source: libcfa/src/collections/array.hfa @ 8ee211d

Last change on this file since 8ee211d was 8ee211d, checked in by Michael Brooks <mlbrooks@…>, 6 days ago

Make array and list headers free of warnings upon include and as used in a libcfa build

  • Property mode set to 100644
File size: 10.6 KB
Line 
1#pragma once
2
3//#include <assert.h>
4
5
6forall( __CFA_tysys_id_only_X & ) struct tag {};
7#define ttag(T) ((tag(T)){})
8#define ztag(n) ttag(n)
9
10#ifdef __CFA_DEBUG__
11#define subcheck( arr, sub, len ) \
12        if ( (sub) < 0 || (sub) >= (len) ) \
13                abort( "subscript %ld exceeds dimension range [0,%zd) for array %p.\n", \
14                           (sub), (len), (arr) )
15#define subchecku( arr, sub, len ) \
16        if ( (sub) >= (len) ) \
17                abort( "subscript %ld exceeds dimension range [0,%zd) for array %p.\n", \
18                           (sub), (len), (arr) )
19#else
20#define subcheck( arr, sub, len ) do {} while (0)
21#define subchecku( arr, sub, len ) do {} while (0)
22#endif
23
24//
25// The `array` macro is the public interface.
26// It computes the type of a dense (trivially strided) array.
27// All user-declared objects are dense arrays.
28//
29// The `arpk` (ARray with PacKing info explicit) type is, generally, a slice with _any_ striding.
30// This type is meant for internal use.
31// CFA programmers should not instantiate it directly, nor access its field.
32// CFA programmers should call ?[?] on it.
33// Yet user-given `array(stuff)` expands to `arpk(stuff')`.
34// The comments here explain the resulting internals.
35//
36// Just as a plain-C "multidimesional" array is really array-of-array-of-...,
37// so does arpk generally show up as arpk-of-arpk-of...
38//
39// In the example of `array(float, 3, 4, 5) a;`,
40// `typeof(a)` is an `arpk` instantiation.
41// These comments explain _its_ arguments, i.e. those of the topmost `arpk` level.
42//
43// [N]    : the number of elements in `a`; 3 in the example
44// S      : carries the stride size (distance in bytes between &myA[0] and &myA[1]), in sizeof(S);
45//          same as Timmed when striding is trivial, same as Timmed in the example
46// Timmed : (T-immediate) the inner type; conceptually, `typeof(a)` is "arpk of Timmed";
47//          array(float, 4, 5) in the example
48// Tbase  : (T-base) the deepest element type that is not arpk; float in the example
49//
50forall( [N], S & | sized(S), Timmed &, Tbase & ) {
51        //
52        // Single-dim array struct (with explicit packing and atom)
53        //
54        struct arpk {
55                S strides[N];
56        };
57
58        // About the choice of integral types offered as subscript overloads:
59        // Intent is to cover these use cases:
60        //    a[0]                                                // i : zero_t
61        //    a[1]                                                // i : one_t
62        //    a[2]                                                // i : int
63        //    float foo( ptrdiff_t i ) { return a[i]; }           // i : ptrdiff_t
64        //    float foo( size_t i ) { return a[i]; }              // i : size_t
65        //    forall( [N] ) ... for( i; N ) { total += a[i]; }    // i : typeof( sizeof(42) )
66        //    for( i; 5 ) { total += a[i]; }                      // i : int
67        //
68        // It gets complicated by:
69        // -  CFA does overloading on concrete types, like int and unsigned int, not on typedefed
70        //    types like size_t.  So trying to overload on ptrdiff_t vs int works in 64-bit mode
71        //    but not in 32-bit mode.
72        // -  Given bug of Trac #247, CFA gives sizeof expressions type unsigned long int, when it
73        //    should give them type size_t.
74        //
75        //                          gcc -m32         cfa -m32 given bug         gcc -m64 (and cfa)
76        // ptrdiff_t                int              int                        long int
77        // size_t                   unsigned int     unsigned int               unsigned long int
78        // typeof( sizeof(42) )     unsigned int     unsigned long int          unsigned long int
79        // int                      int              int                        int
80        //
81        // So the solution must support types {zero_t, one_t, int, unsigned int, long int, unsigned long int}
82        //
83        // The solution cannot rely on implicit conversions (e.g. just have one overload for ptrdiff_t)
84        // because assertion satisfaction requires types to match exacly.  Both higher-dimensional
85        // subscripting and operations on slices use asserted subscript operators.  The test case
86        // array-container/array-sbscr-cases covers the combinations.  Mike beleives that commenting out
87        // any of the current overloads leads to one of those cases failing, either on 64- or 32-bit.
88        // Mike is open to being shown a smaller set of overloads that still passes the test.
