source: libcfa/src/collections/array.hfa@ baad96e

Last change on this file since baad96e was cfbc56ec, checked in by Michael Brooks <mlbrooks@…>, 21 months ago

Enable array RAII and provide uninit(-), a uNoCtor equivalent.

Enable construction/destruction of "new" CFA array elements,
which was previously deactivated to avoid a compiler performance issue.
The enabled RAII steps more carefully around the performance issue.

Provide uninit(-), with tests covering the typical use case:

struct Foo;
void ?{}( Foo & this, int i ) { printf( "ctor at %d\n", i ); }
uninit(Foo) a[10]; no prints
for (i; 10) (a[i]){ i };
prints
array(uninit(Foo), 10) b; no prints
for (i; 10) (b[i]){ i };
prints

  • Property mode set to 100644
File size: 10.2 KB
RevLine 
[a5e26821]1#pragma once
2
[8d76f2b]3#include <assert.h>
[c7625e0]4
5
[6e50a6b]6forall( __CFA_tysys_id_only_X & ) struct tag {};
[c7625e0]7#define ttag(T) ((tag(T)){})
[6e50a6b]8#define ztag(n) ttag(n)
[c7625e0]9
10
[ad24245]11//
12// The `array` macro is the public interface.
13// It computes the type of a dense (trivially strided) array.
14// All user-declared objects are dense arrays.
[c7625e0]15//
[ad24245]16// The `arpk` (ARray with PacKing info explicit) type is, generally, a slice with _any_ striding.
17// This type is meant for internal use.
18// CFA programmers should not instantiate it directly, nor access its field.
19// CFA programmers should call ?[?] on it.
20// Yet user-given `array(stuff)` expands to `arpk(stuff')`.
21// The comments here explain the resulting internals.
22//
23// Just as a plain-C "multidimesional" array is really array-of-array-of-...,
24// so does arpk generally show up as arpk-of-arpk-of...
25//
26// In the example of `array(float, 3, 4, 5) a;`,
27// `typeof(a)` is an `arpk` instantiation.
28// These comments explain _its_ arguments, i.e. those of the topmost `arpk` level.
29//
30// [N] : the number of elements in `a`; 3 in the example
31// S : carries the stride size (distance in bytes between &myA[0] and &myA[1]), in sizeof(S);
32// same as Timmed when striding is trivial, same as Timmed in the example
33// Timmed : (T-immediate) the inner type; conceptually, `typeof(a)` is "arpk of Timmed";
34// array(float, 4, 5) in the example
35// Tbase : (T-base) the deepest element type that is not arpk; float in the example
[c7625e0]36//
[63f42a8]37forall( [N], S & | sized(S), Timmed &, Tbase & ) {
[ad24245]38
39 //
40 // Single-dim array sruct (with explicit packing and atom)
41 //
[c7625e0]42 struct arpk {
[6e50a6b]43 S strides[N];
[c7625e0]44 };
45
[9fa538c]46 // About the choice of integral types offered as subscript overloads:
47 // Intent is to cover these use cases:
[a5e26821]48 // a[0] // i : zero_t
49 // a[1] // i : one_t
50 // a[2] // i : int
[9fa538c]51 // float foo( ptrdiff_t i ) { return a[i]; } // i : ptrdiff_t
[a5e26821]52 // float foo( size_t i ) { return a[i]; } // i : size_t
[9fa538c]53 // forall( [N] ) ... for( i; N ) { total += a[i]; } // i : typeof( sizeof(42) )
54 // for( i; 5 ) { total += a[i]; } // i : int
[a5e26821]55 //
[9fa538c]56 // It gets complicated by:
57 // - CFA does overloading on concrete types, like int and unsigned int, not on typedefed
58 // types like size_t. So trying to overload on ptrdiff_t vs int works in 64-bit mode
59 // but not in 32-bit mode.
60 // - Given bug of Trac #247, CFA gives sizeof expressions type unsigned long int, when it
61 // should give them type size_t.
