source: libcfa/src/collections/array.hfa@ fbb5bdd

Last change on this file since fbb5bdd was cdf7d43, checked in by Michael Brooks <mlbrooks@…>, 13 months ago

Hopefully fix broken build, from multiple declarations of arrah.hfa's delay_init.

  • Property mode set to 100644
File size: 10.7 KB
Line 
1#pragma once
2
3//#include <assert.h>
4
5
6forall( __CFA_tysys_id_only_X & ) struct tag {};
7#define ttag(T) ((tag(T)){})
8#define ztag(n) ttag(n)
9
10#ifdef __CFA_DEBUG__
11#define subcheck( arr, sub, lb, ub ) \
12 if ( (sub) < (lb) || (sub) >= (ub) ) \
13 abort( "subscript %ld exceeds dimension range [%d,%zd) for array %p.\n", \
14 (sub), (lb), (ub), (arr) )
15#else
16#define subcheck( arr, sub, lb, ub ) do {} while (0)
17#endif
18
19//
20// The `array` macro is the public interface.
21// It computes the type of a dense (trivially strided) array.
22// All user-declared objects are dense arrays.
23//
24// The `arpk` (ARray with PacKing info explicit) type is, generally, a slice with _any_ striding.
25// This type is meant for internal use.
26// CFA programmers should not instantiate it directly, nor access its field.
27// CFA programmers should call ?[?] on it.
28// Yet user-given `array(stuff)` expands to `arpk(stuff')`.
29// The comments here explain the resulting internals.
30//
31// Just as a plain-C "multidimesional" array is really array-of-array-of-...,
32// so does arpk generally show up as arpk-of-arpk-of...
33//
34// In the example of `array(float, 3, 4, 5) a;`,
35// `typeof(a)` is an `arpk` instantiation.
36// These comments explain _its_ arguments, i.e. those of the topmost `arpk` level.
37//
38// [N] : the number of elements in `a`; 3 in the example
39// S : carries the stride size (distance in bytes between &myA[0] and &myA[1]), in sizeof(S);
40// same as Timmed when striding is trivial, same as Timmed in the example
41// Timmed : (T-immediate) the inner type; conceptually, `typeof(a)` is "arpk of Timmed";
42// array(float, 4, 5) in the example
43// Tbase : (T-base) the deepest element type that is not arpk; float in the example
44//
45forall( [N], S & | sized(S), Timmed &, Tbase & ) {
46 //
47 // Single-dim array struct (with explicit packing and atom)
48 //
49 struct arpk {
50 S strides[N];
51 };
52
53 // About the choice of integral types offered as subscript overloads:
54 // Intent is to cover these use cases:
55 // a[0] // i : zero_t
56 // a[1] // i : one_t
57 // a[2] // i : int
58 // float foo( ptrdiff_t i ) { return a[i]; } // i : ptrdiff_t
59 // float foo( size_t i ) { return a[i]; } // i : size_t
60 // forall( [N] ) ... for( i; N ) { total += a[i]; } // i : typeof( sizeof(42) )
61 // for( i; 5 ) { total += a[i]; } // i : int
62 //
63 // It gets complicated by:
64 // - CFA does overloading on concrete types, like int and unsigned int, not on typedefed
65 // types like size_t. So trying to overload on ptrdiff_t vs int works in 64-bit mode
66 // but not in 32-bit mode.
67 // - Given bug of Trac #247, CFA gives sizeof expressions type unsigned long int, when it
68 // should give them type size_t.
69 //
70 // gcc -m32 cfa -m32 given bug gcc -m64 (and cfa)
71 // ptrdiff_t int int long int
72 // size_t unsigned int unsigned int unsigned long int
73 // typeof( sizeof(42) ) unsigned int unsigned long int unsigned long int
74 // int int int int
75 //
76 // So the solution must support types {zero_t, one_t, int, unsigned int, long int, unsigned long int}
77 //
78 // The solution cannot rely on implicit conversions (e.g. just have one overload for ptrdiff_t)
79 // because assertion satisfaction requires types to match exacly. Both higher-dimensional
80 // subscripting and operations on slices use asserted subscript operators. The test case
81 // array-container/array-sbscr-cases covers the combinations. Mike beleives that commenting out
82 // any of the current overloads leads to one of those cases failing, either on 64- or 32-bit.
83 // Mike is open to being shown a smaller set of overloads that still passes the test.
