1 | #pragma once
|
---|
2 |
|
---|
3 |
|
---|
4 |
|
---|
5 | forall( __CFA_tysys_id_only_X & ) struct tag {};
|
---|
6 | #define ttag(T) ((tag(T)){})
|
---|
7 | #define ztag(n) ttag(n)
|
---|
8 |
|
---|
9 | #ifdef __CFA_DEBUG__
|
---|
10 | #define subcheck( arr, sub, len ) \
|
---|
11 | if ( (sub) < 0 || (sub) >= (len) ) \
|
---|
12 | abort( "Subscript %ld exceeds dimension range [0,%zu) for array %p.\n", \
|
---|
13 | (sub), (len), (arr) )
|
---|
14 | #define subchecku( arr, sub, len ) \
|
---|
15 | if ( (sub) >= (len) ) \
|
---|
16 | abort( "Subscript %ld exceeds dimension range [0,%zu) for array %p.\n", \
|
---|
17 | (sub), (len), (arr) )
|
---|
18 | #else
|
---|
19 | #define subcheck( arr, sub, len ) do {} while (0)
|
---|
20 | #define subchecku( arr, sub, len ) do {} while (0)
|
---|
21 | #endif
|
---|
22 |
|
---|
23 | //
|
---|
24 | // The `array` macro is the public interface.
|
---|
25 | // It computes the type of a dense (trivially strided) array.
|
---|
26 | // All user-declared objects are dense arrays.
|
---|
27 | //
|
---|
28 | // The `arpk` (ARray with PacKing info explicit) type is, generally, a slice with _any_ striding.
|
---|
29 | // This type is meant for internal use.
|
---|
30 | // CFA programmers should not instantiate it directly, nor access its field.
|
---|
31 | // CFA programmers should call ?[?] on it.
|
---|
32 | // Yet user-given `array(stuff)` expands to `arpk(stuff')`.
|
---|
33 | // The comments here explain the resulting internals.
|
---|
34 | //
|
---|
35 | // Just as a plain-C "multidimesional" array is really array-of-array-of-...,
|
---|
36 | // so does arpk generally show up as arpk-of-arpk-of...
|
---|
37 | //
|
---|
38 | // In the example of `array(float, 3, 4, 5) a;`,
|
---|
39 | // `typeof(a)` is an `arpk` instantiation.
|
---|
40 | // These comments explain _its_ arguments, i.e. those of the topmost `arpk` level.
|
---|
41 | //
|
---|
42 | // [N] : the number of elements in `a`; 3 in the example
|
---|
43 | // S : carries the stride size (distance in bytes between &myA[0] and &myA[1]), in sizeof(S);
|
---|
44 | // same as Timmed when striding is trivial, same as Timmed in the example
|
---|
45 | // Timmed : (T-immediate) the inner type; conceptually, `typeof(a)` is "arpk of Timmed";
|
---|
46 | // array(float, 4, 5) in the example
|
---|
47 | // Tbase : (T-base) the deepest element type that is not arpk; float in the example
|
---|
48 | //
|
---|
49 | forall( [N], S & | sized(S), Timmed &, Tbase & ) {
|
---|
50 | //
|
---|
51 | // Single-dim array struct (with explicit packing and atom)
|
---|
52 | //
|
---|
53 | struct arpk {
|
---|
54 | S strides[N];
|
---|
55 | };
|
---|
56 |
|
---|
57 | // About the choice of integral types offered as subscript overloads:
|
---|
58 | // Intent is to cover these use cases:
|
---|
59 | // a[0] // i : zero_t
|
---|
60 | // a[1] // i : one_t
|
---|
61 | // a[2] // i : int
|
---|
62 | // float foo( ptrdiff_t i ) { return a[i]; } // i : ptrdiff_t
|
---|
63 | // float foo( size_t i ) { return a[i]; } // i : size_t
|
---|
64 | // forall( [N] ) ... for( i; N ) { total += a[i]; } // i : typeof( sizeof(42) )
|
---|
65 | // for( i; 5 ) { total += a[i]; } // i : int
|
---|
66 | //
|
---|
67 | // It gets complicated by:
|
---|
68 | // - CFA does overloading on concrete types, like int and unsigned int, not on typedefed
|
---|
69 | // types like size_t. So trying to overload on ptrdiff_t vs int works in 64-bit mode
|
---|
70 | // but not in 32-bit mode.
