|
97 | #if defined( __x86_64 )
|
---|
98 | // Preferred case: tag in the most-significant bit. Dereference
|
---|
99 | // has been shown to segfault consistently. Maintenance should
|
---|
100 | // list more architectures as "ok" here, to let them use the
|
---|
101 | // preferred case, when valid.
|
---|
102 | #define ORIGIN_TAG_BITNO ( 8 * sizeof( size_t ) - 1 )
|
---|
103 | #else
|
---|
104 | // Fallback case: tag in the least-significant bit. Dereference
|
---|
105 | // will often give an alignment error, but may not, e.g. if
|
---|
106 | // accessing a char-typed member. 32-bit x86 uses the most-
|
---|
107 | // significant bit for real room on the heap.
|
---|
108 | #define ORIGIN_TAG_BITNO 0
|
---|
109 | #endif
|
---|
110 |
|
---|
111 | #define ORIGIN_TAG_MASK (((size_t)1) << ORIGIN_TAG_BITNO)
|
---|
112 |
|
---|
113 | #define ORIGIN_TAG_SET(p) ((p) | ORIGIN_TAG_MASK)
|
---|
114 | #define ORIGIN_TAG_CLEAR(p) ((p) & ~ORIGIN_TAG_MASK)
|
---|
115 | #define ORIGIN_TAG_QUERY(p) ((p) & ORIGIN_TAG_MASK)
|
---|
116 |
|
---|
117 | #define ORIGIN_TAG_ASGN(p, v) ( \
|
---|
118 | verify( ! ORIGIN_TAG_QUERY(p) && "p had no tagbit" ), \
|
---|
119 | ORIGIN_TAG_EITHER((p), (v)) \
|
---|
120 | )
|
---|
121 |
|
---|
122 | #define ORIGIN_TAG_EITHER(p, v) ( \
|
---|
123 | verify( ! ORIGIN_TAG_CLEAR(v) && "v is a pure tagbit" ), \
|
---|
124 | ( (p) | (v) ) \
|
---|
125 | )
|
---|
126 |
|
---|
127 | #define ORIGIN_TAG_NEQ(v1, v2) ( \
|
---|
128 | verify( ! ORIGIN_TAG_CLEAR(v1) && "v1 is a pure tagbit" ), \
|
---|
129 | verify( ! ORIGIN_TAG_CLEAR(v2) && "v2 is a pure tagbit" ), \
|
---|
130 | ( (v1) ^ (v2) ) \
|
---|
131 | )
|
---|
132 |
|
---|
133 | #endif
|
---|
134 |
|
---|
135 |
|
---|
136 |
|
---|
137 | #ifdef __EXPERIMENTAL_LOOSE_SINGLES__ // Perf experimention alt mode
|
---|
138 |
|
---|
139 | // In loose-singles mode, the ability to answer an "is listed" query is disabled, as is "to insert an element,
|
---|
140 | // it must not be listed already" checking. The user must know separately whether an element is listed.
|
---|
141 | // Other than inserting it, any list-api action on an unlisted element is undefined. Notably, list iteration
|
---|
142 | // starting from an unlisted element is not defined to respond "no more elements," and may instead continue
|
---|
143 | // iterating from a formerly occupied list position. This mode matches LQ usage.
|
---|
144 |
|
---|
145 | #define NOLOOSE(...)
|
---|
146 | #define LOOSEONLY(...) __VA_ARGS__
|
---|
147 |
|
---|
148 | #else // Normal
|
---|
149 |
|
---|
150 | #define NOLOOSE(...) __VA_ARGS__
|
---|
151 | #define LOOSEONLY(...)