[d1abc63c]62 //
[a5e26821]63 // gcc -m32 cfa -m32 given bug gcc -m64 (and cfa)
[9fa538c]64 // ptrdiff_t int int long int
65 // size_t unsigned int unsigned int unsigned long int
66 // typeof( sizeof(42) ) unsigned int unsigned long int unsigned long int
67 // int int int int
[a5e26821]68 //
69 // So the solution must support types {zero_t, one_t, int, unsigned int, long int, unsigned long int}
70 //
71 // The solution cannot rely on implicit conversions (e.g. just have one overload for ptrdiff_t)
72 // because assertion satisfaction requires types to match exacly. Both higher-dimensional
73 // subscripting and operations on slices use asserted subscript operators. The test case
74 // array-container/array-sbscr-cases covers the combinations. Mike beleives that commenting out
75 // any of the current overloads leads to one of those cases failing, either on 64- or 32-bit.
76 // Mike is open to being shown a smaller set of overloads that still passes the test.
77
78 static inline Timmed & ?[?]( arpk(N, S, Timmed, Tbase) & a, zero_t ) {
79 assert( 0 < N );
80 return (Timmed &) a.strides[0];
81 }
82
83 static inline Timmed & ?[?]( arpk(N, S, Timmed, Tbase) & a, one_t ) {
84 assert( 1 < N );
85 return (Timmed &) a.strides[1];
86 }
[9fa538c]87
88 static inline Timmed & ?[?]( arpk(N, S, Timmed, Tbase) & a, int i ) {
[8d76f2b]89 assert( i < N );
[c7625e0]90 return (Timmed &) a.strides[i];
91 }
92
[d1abc63c]93 static inline const Timmed & ?[?]( const arpk(N, S, Timmed, Tbase) & a, int i ) {
94 assert( i < N );
95 return (Timmed &) a.strides[i];
96 }
97
[9fa538c]98 static inline Timmed & ?[?]( arpk(N, S, Timmed, Tbase) & a, unsigned int i ) {
[8d76f2b]99 assert( i < N );
[63a4b92]100 return (Timmed &) a.strides[i];
101 }
102
[d1abc63c]103 static inline const Timmed & ?[?]( const arpk(N, S, Timmed, Tbase) & a, unsigned int i ) {
104 assert( i < N );
105 return (Timmed &) a.strides[i];
106 }
107
[9fa538c]108 static inline Timmed & ?[?]( arpk(N, S, Timmed, Tbase) & a, long int i ) {
[8d76f2b]109 assert( i < N );
[63a4b92]110 return (Timmed &) a.strides[i];
111 }
112
[d1abc63c]113 static inline const Timmed & ?[?]( const arpk(N, S, Timmed, Tbase) & a, long int i ) {
114 assert( i < N );
115 return (Timmed &) a.strides[i];
116 }
117
[9fa538c]118 static inline Timmed & ?[?]( arpk(N, S, Timmed, Tbase) & a, unsigned long int i ) {
[8d76f2b]119 assert( i < N );
[9fa538c]120 return (Timmed &) a.strides[i];
121 }
122
[d1abc63c]123 static inline const Timmed & ?[?]( const arpk(N, S, Timmed, Tbase) & a, unsigned long int i ) {
124 assert( i < N );
125 return (Timmed &) a.strides[i];
126 }
127
[9fa538c]128 static inline size_t ?`len( arpk(N, S, Timmed, Tbase) & a ) {
[6e50a6b]129 return N;
[c7625e0]130 }
131
[a5e26821]132 static inline void __taglen( tag(arpk(N, S, Timmed, Tbase)), tag(N) ) {}
[cfbc56ec]133}
[a5e26821]134
[cfbc56ec]135// RAII pattern has workarounds for
136// - Trac 226: Simplest handling would be, require immediate element to be otype, let autogen
137// raii happen. Performance on even a couple dimensions is unacceptable because of exponential
138// thunk creation: ?{}() needs all four otype funcs from next level, so does ^?{}(), so do the
139// other two. This solution offers ?{}() that needs only ?{}(), and similar for ^?{}.
