1 | #pragma once
|
---|
2 |
|
---|
3 | #include "collection.hfa"
|
---|
4 | #include <stdlib.hfa>
|
---|
5 | #include <stdio.h>
|
---|
6 |
|
---|
7 | struct Seqable {
|
---|
8 | inline Colable;
|
---|
9 | Seqable * back; // pointer to previous node in the list
|
---|
10 | };
|
---|
11 |
|
---|
12 | inline {
|
---|
13 | void ?{}( Seqable & sq ) with( sq ) {
|
---|
14 | ((Colable &) sq){};
|
---|
15 | back = 0p;
|
---|
16 | } // post: ! listed()
|
---|
17 |
|
---|
18 | Seqable & getBack( Seqable & sq ) with( sq ) {
|
---|
19 | return *back;
|
---|
20 | }
|
---|
21 |
|
---|
22 | Seqable *& Back( Seqable * sq ) {
|
---|
23 | return sq->back;
|
---|
24 | }
|
---|
25 | } // distribution
|
---|
26 |
|
---|
27 | forall( dtype T ) {
|
---|
28 | struct Sequence {
|
---|
29 | inline Collection; // Plan 9 inheritance
|
---|
30 | };
|
---|
31 |
|
---|
32 | inline {
|
---|
33 | // wrappers to make Collection have T
|
---|
34 | T & head( Sequence(T) & s ) with( s ) {
|
---|
35 | return *(T *)head( (Collection &)s );
|
---|
36 | } // post: empty() & head() == 0 | !empty() & head() in *s
|
---|
37 |
|
---|
38 | T *& Back( T * n ) {
|
---|
39 | return (T *)Back( (Seqable *)n );
|
---|
40 | }
|
---|
41 |
|
---|
42 | void ?{}( Sequence(T) &, const Sequence(T) & ) = void; // no copy
|
---|
43 | Sequence(T) & ?=?( const Sequence(T) & ) = void; // no assignment
|
---|
44 |
|
---|
45 | void ?{}( Sequence(T) & s ) with( s ) {
|
---|
46 | ((Collection &) s){};
|
---|
47 | } // post: isEmpty().
|
---|
48 |
|
---|
49 | // Return a pointer to the last sequence element, without removing it.
|
---|
50 | T & tail( Sequence(T) & s ) with( s ) {
|
---|
51 | return root ? (T &)*Back( &head( s ) ) : *0p;
|
---|
52 | } // post: empty() & tail() == 0 | !empty() & tail() in *s\
|
---|
53 |
|
---|
54 | // Return a pointer to the element after *n, or 0p if there isn't one.
|
---|
55 | T & succ( Sequence(T) & s, T & n ) with( s ) { // pre: *n in *s
|
---|
56 | #ifdef __CFA_DEBUG__
|
---|
57 | if ( ! listed( &n ) ) abort( "(Sequence &)%p.succ( %p ) : Node is not on a list.", &s, &n );
|
---|
58 | #endif // __CFA_DEBUG__
|
---|
59 | return Next( &n ) == &head( s ) ? *0p : *Next( &n );
|
---|
60 | } // post: n == tail() & succ(n) == 0 | n != tail() & *succ(n) in *s
|
---|
61 |
|
---|
62 | // Return a pointer to the element before *n, or 0p if there isn't one.
|
---|
63 | T & pred( Sequence(T) & s, T & n ) with( s ) { // pre: *n in *s
|
---|
64 | #ifdef __CFA_DEBUG__
|
---|
65 | if ( ! listed( &n ) ) abort( "(Sequence &)%p.pred( %p ) : Node is not on a list.", &s, &n );
|
---|
66 | #endif // __CFA_DEBUG__
|
---|
67 | return &n == &head( s ) ? *0p : *Back( &n );
|
---|
68 | } // post: n == head() & head(n) == 0 | n != head() & *pred(n) in *s
|
---|
69 |
|
---|
70 |
|
---|
71 | // Insert *n into the sequence before *bef, or at the end if bef == 0.