|
---|
152 |
|
---|
153 | #endif
|
---|
154 |
|
---|
155 |
|
---|
156 |
|
---|
157 |
|
---|
158 |
|
---|
159 | forall( tE & ) {
|
---|
160 | struct dlink{
|
---|
161 | tE * next;
|
---|
162 | tE * prev;
|
---|
163 | };
|
---|
164 |
|
---|
165 | static inline void ?{}( dlink( tE ) & this ) {
|
---|
166 | NOLOOSE(
|
---|
167 | this.next = this.prev = 0p;
|
---|
168 | )
|
---|
169 | }
|
---|
170 |
|
---|
171 | forall( tLinks & = dlink( tE ) )
|
---|
172 | struct dlist {
|
---|
173 | inline dlink( tE );
|
---|
174 | };
|
---|
175 |
|
---|
176 | forall( tLinks & | embedded( tE, tLinks, dlink( tE ) ) ) {
|
---|
177 | static inline tE * $get_list_origin_addr( dlist( tE, tLinks ) & list ) {
|
---|
178 | dlink( tE ) & link_from_null = (*(tE *)0p)`inner;
|
---|
179 | ptrdiff_t link_offset = (ptrdiff_t)&link_from_null;
|
---|
180 | size_t origin_addr = ((size_t)&list) - link_offset;
|
---|
181 | size_t preResult = ORIGIN_TAG_SET( origin_addr );
|
---|
182 | return (tE *)preResult;
|
---|
183 | }
|
---|
184 |
|
---|
185 | static inline void ?{}( dlist( tE, tLinks ) & this ) {
|
---|
186 | tE * listOrigin = $get_list_origin_addr( this );
|
---|
187 | ((dlink( tE ) &)this){ listOrigin, listOrigin };
|
---|
188 | }
|
---|
189 | }
|
---|
190 | }
|
---|
191 |
|
---|
192 |
|
---|
193 | static inline forall( tE &, tLinks & | embedded( tE, tLinks, dlink( tE ) ) ) {
|
---|
194 | bool isListed( tE & node ) {
|
---|
195 | NOLOOSE(
|
---|
196 | verify( &node != 0p );
|
---|
197 | dlink( tE ) & node_links = node`inner;
|
---|
198 | return (node_links.prev != 0p) || (node_links.next != 0p);
|
---|
199 | )
|
---|
200 | LOOSEONLY(
|
---|
201 | verify(false && "isListed is undefined");
|
---|
202 | return true;
|
---|
203 | )
|
---|
204 | }
|
---|
205 |
|
---|
206 | bool isEmpty( dlist( tE, tLinks ) & list ) {
|
---|
207 | tE * firstPtr = list.next;
|
---|
208 | if ( ORIGIN_TAG_QUERY(( size_t)firstPtr) ) firstPtr = 0p;
|
---|
209 | return firstPtr == 0p;
|
---|
210 | }
|
---|
211 |
|
---|
212 | tE & first( dlist( tE, tLinks ) & list ) {
|
---|
213 | tE * firstPtr = list.next;
|
---|
214 | if ( ORIGIN_TAG_QUERY( (size_t)firstPtr ) ) firstPtr = 0p;
|
---|
215 | return *firstPtr;
|
---|
216 | }
|
---|
217 |
|
---|
218 | tE & last( dlist( tE, tLinks ) & list ) {
|
---|
219 | tE * lastPtr = list.prev;
|
---|
220 | if ( ORIGIN_TAG_QUERY( (size_t)lastPtr) ) lastPtr = 0p;
|
---|
221 | return *lastPtr;
|
---|
222 | }
|
---|
223 |
|
---|
224 | tE & insert_before( tE & before, tE & node ) {
|
---|
225 | verify( &before != 0p );
|
---|
226 | verify( &node != 0p );
|
---|
227 |
|
---|
228 | dlink( tE ) & linkToInsert = node`inner;
|
---|
229 | NOLOOSE(
|
---|
230 | verify( linkToInsert.next == 0p );
|
---|
231 | verify( linkToInsert.prev == 0p );
|
---|
232 | )
|
---|
233 |
|
---|
234 | tE & list_pos_elem = *(tE *)ORIGIN_TAG_CLEAR( (size_t)&before );