84
85 static inline Timmed & ?[?]( arpk( N, S, Timmed, Tbase ) & a, zero_t ) {
86 //assert( 0 < N );
87 subcheck( a, 0L, 0, N );
88 return (Timmed &)a.strides[0];
89 }
90
91 static inline Timmed & ?[?]( arpk( N, S, Timmed, Tbase ) & a, one_t ) {
92 //assert( 1 < N );
93 subcheck( a, 1L, 0, N );
94 return (Timmed &)a.strides[1];
95 }
96
97 static inline Timmed & ?[?]( arpk( N, S, Timmed, Tbase ) & a, int i ) {
98 //assert( i < N );
99 subcheck( a, (long int)i, 0, N );
100 return (Timmed &)a.strides[i];
101 }
102
103 static inline const Timmed & ?[?]( const arpk( N, S, Timmed, Tbase ) & a, int i ) {
104 //assert( i < N );
105 subcheck( a, (long int)i, 0, N );
106 return (Timmed &)a.strides[i];
107 }
108
109 static inline Timmed & ?[?]( arpk( N, S, Timmed, Tbase ) & a, unsigned int i ) {
110 //assert( i < N );
111 subcheck( a, (long int)i, 0, N );
112 return (Timmed &)a.strides[i];
113 }
114
115 static inline const Timmed & ?[?]( const arpk( N, S, Timmed, Tbase ) & a, unsigned int i ) {
116 //assert( i < N );
117 subcheck( a, (unsigned long int)i, 0, N );
118 return (Timmed &)a.strides[i];
119 }
120
121 static inline Timmed & ?[?]( arpk( N, S, Timmed, Tbase ) & a, long int i ) {
122 //assert( i < N );
123 subcheck( a, i, 0, N );
124 return (Timmed &)a.strides[i];
125 }
126
127 static inline const Timmed & ?[?]( const arpk( N, S, Timmed, Tbase ) & a, long int i ) {
128 //assert( i < N );
129 subcheck( a, i, 0, N );
130 return (Timmed &)a.strides[i];
131 }
132
133 static inline Timmed & ?[?]( arpk( N, S, Timmed, Tbase ) & a, unsigned long int i ) {
134 //assert( i < N );
135 subcheck( a, i, 0, N );
136 return (Timmed &)a.strides[i];
137 }
138
139 static inline const Timmed & ?[?]( const arpk( N, S, Timmed, Tbase ) & a, unsigned long int i ) {
140 //assert( i < N );
141 subcheck( a, i, 0, N );
142 return (Timmed &)a.strides[i];
143 }
144
145 static inline size_t ?`len( arpk( N, S, Timmed, Tbase ) & a ) {
146 return N;
147 }
148
149 static inline void __taglen( tag(arpk( N, S, Timmed, Tbase )), tag(N) ) {}
150}
151
152// RAII pattern has workarounds for
153// - Trac 226: Simplest handling would be, require immediate element to be otype, let autogen
154// raii happen. Performance on even a couple dimensions is unacceptable because of exponential
155// thunk creation: ?{}() needs all four otype funcs from next level, so does ^?{}(), so do the
156// other two. This solution offers ?{}() that needs only ?{}(), and similar for ^?{}.
157
158// skip initializing elements
159// array(float, 5) x = { delay_init };
160enum () delay_init_t { delay_init };
161forall( [N], S & | sized(S), Timmed &, Tbase & )
162static inline void ?{}( arpk( N, S, Timmed, Tbase ) & this, delay_init_t ) {
163 void ?{}( S (&)[N] ) {}
164 ?{}(this.strides);
165}
166
167// call default ctor on elements
168// array(float, 5) x;
169forall( [N], S & | sized(S), Timmed &, Tbase & | { void ?{}( Timmed & ); } )
170static inline void ?{}( arpk( N, S, Timmed, Tbase ) & this ) {
171 ?{}( this, delay_init );
172 for (i; N) ?{}( (Timmed &)this.strides[i] );
173}
174
175forall( [N], S & | sized(S), Timmed &, Tbase & | { void ^?{}( Timmed & ); } )
176static inline void ^?{}( arpk( N, S, Timmed, Tbase ) & this ) {
177 void ^?{}( S (&)[N] ) {}
178 ^?{}(this.strides);
179
180 for (i; N ) {
181 ^?{}( (Timmed &)this.strides[N-i-1] );
182 }
183}
184
185
186//
187// Sugar for declaring array structure instances
188//
189
190forall( Te * )
191static inline Te mkar_( tag(Te) ) {}
192
193forall( [N], ZTags ... , Trslt &, Tatom & | { Trslt mkar_( tag(Tatom), ZTags ); } )
194static inline arpk( N, Trslt, Trslt, Tatom) mkar_( tag(Tatom), tag(N), ZTags ) {}
195
196// based on https://stackoverflow.com/questions/1872220/is-it-possible-to-iterate-over-arguments-in-variadic-macros
197
198 // Make a FOREACH macro
199 #define FE_0(WHAT)
200 #define FE_1(WHAT, X) WHAT(X)
201 #define FE_2(WHAT, X, ...) WHAT(X)FE_1(WHAT, __VA_ARGS__)
202 #define FE_3(WHAT, X, ...) WHAT(X)FE_2(WHAT, __VA_ARGS__)
203 #define FE_4(WHAT, X, ...) WHAT(X)FE_3(WHAT, __VA_ARGS__)
204 #define FE_5(WHAT, X, ...) WHAT(X)FE_4(WHAT, __VA_ARGS__)
205 //... repeat as needed
206
207 #define GET_MACRO(_0,_1,_2,_3,_4,_5,NAME,...) NAME
208 #define FOR_EACH(action,...) \
209 GET_MACRO(_0,__VA_ARGS__,FE_5,FE_4,FE_3,FE_2,FE_1,FE_0)(action,__VA_ARGS__)
210
211#define COMMA_ttag(X) , ttag(X)
212#define array( TE, ...) typeof( mkar_( ttag(TE) FOR_EACH( COMMA_ttag, __VA_ARGS__ ) ) )
213
214#define COMMA_ztag(X) , ztag(X)
215#define zarray( TE, ...) typeof( mkar_( ttag(TE) FOR_EACH( COMMA_ztag, __VA_ARGS__ ) ) )
216
217//
218// Sugar for multidimensional indexing
219//
220
221// Core -[[-,-,-]] operator
222
223#ifdef TRY_BROKEN_DESIRED_MD_SUBSCRIPT
224
225// Desired form. One definition with recursion on IxBC (worked until Jan 2021, see trac #__TODO__)
226
227forall( TA &, TB &, TC &, IxAB, IxBC ... | { TB & ?[?]( TA &, IxAB ); TC & ?[?]( TB &, IxBC ); } )
228static inline TC & ?[?]( TA & this, IxAB ab, IxBC bc ) {
229 return this[ab][bc];
230}
231
232#else
233
234// Workaround form. Listing all possibilities up to 4 dims.