|
---|
71 | // - Given bug of Trac #247, CFA gives sizeof expressions type unsigned long int, when it
|
---|
72 | // should give them type size_t.
|
---|
73 | //
|
---|
74 | // gcc -m32 cfa -m32 given bug gcc -m64 (and cfa)
|
---|
75 | // ptrdiff_t int int long int
|
---|
76 | // size_t unsigned int unsigned int unsigned long int
|
---|
77 | // typeof( sizeof(42) ) unsigned int unsigned long int unsigned long int
|
---|
78 | // int int int int
|
---|
79 | //
|
---|
80 | // So the solution must support types {zero_t, one_t, int, unsigned int, long int, unsigned long int}
|
---|
81 | //
|
---|
82 | // The solution cannot rely on implicit conversions (e.g. just have one overload for ptrdiff_t)
|
---|
83 | // because assertion satisfaction requires types to match exacly. Both higher-dimensional
|
---|
84 | // subscripting and operations on slices use asserted subscript operators. The test case
|
---|
85 | // array-container/array-sbscr-cases covers the combinations. Mike beleives that commenting out
|
---|
86 | // any of the current overloads leads to one of those cases failing, either on 64- or 32-bit.
|
---|
87 | // Mike is open to being shown a smaller set of overloads that still passes the test.
|
---|
88 |
|
---|
89 | static inline Timmed & ?[?]( arpk( N, S, Timmed, Tbase ) & a, zero_t ) {
|
---|
90 | subcheck( a, 0L, N );
|
---|
91 | return (Timmed &)a.strides[0];
|
---|
92 | }
|
---|
93 |
|
---|
94 | static inline Timmed & ?[?]( arpk( N, S, Timmed, Tbase ) & a, one_t ) {
|
---|
95 | subcheck( a, 1L, N );
|
---|
96 | return (Timmed &)a.strides[1];
|
---|
97 | }
|
---|
98 |
|
---|
99 | static inline Timmed & ?[?]( arpk( N, S, Timmed, Tbase ) & a, int i ) {
|
---|
100 | subcheck( a, (long int)i, N );
|
---|
101 | return (Timmed &)a.strides[i];
|
---|
102 | }
|
---|
103 |
|
---|
104 | static inline const Timmed & ?[?]( const arpk( N, S, Timmed, Tbase ) & a, int i ) {
|
---|
105 | subcheck( a, (long int)i, N );
|
---|
106 | return (Timmed &)a.strides[i];
|
---|
107 | }
|
---|
108 |
|
---|
109 | static inline Timmed & ?[?]( arpk( N, S, Timmed, Tbase ) & a, unsigned int i ) {
|
---|
110 | subchecku( a, (unsigned long int)i, N );
|
---|
111 | return (Timmed &)a.strides[i];
|
---|
112 | }
|
---|
113 |
|
---|
114 | static inline const Timmed & ?[?]( const arpk( N, S, Timmed, Tbase ) & a, unsigned int i ) {
|
---|
115 | subchecku( a, (unsigned long int)i, N );
|
---|
116 | return (Timmed &)a.strides[i];
|
---|
117 | }
|
---|
118 |
|
---|
119 | static inline Timmed & ?[?]( arpk( N, S, Timmed, Tbase ) & a, long int i ) {
|
---|
120 | subcheck( a, i, N );
|
---|
121 | return (Timmed &)a.strides[i];
|
---|
122 | }
|
---|
123 |
|
---|
124 | static inline const Timmed & ?[?]( const arpk( N, S, Timmed, Tbase ) & a, long int i ) {
|
---|
125 | subcheck( a, i, N );
|