|
---|
235 | dlink( tE ) & list_pos_links = list_pos_elem`inner;
|
---|
236 | asm( "" : : : "memory" );
|
---|
237 | tE & before_raw = *list_pos_links.prev;
|
---|
238 | tE & before_elem = *(tE *) ORIGIN_TAG_CLEAR( (size_t)&before_raw );
|
---|
239 | linkToInsert.next = &before;
|
---|
240 | linkToInsert.prev = &before_raw;
|
---|
241 | dlink( tE ) & beforeLinks = before_elem`inner;
|
---|
242 | beforeLinks.next = &node;
|
---|
243 | list_pos_links.prev = &node;
|
---|
244 | asm( "" : : : "memory" );
|
---|
245 | return node;
|
---|
246 | }
|
---|
247 |
|
---|
248 | tE & insert_after( tE & after, tE & node ) {
|
---|
249 | verify( &after != 0p );
|
---|
250 | verify( &node != 0p );
|
---|
251 |
|
---|
252 | dlink( tE ) & linkToInsert = node`inner;
|
---|
253 | NOLOOSE(
|
---|
254 | verify( linkToInsert.prev == 0p );
|
---|
255 | verify( linkToInsert.next == 0p );
|
---|
256 | )
|
---|
257 |
|
---|
258 | tE & list_pos_elem = *(tE *)ORIGIN_TAG_CLEAR( (size_t)&after );
|
---|
259 | dlink( tE ) & list_pos_links = list_pos_elem`inner;
|
---|
260 | asm( "" : : : "memory" );
|
---|
261 | tE & after_raw = *list_pos_links.next;
|
---|
262 | tE & after_elem = *(tE *)ORIGIN_TAG_CLEAR( (size_t)&after_raw );
|
---|
263 | linkToInsert.prev = &after;
|
---|
264 | linkToInsert.next = &after_raw;
|
---|
265 | dlink( tE ) & afterLinks = after_elem`inner;
|
---|
266 | afterLinks.prev = &node;
|
---|
267 | list_pos_links.next = &node;
|
---|
268 | asm( "" : : : "memory" );
|
---|
269 | return node;
|
---|
270 | }
|
---|
271 |
|
---|
272 | tE & remove( tE & node ) {
|
---|
273 | verify( &node != 0p );
|
---|
274 | verify( ! ORIGIN_TAG_QUERY( (size_t)&node) );
|
---|
275 |
|
---|
276 | dlink( tE ) & list_pos_links = node`inner;
|
---|
277 | tE & before_raw = *list_pos_links.prev;
|
---|
278 | tE & before_elem = *(tE *)ORIGIN_TAG_CLEAR( (size_t)&before_raw );
|
---|
279 | dlink( tE ) & before_links = before_elem`inner;
|
---|
280 | tE & after_raw = *list_pos_links.next;
|
---|
281 | tE & after_elem = *(tE *)ORIGIN_TAG_CLEAR( (size_t)&after_raw );
|
---|
282 | dlink( tE ) & after_links = after_elem`inner;
|
---|
283 | before_links.next = &after_raw;
|
---|
284 | after_links.prev = &before_raw;
|
---|
285 |
|
---|
286 | NOLOOSE(
|
---|
287 | asm( "" : : : "memory" );
|
---|
288 | list_pos_links.prev = 0p;
|
---|
289 | list_pos_links.next = 0p;
|
---|
290 | asm( "" : : : "memory" );
|
---|
291 | )
|
---|
292 | return node;
|
---|
293 | }
|
---|
294 |
|
---|
295 | tE & iter( dlist( tE, tLinks ) & list ) {
|
---|
296 | tE * origin = $get_list_origin_addr( list );
|
---|
297 | return *origin;
|
---|
298 | }
|
---|
299 |
|
---|
300 | bool recede( tE && refx ) {
|
---|
301 | tE && ref_inner = refx;
|
---|
302 | tE & oldReferent = *(tE*)ORIGIN_TAG_CLEAR( (size_t)&ref_inner );
|
---|
303 | &ref_inner = oldReferent`inner.prev;
|