89
90        static inline Timmed & ?[?]( arpk( N, S, Timmed, Tbase ) & a, zero_t ) {
91                subcheck( a, 0L, N );
92                return (Timmed &)a.strides[0];
93        }
94
95        static inline Timmed & ?[?]( arpk( N, S, Timmed, Tbase ) & a, one_t ) {
96                subcheck( a, 1L, N );
97                return (Timmed &)a.strides[1];
98        }
99
100        static inline Timmed & ?[?]( arpk( N, S, Timmed, Tbase ) & a, int i ) {
101                subcheck( a, (long int)i, N );
102                return (Timmed &)a.strides[i];
103        }
104
105        static inline const Timmed & ?[?]( const arpk( N, S, Timmed, Tbase ) & a, int i ) {
106                subcheck( a, (long int)i, N );
107                return (Timmed &)a.strides[i];
108        }
109
110        static inline Timmed & ?[?]( arpk( N, S, Timmed, Tbase ) & a, unsigned int i ) {
111                subchecku( a, (unsigned long int)i, N );
112                return (Timmed &)a.strides[i];
113        }
114
115        static inline const Timmed & ?[?]( const arpk( N, S, Timmed, Tbase ) & a, unsigned int i ) {
116                subchecku( a, (unsigned long int)i, N );
117                return (Timmed &)a.strides[i];
118        }
119
120        static inline Timmed & ?[?]( arpk( N, S, Timmed, Tbase ) & a, long int i ) {
121                subcheck( a, i, N );
122                return (Timmed &)a.strides[i];
123        }
124
125        static inline const Timmed & ?[?]( const arpk( N, S, Timmed, Tbase ) & a, long int i ) {
126                subcheck( a, i, N );
127                return (Timmed &)a.strides[i];
128        }
129
130        static inline Timmed & ?[?]( arpk( N, S, Timmed, Tbase ) & a, unsigned long int i ) {
131                subchecku( a, i, N );
132                return (Timmed &)a.strides[i];
133        }
134
135        static inline const Timmed & ?[?]( const arpk( N, S, Timmed, Tbase ) & a, unsigned long int i ) {
136                subchecku( a, i, N );
137                return (Timmed &)a.strides[i];
138        }
139
140        static inline size_t ?`len( arpk( N, S, Timmed, Tbase ) & ) {
141                return N;
142        }
143
144        static inline void __taglen( tag(arpk( N, S, Timmed, Tbase )), tag(N) ) {}
145}
146
147// RAII pattern has workarounds for
148//  - Trac 226:  Simplest handling would be, require immediate element to be otype, let autogen
149//      raii happen.  Performance on even a couple dimensions is unacceptable because of exponential
150//      thunk creation: ?{}() needs all four otype funcs from next level, so does ^?{}(), so do the
151//      other two.  This solution offers ?{}() that needs only ?{}(), and similar for ^?{}.
152
153// skip initializing elements
154//   array(float, 5) x = { delay_init };
155enum () delay_init_t { delay_init };
156forall( [N], S & | sized(S), Timmed &, Tbase & )
157static inline void ?{}( arpk( N, S, Timmed, Tbase ) & this, delay_init_t ) {
158        void ?{}( S (&)[N] ) {}
159        ?{}(this.strides);
160}
161
162// call default ctor on elements
163//   array(float, 5) x;
164forall( [N], S & | sized(S), Timmed &, Tbase & | { void ?{}( Timmed & ); } )
165static inline void ?{}( arpk( N, S, Timmed, Tbase ) & this ) { 
166        ?{}( this, delay_init );
167        for (i; N) ?{}( (Timmed &)this.strides[i] );
168}
169
170forall( [N], S & | sized(S), Timmed &, Tbase & | { void ^?{}( Timmed & ); } )
171static inline void ^?{}( arpk( N, S, Timmed, Tbase ) & this ) {
172        void ^?{}( S (&)[N] ) {}
173        ^?{}(this.strides);
174
175        for (i; N ) {
176                ^?{}( (Timmed &)this.strides[N-i-1] );
177        }
178}
179
180
181//
182// Sugar for declaring array structure instances
183//
184
185forall( Te * )
186static inline Te mkar_( tag(Te) ) {}
187
188forall( [N], ZTags ... , Trslt &, Tatom & | { Trslt mkar_( tag(Tatom), ZTags ); } )
189static inline arpk( N, Trslt, Trslt, Tatom) mkar_( tag(Tatom), tag(N), ZTags ) {}
190
191// based on https://stackoverflow.com/questions/1872220/is-it-possible-to-iterate-over-arguments-in-variadic-macros
192
193        // Make a FOREACH macro
194        #define FE_0(WHAT)
195        #define FE_1(WHAT, X) WHAT(X)
196        #define FE_2(WHAT, X, ...) WHAT(X)FE_1(WHAT, __VA_ARGS__)
197        #define FE_3(WHAT, X, ...) WHAT(X)FE_2(WHAT, __VA_ARGS__)
198        #define FE_4(WHAT, X, ...) WHAT(X)FE_3(WHAT, __VA_ARGS__)
199        #define FE_5(WHAT, X, ...) WHAT(X)FE_4(WHAT, __VA_ARGS__)
200        //... repeat as needed
201
202        #define GET_MACRO(_0,_1,_2,_3,_4,_5,NAME,...) NAME
203        #define FOR_EACH(action,...) \
204        GET_MACRO(_0,__VA_ARGS__,FE_5,FE_4,FE_3,FE_2,FE_1,FE_0)(action,__VA_ARGS__)
205
206#define COMMA_ttag(X) , ttag(X)
207#define array( TE, ...) typeof( mkar_( ttag(TE)  FOR_EACH( COMMA_ttag, __VA_ARGS__ ) ) )
208
209#define COMMA_ztag(X) , ztag(X)
210#define zarray( TE, ...) typeof( mkar_( ttag(TE)  FOR_EACH( COMMA_ztag, __VA_ARGS__ ) ) )
211
212//
213// Sugar for multidimensional indexing
214//
215
216// Core -[[-,-,-]] operator
217
218#ifdef TRY_BROKEN_DESIRED_MD_SUBSCRIPT
219
220// Desired form.  One definition with recursion on IxBC (worked until Jan 2021, see trac #__TODO__)
221
222forall( TA &, TB &, TC &, IxAB, IxBC ... | { TB & ?[?]( TA &, IxAB ); TC & ?[?]( TB &, IxBC ); } )
223static inline TC & ?[?]( TA & this, IxAB ab, IxBC bc ) {
224        return this[ab][bc];
225}
226
227#else
228
229// Workaround form.  Listing all possibilities up to 4 dims.