---|
126 | return (Timmed &)a.strides[i];
|
---|
127 | }
|
---|
128 |
|
---|
129 | static inline Timmed & ?[?]( arpk( N, S, Timmed, Tbase ) & a, unsigned long int i ) {
|
---|
130 | subchecku( a, i, N );
|
---|
131 | return (Timmed &)a.strides[i];
|
---|
132 | }
|
---|
133 |
|
---|
134 | static inline const Timmed & ?[?]( const arpk( N, S, Timmed, Tbase ) & a, unsigned long int i ) {
|
---|
135 | subchecku( a, i, N );
|
---|
136 | return (Timmed &)a.strides[i];
|
---|
137 | }
|
---|
138 |
|
---|
139 | static inline size_t len( arpk( N, S, Timmed, Tbase ) & ) {
|
---|
140 | return N;
|
---|
141 | }
|
---|
142 |
|
---|
143 | static inline void __taglen( tag(arpk( N, S, Timmed, Tbase )), tag(N) ) {}
|
---|
144 | }
|
---|
145 |
|
---|
146 | // RAII pattern has workarounds for
|
---|
147 | // - Trac 226: Simplest handling would be, require immediate element to be otype, let autogen
|
---|
148 | // raii happen. Performance on even a couple dimensions is unacceptable because of exponential
|
---|
149 | // thunk creation: ?{}() needs all four otype funcs from next level, so does ^?{}(), so do the
|
---|
150 | // other two. This solution offers ?{}() that needs only ?{}(), and similar for ^?{}.
|
---|
151 |
|
---|
152 | // skip initializing elements
|
---|
153 | // array(float, 5) x = { delay_init };
|
---|
154 | enum () delay_init_t { delay_init };
|
---|
155 | forall( [N], S & | sized(S), Timmed &, Tbase & )
|
---|
156 | static inline void ?{}( arpk( N, S, Timmed, Tbase ) & this, delay_init_t ) {
|
---|
157 | void ?{}( S (&)[N] ) {}
|
---|
158 | ?{}(this.strides);
|
---|
159 | }
|
---|
160 |
|
---|
161 | // call default ctor on elements
|
---|
162 | // array(float, 5) x;
|
---|
163 | forall( [N], S & | sized(S), Timmed &, Tbase & | { void ?{}( Timmed & ); } )
|
---|
164 | static inline void ?{}( arpk( N, S, Timmed, Tbase ) & this ) {
|
---|
165 | ?{}( this, delay_init );
|
---|
166 | for (i; N) ?{}( (Timmed &)this.strides[i] );
|
---|
167 | }
|
---|
168 |
|
---|
169 | forall( [N], S & | sized(S), Timmed &, Tbase & | { void ^?{}( Timmed & ); } )
|
---|
170 | static inline void ^?{}( arpk( N, S, Timmed, Tbase ) & this ) {
|
---|
171 | void ^?{}( S (&)[N] ) {}
|
---|
172 | ^?{}(this.strides);
|
---|
173 |
|
---|
174 | for (i; N ) {
|
---|
175 | ^?{}( (Timmed &)this.strides[N-i-1] );
|
---|
176 | }
|
---|
177 | }
|
---|
178 |
|
---|
179 |
|
---|
180 | //
|
---|
181 | // Sugar for declaring array structure instances
|
---|
182 | //
|
---|
183 |
|
---|
184 | forall( Te * )
|
---|
185 | static inline Te mkar_( tag(Te) ) {}
|
---|
186 |
|
---|
187 | forall( [N], ZTags ... , Trslt &, Tatom & | { Trslt mkar_( tag(Tatom), ZTags ); } )
|
---|
188 | static inline arpk( N, Trslt, Trslt, Tatom) mkar_( tag(Tatom), tag(N), ZTags ) {}
|
---|
189 |
|
---|