|
---|
72 | void insertBef( Sequence(T) & s, T & n, T & bef ) with( s ) { // pre: !n->listed() & *bef in *s
|
---|
73 | #ifdef __CFA_DEBUG__
|
---|
74 | if ( listed( &n ) ) abort( "(Sequence &)%p.insertBef( %p, %p ) : Node is already on another list.", &s, n, &bef );
|
---|
75 | #endif // __CFA_DEBUG__
|
---|
76 | if ( &bef == &head( s ) ) { // must change root
|
---|
77 | if ( root ) {
|
---|
78 | Next( &n ) = &head( s );
|
---|
79 | Back( &n ) = Back( &head( s ) );
|
---|
80 | // inserted node must be consistent before it is seen
|
---|
81 | asm( "" : : : "memory" ); // prevent code movement across barrier
|
---|
82 | Back( &head( s ) ) = &n;
|
---|
83 | Next( Back( &n ) ) = &n;
|
---|
84 | } else {
|
---|
85 | Next( &n ) = &n;
|
---|
86 | Back( &n ) = &n;
|
---|
87 | } // if
|
---|
88 | // inserted node must be consistent before it is seen
|
---|
89 | asm( "" : : : "memory" ); // prevent code movement across barrier
|
---|
90 | root = &n;
|
---|
91 | } else {
|
---|
92 | if ( ! &bef ) &bef = &head( s );
|
---|
93 | Next( &n ) = &bef;
|
---|
94 | Back( &n ) = Back( &bef );
|
---|
95 | // inserted node must be consistent before it is seen
|
---|
96 | asm( "" : : : "memory" ); // prevent code movement across barrier
|
---|
97 | Back( &bef ) = &n;
|
---|
98 | Next( Back( &n ) ) = &n;
|
---|
99 | } // if
|
---|
100 | } // post: n->listed() & *n in *s & succ(n) == bef
|
---|
101 |
|
---|
102 |
|
---|
103 | // Insert *n into the sequence after *aft, or at the beginning if aft == 0.
|
---|
104 | void insertAft( Sequence(T) & s, T & aft, T & n ) with( s ) { // pre: !n->listed() & *aft in *s
|
---|
105 | #ifdef __CFA_DEBUG__
|
---|
106 | if ( listed( &n ) ) abort( "(Sequence &)%p.insertAft( %p, %p ) : Node is already on another list.", &s, &aft, &n );
|
---|
107 | #endif // __CFA_DEBUG__
|
---|
108 | if ( ! &aft ) { // must change root
|
---|
109 | if ( root ) {
|
---|
110 | Next( &n ) = &head( s );
|
---|
111 | Back( &n ) = Back( &head( s ) );
|
---|
112 | // inserted node must be consistent before it is seen
|
---|
113 | asm( "" : : : "memory" ); // prevent code movement across barrier
|
---|
114 | Back( &head( s ) ) = &n;
|
---|
115 | Next( Back( &n ) ) = &n;
|
---|
116 | } else {
|
---|
117 | Next( &n ) = &n;
|
---|
118 | Back( &n ) = &n;
|
---|
119 | } // if
|
---|
120 | asm( "" : : : "memory" ); // prevent code movement across barrier
|
---|
121 | root = &n;
|
---|
122 | } else {
|
---|
123 | Next( &n ) = Next( &aft );
|
---|
124 | Back( &n ) = &aft;
|
---|
125 | // inserted node must be consistent before it is seen
|
---|
126 | asm( "" : : : "memory" ); // prevent code movement across barrier
|
---|
127 | Back( Next( &n ) ) = &n;
|
---|
128 | Next( &aft ) = &n;
|
---|
129 | } // if
|
---|
130 | } // post: n->listed() & *n in *s & succ(n) == bef
|
---|
131 |
|
---|
132 | // pre: n->listed() & *n in *s
|
---|
133 | void remove( Sequence(T) & s, T & n ) with( s ) { // O(1)
|
---|
134 | #ifdef __CFA_DEBUG__
|
---|
135 | if ( ! listed( &n ) ) abort( "(Sequence &)%p.remove( %p ) : Node is not on a list.", &s, &n );
|
---|
136 | #endif // __CFA_DEBUG__
|
---|
137 | if ( &n == &head( s ) ) {
|
---|
138 | if ( Next( &head( s ) ) == &head( s ) ) root = 0p;
|
---|
139 | else root = Next( &head(s ) );
|
---|
140 | } // if
|
---|
141 | Back( Next( &n ) ) = Back( &n );
|
---|
142 | Next( Back( &n ) ) = Next( &n );
|
---|
143 | Next( &n ) = Back( &n ) = 0p;
|
---|
144 | } // post: !n->listed().