235
236forall( TA &, TB &, TC &, IxAB_0, IxBC | { TB & ?[?]( TA &, IxAB_0 ); TC & ?[?]( TB &, IxBC ); } )
237static inline TC & ?[?]( TA & this, IxAB_0 ab, IxBC bc ) {
238 return this[ab][bc];
239}
240
241forall( TA &, TB &, TC &, IxAB_0, IxAB_1, IxBC | { TB & ?[?]( TA &, IxAB_0, IxAB_1 ); TC & ?[?]( TB &, IxBC ); } )
242static inline TC & ?[?]( TA & this, IxAB_0 ab0, IxAB_1 ab1, IxBC bc ) {
243 return this[[ab0,ab1]][bc];
244}
245
246forall( TA &, TB &, TC &, IxAB_0, IxAB_1, IxAB_2, IxBC | { TB & ?[?]( TA &, IxAB_0, IxAB_1, IxAB_2 ); TC & ?[?]( TB &, IxBC ); } )
247static inline TC & ?[?]( TA & this, IxAB_0 ab0, IxAB_1 ab1, IxAB_2 ab2, IxBC bc ) {
248 return this[[ab0,ab1,ab2]][bc];
249}
250
251#endif
252
253// Available for users to work around Trac #265
254// If `a[...0...]` isn't working, try `a[...ix0...]` instead.
255
256#define ix0 ((ptrdiff_t)0)
257
258
259
260//
261// Rotation
262//
263
264// Base
265forall( [Nq], Sq & | sized(Sq), Tbase & )
266static inline tag(arpk( Nq, Sq, Tbase, Tbase )) enq_( tag(Tbase ), tag(Nq), tag(Sq), tag(Tbase ) ) {
267 tag(arpk( Nq, Sq, Tbase, Tbase )) ret;
268 return ret;
269}
270
271// Rec
272forall( [Nq], Sq & | sized(Sq), [N], S & | sized(S), recq &, recr &, Tbase & | { tag(recr) enq_( tag(Tbase), tag(Nq), tag(Sq), tag(recq) ); } )
273static inline tag(arpk( N, S, recr, Tbase )) enq_( tag(Tbase ), tag(Nq), tag(Sq), tag(arpk( N, S, recq, Tbase )) ) {
274 tag(arpk( N, S, recr, Tbase )) ret;
275 return ret;
276}
277
278// Wrapper
279extern struct all_t {} all;
280forall( [N], S & | sized(S), Te &, result &, Tbase & | { tag(result) enq_( tag(Tbase), tag(N), tag(S), tag(Te) ); } )
281static inline result & ?[?]( arpk( N, S, Te, Tbase ) & this, all_t ) {
282 return (result&) this;
283}
284
285//
286// Trait of array or slice
287//
288
289// desired:
290// forall(A &, Tv &, [N])
291// trait ar {
292// Tv& ?[?]( A&, zero_t );
293// Tv& ?[?]( A&, one_t );
294// Tv& ?[?]( A&, int );
295// ...
296// size_t ?`len( A& );
297// void __taglen( tag(C), tag(N) );
298// };
299
300// working around N's not being accepted as arguments to traits
301
302#define ar( A, Tv, N ) { \
303 Tv& ?[?]( A&, zero_t ); \
304 Tv& ?[?]( A&, one_t ); \
305 Tv& ?[?]( A&, int ); \
306 Tv& ?[?]( A&, unsigned int ); \
307 Tv& ?[?]( A&, long int ); \
308 Tv& ?[?]( A&, unsigned long int ); \
309 size_t ?`len( A& ); \
310 void __taglen( tag(A), tag(N) ); \
311}
Note: See TracBrowser for help on using the repository browser.