190 | // based on https://stackoverflow.com/questions/1872220/is-it-possible-to-iterate-over-arguments-in-variadic-macros
|
---|
191 |
|
---|
192 | // Make a FOREACH macro
|
---|
193 | #define FE_0(WHAT)
|
---|
194 | #define FE_1(WHAT, X) WHAT(X)
|
---|
195 | #define FE_2(WHAT, X, ...) WHAT(X)FE_1(WHAT, __VA_ARGS__)
|
---|
196 | #define FE_3(WHAT, X, ...) WHAT(X)FE_2(WHAT, __VA_ARGS__)
|
---|
197 | #define FE_4(WHAT, X, ...) WHAT(X)FE_3(WHAT, __VA_ARGS__)
|
---|
198 | #define FE_5(WHAT, X, ...) WHAT(X)FE_4(WHAT, __VA_ARGS__)
|
---|
199 | //... repeat as needed
|
---|
200 |
|
---|
201 | #define GET_MACRO(_0,_1,_2,_3,_4,_5,NAME,...) NAME
|
---|
202 | #define FOR_EACH(action,...) \
|
---|
203 | GET_MACRO(_0,__VA_ARGS__,FE_5,FE_4,FE_3,FE_2,FE_1,FE_0)(action,__VA_ARGS__)
|
---|
204 |
|
---|
205 | #define COMMA_ttag(X) , ttag(X)
|
---|
206 | #define array( TE, ...) typeof( mkar_( ttag(TE) FOR_EACH( COMMA_ttag, __VA_ARGS__ ) ) )
|
---|
207 |
|
---|
208 | #define COMMA_ztag(X) , ztag(X)
|
---|
209 | #define zarray( TE, ...) typeof( mkar_( ttag(TE) FOR_EACH( COMMA_ztag, __VA_ARGS__ ) ) )
|
---|
210 |
|
---|
211 | //
|
---|
212 | // Sugar for multidimensional indexing
|
---|
213 | //
|
---|
214 |
|
---|
215 | // Core -[[-,-,-]] operator
|
---|
216 |
|
---|
217 | #ifdef TRY_BROKEN_DESIRED_MD_SUBSCRIPT
|
---|
218 |
|
---|
219 | // Desired form. One definition with recursion on IxBC (worked until Jan 2021, see trac #__TODO__)
|
---|
220 |
|
---|
221 | forall( TA &, TB &, TC &, IxAB, IxBC ... | { TB & ?[?]( TA &, IxAB ); TC & ?[?]( TB &, IxBC ); } )
|
---|
222 | static inline TC & ?[?]( TA & this, IxAB ab, IxBC bc ) {
|
---|
223 | return this[ab][bc];
|
---|
224 | }
|
---|
225 |
|
---|
226 | #else
|
---|
227 |
|
---|
228 | // Workaround form. Listing all possibilities up to 4 dims.
|
---|
229 |
|
---|
230 | forall( TA &, TB &, TC &, IxAB_0, IxBC | { TB & ?[?]( TA &, IxAB_0 ); TC & ?[?]( TB &, IxBC ); } )
|
---|
231 | static inline TC & ?[?]( TA & this, IxAB_0 ab, IxBC bc ) {
|
---|
232 | return this[ab][bc];
|
---|
233 | }
|
---|
234 |
|
---|
235 | forall( TA &, TB &, TC &, IxAB_0, IxAB_1, IxBC | { TB & ?[?]( TA &, IxAB_0, IxAB_1 ); TC & ?[?]( TB &, IxBC ); } )
|
---|
236 | static inline TC & ?[?]( TA & this, IxAB_0 ab0, IxAB_1 ab1, IxBC bc ) {
|
---|
237 | return this[[ab0,ab1]][bc];
|
---|
238 | }
|
---|
239 |
|
---|
240 | forall( TA &, TB &, TC &, IxAB_0, IxAB_1, IxAB_2, IxBC | { TB & ?[?]( TA &, IxAB_0, IxAB_1, IxAB_2 ); TC & ?[?]( TB &, IxBC ); } )
|
---|
241 | static inline TC & ?[?]( TA & this, IxAB_0 ab0, IxAB_1 ab1, IxAB_2 ab2, IxBC bc ) {
|
---|
242 | return this[[ab0,ab1,ab2]][bc];
|
---|
243 | }
|
---|
244 |
|
---|
245 | #endif
|
---|
246 |
|
---|
247 | // Available for users to work around Trac #265
|
---|
248 | // If `a[...0...]` isn't working, try `a[...ix0...]` instead.