|
---|
145 |
|
---|
146 | // Add an element to the head of the sequence.
|
---|
147 | void addHead( Sequence(T) & s, T & n ) { // pre: !n->listed(); post: n->listed() & head() == n
|
---|
148 | insertAft( s, *0p, n );
|
---|
149 | }
|
---|
150 | // Add an element to the tail of the sequence.
|
---|
151 | void addTail( Sequence(T) & s, T & n ) { // pre: !n->listed(); post: n->listed() & head() == n
|
---|
152 | insertBef( s, n, *0p );
|
---|
153 | }
|
---|
154 | // Add an element to the tail of the sequence.
|
---|
155 | void add( Sequence(T) & s, T & n ) { // pre: !n->listed(); post: n->listed() & head() == n
|
---|
156 | addTail( s, n );
|
---|
157 | }
|
---|
158 | // Remove and return the head element in the sequence.
|
---|
159 | T & dropHead( Sequence(T) & s ) {
|
---|
160 | T & n = head( s );
|
---|
161 | return &n ? remove( s, n ), n : *0p;
|
---|
162 | }
|
---|
163 | // Remove and return the head element in the sequence.
|
---|
164 | T & drop( Sequence(T) & s ) {
|
---|
165 | return dropHead( s );
|
---|
166 | }
|
---|
167 | // Remove and return the tail element in the sequence.
|
---|
168 | T & dropTail( Sequence(T) & s ) {
|
---|
169 | T & n = tail( s );
|
---|
170 | return &n ? remove( s, n ), n : *0p;
|
---|
171 | }
|
---|
172 |
|
---|
173 | // Transfer the "from" list to the end of s sequence; the "from" list is empty after the transfer.
|
---|
174 | void transfer( Sequence(T) & s, Sequence(T) & from ) with( s ) {
|
---|
175 | if ( empty( from ) ) return; // "from" list empty ?
|
---|
176 | if ( empty( s ) ) { // "to" list empty ?
|
---|
177 | root = from.root;
|
---|
178 | } else { // "to" list not empty
|
---|
179 | T * toEnd = Back( &head( s ) );
|
---|
180 | T * fromEnd = Back( &head( from ) );
|
---|
181 | Back( root ) = fromEnd;
|
---|
182 | Next( fromEnd ) = &head( s );
|
---|
183 | Back( from.root ) = toEnd;
|
---|
184 | Next( toEnd ) = &head( from );
|
---|
185 | } // if
|
---|
186 | from.root = 0p; // mark "from" list empty
|
---|
187 | }
|
---|
188 |
|
---|
189 | // Transfer the "from" list up to node "n" to the end of s list; the "from" list becomes the sequence after node "n".
|
---|
190 | // Node "n" must be in the "from" list.
|
---|
191 | void split( Sequence(T) & s, Sequence(T) & from, T & n ) with( s ) {
|
---|
192 | #ifdef __CFA_DEBUG__
|
---|
193 | if ( ! listed( &n ) ) abort( "(Sequence &)%p.split( %p ) : Node is not on a list.", &s, &n );
|
---|
194 | #endif // __CFA_DEBUG__
|
---|
195 | Sequence(T) to;
|
---|
196 | to.root = from.root; // start of "to" list
|
---|
197 | from.root = Next( &n ); // start of "from" list
|
---|
198 | if ( to.root == from.root ) { // last node in list ?