140
141forall( [N], S & | sized(S), Timmed &, Tbase & | { void ?{}( Timmed & ); } )
142static inline void ?{}( arpk(N, S, Timmed, Tbase) & this ) {
143 void ?{}( S (&)[N] ) {}
144 ?{}(this.strides);
145
146 for (i; N) ?{}( (Timmed &) this.strides[i] );
147}
148
149forall( [N], S & | sized(S), Timmed &, Tbase & | { void ^?{}( Timmed & ); } )
150static inline void ^?{}( arpk(N, S, Timmed, Tbase) & this ) {
151 void ^?{}( S (&)[N] ) {}
152 ^?{}(this.strides);
153
154 for (i; N ) {
155 ^?{}( (Timmed &) this.strides[N-i-1] );
[c7625e0]156 }
157}
158
159//
160// Sugar for declaring array structure instances
161//
162
[cfbc56ec]163forall( Te * )
[9fa538c]164static inline Te mkar_( tag(Te) ) {}
[c7625e0]165
[b9dae14c]166forall( [N], ZTags ... , Trslt &, Tatom & | { Trslt mkar_( tag(Tatom), ZTags ); } )
[9fa538c]167static inline arpk(N, Trslt, Trslt, Tatom) mkar_( tag(Tatom), tag(N), ZTags ) {}
[c7625e0]168
169// based on https://stackoverflow.com/questions/1872220/is-it-possible-to-iterate-over-arguments-in-variadic-macros
170
171 // Make a FOREACH macro
172 #define FE_0(WHAT)
[d1abc63c]173 #define FE_1(WHAT, X) WHAT(X)
[c7625e0]174 #define FE_2(WHAT, X, ...) WHAT(X)FE_1(WHAT, __VA_ARGS__)
175 #define FE_3(WHAT, X, ...) WHAT(X)FE_2(WHAT, __VA_ARGS__)
176 #define FE_4(WHAT, X, ...) WHAT(X)FE_3(WHAT, __VA_ARGS__)
177 #define FE_5(WHAT, X, ...) WHAT(X)FE_4(WHAT, __VA_ARGS__)
178 //... repeat as needed
179
[d1abc63c]180 #define GET_MACRO(_0,_1,_2,_3,_4,_5,NAME,...) NAME
[c7625e0]181 #define FOR_EACH(action,...) \
182 GET_MACRO(_0,__VA_ARGS__,FE_5,FE_4,FE_3,FE_2,FE_1,FE_0)(action,__VA_ARGS__)
183
184#define COMMA_ttag(X) , ttag(X)
185#define array( TE, ...) typeof( mkar_( ttag(TE) FOR_EACH( COMMA_ttag, __VA_ARGS__ ) ) )
186
187#define COMMA_ztag(X) , ztag(X)
188#define zarray( TE, ...) typeof( mkar_( ttag(TE) FOR_EACH( COMMA_ztag, __VA_ARGS__ ) ) )
189
190//
191// Sugar for multidimensional indexing
192//
193
194// Core -[[-,-,-]] operator
195
[63a4b92]196#ifdef TRY_BROKEN_DESIRED_MD_SUBSCRIPT
197
[c7625e0]198// Desired form. One definition with recursion on IxBC (worked until Jan 2021, see trac #__TODO__)
199
[63a4b92]200forall( TA &, TB &, TC &, IxAB, IxBC ... | { TB & ?[?]( TA &, IxAB ); TC & ?[?]( TB &, IxBC ); } )
[9fa538c]201static inline TC & ?[?]( TA & this, IxAB ab, IxBC bc ) {
[c7625e0]202 return this[ab][bc];
203}
204
[d1abc63c]205#else
[c7625e0]206
[63a4b92]207// Workaround form. Listing all possibilities up to 4 dims.