|
---|
249 |
|
---|
250 | #define ix0 ((ptrdiff_t)0)
|
---|
251 |
|
---|
252 |
|
---|
253 |
|
---|
254 | //
|
---|
255 | // Rotation
|
---|
256 | //
|
---|
257 |
|
---|
258 | // Base
|
---|
259 | forall( [Nq], Sq & | sized(Sq), Tbase & )
|
---|
260 | static inline tag(arpk( Nq, Sq, Tbase, Tbase )) enq_( tag(Tbase ), tag(Nq), tag(Sq), tag(Tbase ) ) {
|
---|
261 | tag(arpk( Nq, Sq, Tbase, Tbase )) ret;
|
---|
262 | return ret;
|
---|
263 | }
|
---|
264 |
|
---|
265 | // Rec
|
---|
266 | forall( [Nq], Sq & | sized(Sq), [N], S & | sized(S), recq &, recr &, Tbase & | { tag(recr) enq_( tag(Tbase), tag(Nq), tag(Sq), tag(recq) ); } )
|
---|
267 | static inline tag(arpk( N, S, recr, Tbase )) enq_( tag(Tbase ), tag(Nq), tag(Sq), tag(arpk( N, S, recq, Tbase )) ) {
|
---|
268 | tag(arpk( N, S, recr, Tbase )) ret;
|
---|
269 | return ret;
|
---|
270 | }
|
---|
271 |
|
---|
272 | // Wrapper
|
---|
273 | extern struct all_t {} all;
|
---|
274 | forall( [N], S & | sized(S), Te &, result &, Tbase & | { tag(result) enq_( tag(Tbase), tag(N), tag(S), tag(Te) ); } )
|
---|
275 | static inline result & ?[?]( arpk( N, S, Te, Tbase ) & this, all_t ) {
|
---|
276 | return (result&) this;
|
---|
277 | }
|
---|
278 |
|
---|
279 | //
|
---|
280 | // Trait of array or slice
|
---|
281 | //
|
---|
282 |
|
---|
283 | // desired:
|
---|
284 | // forall( A &, Tv &, [N] )
|
---|
285 | // trait ar {
|
---|
286 | // Tv& ?[?]( A &, zero_t );
|
---|
287 | // Tv& ?[?]( A &, one_t );
|
---|
288 | // Tv& ?[?]( A &, int );
|
---|
289 | // ...
|
---|
290 | // size_t len( A & );
|
---|
291 | // void __taglen( tag(C), tag(N) );
|
---|
292 | // };
|
---|
293 |
|
---|
294 | // working around N's not being accepted as arguments to traits
|
---|
295 |
|
---|
296 | #define ar( A, Tv, N ) { \
|
---|
297 | Tv& ?[?]( A &, zero_t ); \
|
---|
298 | Tv& ?[?]( A &, one_t ); \
|
---|
299 | Tv& ?[?]( A &, int ); \
|
---|
300 | Tv& ?[?]( A &, unsigned int ); \
|
---|
301 | Tv& ?[?]( A &, long int ); \
|
---|
302 | Tv& ?[?]( A &, unsigned long int ); \
|
---|
303 | size_t len( A & ); \
|
---|
304 | void __taglen( tag(A), tag(N) ); \
|
---|
305 | }
|
---|