|
---|
199 | from.root = 0p; // mark "from" list empty
|
---|
200 | } else {
|
---|
201 | Back( &head( from ) ) = Back( &head( to ) ); // fix "from" list
|
---|
202 | Next( Back( &head( to ) ) ) = &head( from );
|
---|
203 | Next( &n ) = &head( to ); // fix "to" list
|
---|
204 | Back( &head( to ) ) = &n;
|
---|
205 | } // if
|
---|
206 | transfer( s, to );
|
---|
207 | }
|
---|
208 | } // distribution
|
---|
209 | } // distribution
|
---|
210 |
|
---|
211 | forall( dtype T ) {
|
---|
212 | // SeqIter(T) is used to iterate over a Sequence(T) in head-to-tail order.
|
---|
213 | struct SeqIter {
|
---|
214 | inline ColIter;
|
---|
215 | Sequence(T) * seq;
|
---|
216 | };
|
---|
217 |
|
---|
218 | inline {
|
---|
219 | void ?{}( SeqIter(T) & si ) with( si ) {
|
---|
220 | ((ColIter &)si){};
|
---|
221 | seq = 0p;
|
---|
222 | } // post: elts = null.
|
---|
223 |
|
---|
224 | void ?{}( SeqIter(T) & si, Sequence(T) & s ) with( si ) {
|
---|
225 | ((ColIter &) si){};
|
---|
226 | seq = &s;
|
---|
227 | curr = &head( s );
|
---|
228 | } // post: elts = null.
|
---|
229 |
|
---|
230 | void over( SeqIter(T) & si, Sequence(T) & s ) with( si ) {
|
---|
231 | seq = &s;
|
---|
232 | curr = &head( s );
|
---|
233 | } // post: elts = {e in s}.
|
---|
234 |
|
---|
235 | bool ?>>?( SeqIter(T) & si, T && tp ) with( si ) {
|
---|
236 | if ( curr ) {
|
---|
237 | &tp = Curr( si );
|
---|
238 | T * n = &succ( *seq, *Curr( si ) );
|
---|
239 | curr = n == &head( *seq ) ? 0p : n;
|
---|
240 | } else &tp = 0p;
|
---|
241 | return &tp != 0p;
|
---|
242 | }
|
---|
243 | } // distribution
|
---|
244 |
|
---|
245 |
|
---|
246 | // A SeqIterRev(T) is used to iterate over a Sequence(T) in tail-to-head order.
|
---|
247 | struct SeqIterRev {
|
---|
248 | inline ColIter;
|
---|
249 | Sequence(T) * seq;
|
---|
250 | };
|
---|
251 |
|
---|
252 | inline {
|
---|
253 | void ?{}( SeqIterRev(T) & si ) with( si ) {
|
---|
254 | ((ColIter &) si){};
|
---|
255 | seq = 0p;
|
---|
256 | } // post: elts = null.
|
---|
257 |
|
---|
258 | void ?{}( SeqIterRev(T) & si, Sequence(T) & s ) with( si ) {
|
---|
259 | ((ColIter &) si){};
|
---|
260 | seq = &s;
|
---|
261 | curr = &tail( s );
|
---|
262 | } // post: elts = null.
|
---|
263 |
|
---|
264 | void over( SeqIterRev(T) & si, Sequence(T) & s ) with( si ) {
|
---|
265 | seq = &s;
|
---|
266 | curr = &tail( s );
|
---|
267 | } // post: elts = {e in s}.
|
---|
268 |
|
---|
269 | bool ?>>?( SeqIterRev(T) & si, T && tp ) with( si ) {
|
---|
270 | if ( curr ) {
|
---|
271 | &tp = Curr( si );
|
---|
272 | T * n = &pred( *seq, *Curr( si ) );
|
---|
273 | curr = n == &tail( *seq ) ? 0p : n;
|
---|
274 | } else &tp = 0p;
|
---|
275 | return &tp != 0p;
|
---|
276 | }
|
---|
277 | } // distribution
|
---|
278 | } // distribution
|
---|
279 |
|
---|
280 | // Local Variables: //
|
---|
281 | // compile-command: "make install" //
|
---|
282 | // End: //
|
---|