230
231forall( TA &, TB &, TC &, IxAB_0, IxBC | { TB & ?[?]( TA &, IxAB_0 ); TC & ?[?]( TB &, IxBC ); } )
232static inline TC & ?[?]( TA & this, IxAB_0 ab, IxBC bc ) {
233        return this[ab][bc];
234}
235
236forall( TA &, TB &, TC &, IxAB_0, IxAB_1, IxBC | { TB & ?[?]( TA &, IxAB_0, IxAB_1 ); TC & ?[?]( TB &, IxBC ); } )
237static inline TC & ?[?]( TA & this, IxAB_0 ab0, IxAB_1 ab1, IxBC bc ) {
238        return this[[ab0,ab1]][bc];
239}
240
241forall( TA &, TB &, TC &, IxAB_0, IxAB_1, IxAB_2, IxBC | { TB & ?[?]( TA &, IxAB_0, IxAB_1, IxAB_2 ); TC & ?[?]( TB &, IxBC ); } )
242static inline TC & ?[?]( TA & this, IxAB_0 ab0, IxAB_1 ab1, IxAB_2 ab2, IxBC bc ) {
243        return this[[ab0,ab1,ab2]][bc];
244}
245
246#endif
247
248// Available for users to work around Trac #265
249// If `a[...0...]` isn't working, try `a[...ix0...]` instead.
250
251#define ix0 ((ptrdiff_t)0)
252
253
254
255//
256// Rotation
257//
258
259// Base
260forall( [Nq], Sq & | sized(Sq), Tbase & )
261static inline tag(arpk( Nq, Sq, Tbase, Tbase )) enq_( tag(Tbase ), tag(Nq), tag(Sq), tag(Tbase ) ) {
262        tag(arpk( Nq, Sq, Tbase, Tbase )) ret;
263        return ret;
264}
265
266// Rec
267forall( [Nq], Sq & | sized(Sq), [N], S & | sized(S), recq &, recr &, Tbase & | { tag(recr) enq_( tag(Tbase), tag(Nq), tag(Sq), tag(recq) ); } )
268static inline tag(arpk( N, S, recr, Tbase )) enq_( tag(Tbase ), tag(Nq), tag(Sq), tag(arpk( N, S, recq, Tbase )) ) {
269        tag(arpk( N, S, recr, Tbase )) ret;
270        return ret;
271}
272
273// Wrapper
274extern struct all_t {} all;
275forall( [N], S & | sized(S), Te &, result &, Tbase & | { tag(result) enq_( tag(Tbase), tag(N), tag(S), tag(Te) ); } )
276static inline result & ?[?]( arpk( N, S, Te, Tbase ) & this, all_t ) {
277        return (result&) this;
278}
279
280//
281// Trait of array or slice
282//
283
284// desired:
285// forall(A &, Tv &, [N])
286// trait ar {
287//       Tv& ?[?]( A&, zero_t );
288//       Tv& ?[?]( A&, one_t  );
289//       Tv& ?[?]( A&, int      );
290//                                 ...
291//       size_t ?`len( A& );
292//       void __taglen( tag(C), tag(N) );
293// };
294
295// working around N's not being accepted as arguments to traits
296
297#define ar( A, Tv, N ) {                                \
298        Tv& ?[?]( A&, zero_t );                         \
299        Tv& ?[?]( A&, one_t );                          \
300        Tv& ?[?]( A&, int );                            \
301        Tv& ?[?]( A&, unsigned int );           \
302        Tv& ?[?]( A&, long int );                       \
303        Tv& ?[?]( A&, unsigned long int );      \
304        size_t ?`len( A& );                                     \
305        void __taglen( tag(A), tag(N) );        \
306}
Note: See TracBrowser for help on using the repository browser.