---|
304 | return &ref_inner != 0p && ! ORIGIN_TAG_QUERY( (size_t)&ref_inner );
|
---|
305 | }
|
---|
306 |
|
---|
307 | bool advance( tE && refx ) {
|
---|
308 | tE && ref_inner = refx;
|
---|
309 | tE & oldReferent = *(tE*)ORIGIN_TAG_CLEAR( (size_t)&ref_inner );
|
---|
310 | &ref_inner = oldReferent`inner.next;
|
---|
311 | return &ref_inner != 0p && ! ORIGIN_TAG_QUERY( (size_t)&ref_inner );
|
---|
312 | }
|
---|
313 |
|
---|
314 | bool isFirst( tE & node ) {
|
---|
315 | return recede( node );
|
---|
316 | }
|
---|
317 |
|
---|
318 | bool isLast( tE & node ) {
|
---|
319 | return advance( node );
|
---|
320 | }
|
---|
321 |
|
---|
322 | tE & prev( tE & node ) {
|
---|
323 | if ( recede( node ) ) return node;
|
---|
324 | return *0p;
|
---|
325 | }
|
---|
326 |
|
---|
327 | tE & next( tE & node ) {
|
---|
328 | if ( advance( node ) ) return node;
|
---|
329 | return *0p;
|
---|
330 | }
|
---|
331 |
|
---|
332 | tE & insert_first( dlist( tE, tLinks ) & list, tE & node ) {
|
---|
333 | insert_after( iter( list ), node );
|
---|
334 | return node;
|
---|
335 | }
|
---|
336 |
|
---|
337 | tE & insert_last( dlist( tE, tLinks ) & list, tE & node ) {
|
---|
338 | insert_before( iter( list ), node );
|
---|
339 | return node;
|
---|
340 | }
|
---|
341 | tE & insert( dlist( tE, tLinks ) & list, tE & node ) { // synonym for insert_last
|
---|
342 | insert_last( list, node );
|
---|
343 | return node;
|
---|
344 | }
|
---|
345 |
|
---|
346 | tE & remove_first( dlist( tE, tLinks ) & list ) {
|
---|
347 | tE & first_node = first( list );
|
---|
348 | if ( &first_node ) return remove( first_node );
|
---|
349 | return first_node;
|
---|
350 | }
|
---|
351 |
|
---|
352 | tE & remove_last( dlist( tE, tLinks ) & list ) {
|
---|
353 | tE & last_node = last( list );
|
---|
354 | if ( &last_node ) return remove( last_node );
|
---|
355 | return last_node;
|
---|
356 | }
|
---|
357 |
|
---|
358 | // Transfer the "from" list to the end of this sequence; the "from" list is empty after the transfer.
|
---|
359 | // void transfer( dlist( tE, tLinks ) & to, dlist( tE, tLinks ) & from ) {
|
---|
360 | // if ( isEmpty( from ) ) return; // "from" list empty ?
|
---|
361 | // if ( isEmpty( to ) ) { // "to" list empty ?
|
---|
362 | // root = from.root;
|
---|
363 | // } else { // "to" list not empty
|
---|
364 | // T * toEnd = (T *)uBack( root );
|
---|
365 | // T * fromEnd = (T *)from.uBack( from.root );
|
---|
366 | // uBack( root ) = fromEnd;
|
---|
367 | // from.uNext( fromEnd ) = root;
|
---|
368 | // from.uBack( from.root ) = toEnd;
|
---|
369 | // uNext( toEnd ) = from.root;
|
---|
370 | // } // if
|
---|
371 | // from.root = nullptr; // mark "from" list empty
|
---|
372 | // }
|
---|
373 |
|
---|
374 | // Transfer the "from" list up to node "n" to the end of this list; the "from" list becomes the sequence after node "n".