[c7625e0]208
[63a4b92]209forall( TA &, TB &, TC &, IxAB_0, IxBC | { TB & ?[?]( TA &, IxAB_0 ); TC & ?[?]( TB &, IxBC ); } )
[9fa538c]210static inline TC & ?[?]( TA & this, IxAB_0 ab, IxBC bc ) {
[63a4b92]211 return this[ab][bc];
[c7625e0]212}
213
[63a4b92]214forall( TA &, TB &, TC &, IxAB_0, IxAB_1, IxBC | { TB & ?[?]( TA &, IxAB_0, IxAB_1 ); TC & ?[?]( TB &, IxBC ); } )
[9fa538c]215static inline TC & ?[?]( TA & this, IxAB_0 ab0, IxAB_1 ab1, IxBC bc ) {
[63a4b92]216 return this[[ab0,ab1]][bc];
217}
218
219forall( TA &, TB &, TC &, IxAB_0, IxAB_1, IxAB_2, IxBC | { TB & ?[?]( TA &, IxAB_0, IxAB_1, IxAB_2 ); TC & ?[?]( TB &, IxBC ); } )
[9fa538c]220static inline TC & ?[?]( TA & this, IxAB_0 ab0, IxAB_1 ab1, IxAB_2 ab2, IxBC bc ) {
[63a4b92]221 return this[[ab0,ab1,ab2]][bc];
222}
223
224#endif
225
[997324c]226// Available for users to work around Trac #265
227// If `a[...0...]` isn't working, try `a[...ix0...]` instead.
[a5e26821]228
[997324c]229#define ix0 ((ptrdiff_t)0)
[a5e26821]230
231
232
[c7625e0]233//
234// Rotation
235//
236
237// Base
[63f42a8]238forall( [Nq], Sq & | sized(Sq), Tbase & )
[6448f7d]239static inline tag(arpk(Nq, Sq, Tbase, Tbase)) enq_( tag(Tbase), tag(Nq), tag(Sq), tag(Tbase) ) {
240 tag(arpk(Nq, Sq, Tbase, Tbase)) ret;
241 return ret;
242}
[c7625e0]243
244// Rec
[63f42a8]245forall( [Nq], Sq & | sized(Sq), [N], S & | sized(S), recq &, recr &, Tbase & | { tag(recr) enq_( tag(Tbase), tag(Nq), tag(Sq), tag(recq) ); } )
[6448f7d]246static inline tag(arpk(N, S, recr, Tbase)) enq_( tag(Tbase), tag(Nq), tag(Sq), tag(arpk(N, S, recq, Tbase)) ) {
247 tag(arpk(N, S, recr, Tbase)) ret;
248 return ret;
249}
[c7625e0]250
251// Wrapper
[058ece2]252extern struct all_t {} all;
[63f42a8]253forall( [N], S & | sized(S), Te &, result &, Tbase & | { tag(result) enq_( tag(Tbase), tag(N), tag(S), tag(Te) ); } )
[9fa538c]254static inline result & ?[?]( arpk(N, S, Te, Tbase) & this, all_t ) {
[c7625e0]255 return (result&) this;
256}
257
258//
259// Trait of array or slice
260//
261
[a5e26821]262// desired:
[7882c58]263// forall(A &, Tv &, [N])
264// trait ar {
[a5e26821]265// Tv& ?[?]( A&, zero_t );
266// Tv& ?[?]( A&, one_t );
267// Tv& ?[?]( A&, int );
268// ...
269// size_t ?`len( A& );
270// void __taglen( tag(C), tag(N) );
271// };
272
273// working around N's not being accepted as arguments to traits
274
275#define ar(A, Tv, N) { \
276 Tv& ?[?]( A&, zero_t ); \
277 Tv& ?[?]( A&, one_t ); \
278 Tv& ?[?]( A&, int ); \
279 Tv& ?[?]( A&, unsigned int ); \
280 Tv& ?[?]( A&, long int ); \
281 Tv& ?[?]( A&, unsigned long int ); \
282 size_t ?`len( A& ); \
283 void __taglen( tag(A), tag(N) ); \
284}
Note: See TracBrowser for help on using the repository browser.