|
---|
375 | // Node "n" must be in the "from" list.
|
---|
376 | // void split( dlist( tE, tLinks ) & to, dlist( tE, tLinks ) & from, tE & node ) {
|
---|
377 | // #ifdef __U_DEBUG__
|
---|
378 | // if ( ! n->listed() ) abort( "(uSequence &)%p.split( %p ) : Node is not on a list.", this, n );
|
---|
379 | // #endif // __U_DEBUG__
|
---|
380 | // uSequence<T> to;
|
---|
381 | // to.root = from.root; // start of "to" list
|
---|
382 | // from.root = (T *)uNext( n ); // start of "from" list
|
---|
383 | // if ( to.root == from.root ) { // last node in list ?
|
---|
384 | // from.root = nullptr; // mark "from" list empty
|
---|
385 | // } else {
|
---|
386 | // uBack( from.root ) = (T *)uBack( to.root ); // fix "from" list
|
---|
387 | // uNext( uBack( to.root ) ) = from.root;
|
---|
388 | // uNext( n ) = to.root; // fix "to" list
|
---|
389 | // uBack( to.root ) = n;
|
---|
390 | // } // if
|
---|
391 | // transfer( to );
|
---|
392 | // }
|
---|
393 |
|
---|
394 | #if ! defined(NDEBUG) && (defined(__CFA_DEBUG__) || defined(__CFA_VERIFY__))
|
---|
395 | bool $validate_fwd( dlist( tE, tLinks ) & this ) {
|
---|
396 | if ( ! & first( this ) ) return &last( this ) == 0p;
|
---|
397 |
|
---|
398 | tE & lagElem = *0p;
|
---|
399 | while ( tE & it = iter( this ); advance( it ) ) {
|
---|
400 | if ( & lagElem == 0p && &it != & first( this ) ) return false;
|
---|
401 | &lagElem = ⁢
|
---|
402 | }
|
---|
403 |
|
---|
404 | if ( &lagElem != &last( this ) ) return false;
|
---|
405 |
|
---|
406 | // TODO: verify that it is back at iter( this );
|
---|
407 | return true;
|
---|
408 | }
|
---|
409 |
|
---|
410 | bool $validate_rev( dlist( tE, tLinks ) & this ) {
|
---|
411 | if ( ! & last( this ) ) return &first( this ) == 0p;
|
---|
412 |
|
---|
413 | tE & lagElem = *0p;
|
---|
414 | while ( tE & it = iter( this ); recede( it ) ) {
|
---|
415 | if ( &lagElem == 0p && &it != & last( this ) ) return false;
|
---|
416 | &lagElem = ⁢
|
---|
417 | }
|
---|
418 |
|
---|
419 | if ( &lagElem != &first( this ) ) return false;
|
---|
420 |
|
---|
421 | // TODO: verify that it is back at iter( this );
|
---|
422 | return true;
|
---|
423 | }
|
---|
424 |
|
---|
425 | bool validate( dlist( tE, tLinks ) & this ) {
|
---|
426 | return $validate_fwd( this ) && $validate_rev( this );
|
---|
427 | }
|
---|
428 | #endif
|
---|
429 | }
|
---|
430 |
|
---|
431 | // TEMPORARY, until foreach statement created.
|
---|
432 | #define FOREACH( list, index ) for ( typeof(iter( list )) & (index) = iter( list ); advance( index ); )
|
---|
433 | #define FOREACH_REV( list, index ) for ( typeof(iter( list )) & (index) = iter( list ); recede( index ); )
|
---|
434 | #define FOREACH_COND( list, index, expr ) for ( typeof(iter( list )) & (index) = iter( list ); advance( index ) && !(expr); )
|
---|
435 | #define FOREACH_REV_COND( list, index, expr ) for ( typeof(iter( list )) & (index) = iter( list ); recede( index ) && !(expr); )
|
---|