1 | //
|
---|
2 | // Cforall Version 1.0.0 Copyright (C) 2021 University of Waterloo
|
---|
3 | //
|
---|
4 | // The contents of this file are covered under the licence agreement in the
|
---|
5 | // file "LICENCE" distributed with Cforall.
|
---|
6 | //
|
---|
7 | // bits/sequence.hfa -- PUBLIC
|
---|
8 | // Intrusive doubly-linked list
|
---|
9 | //
|
---|
10 | // Author : Colby Alexander Parsons & Peter A. Buhr
|
---|
11 | // Created On : Thu Jan 21 19:46:50 2021
|
---|
12 | // Last Modified By :
|
---|
13 | // Last Modified On :
|
---|
14 | // Update Count :
|
---|
15 | //
|
---|
16 |
|
---|
17 | #pragma once
|
---|
18 |
|
---|
19 | #include "bits/collection.hfa"
|
---|
20 | #include "bits/defs.hfa"
|
---|
21 |
|
---|
22 | struct Seqable {
|
---|
23 | __cfa_anonymous_object(Colable);
|
---|
24 | // pointer to previous node in the list
|
---|
25 | struct Seqable * back;
|
---|
26 | };
|
---|
27 |
|
---|
28 | #ifdef __cforall
|
---|
29 | static inline {
|
---|
30 | // PUBLIC
|
---|
31 |
|
---|
32 | void ?{}( Seqable & sq ) {
|
---|
33 | ((Colable &)sq){};
|
---|
34 | sq.back = 0p;
|
---|
35 | } // post: ! listed()
|
---|
36 |
|
---|
37 | Seqable & getBack( Seqable & sq ) with( sq ) {
|
---|
38 | return *back;
|
---|
39 | }
|
---|
40 |
|
---|
41 | // PRIVATE
|
---|
42 |
|
---|
43 | Seqable *& Back( Seqable * sq ) {
|
---|
44 | return sq->back;
|
---|
45 | }
|
---|
46 | } // distribution
|
---|
47 |
|
---|
48 |
|
---|
49 | // A Sequence(T) is a Collection(T) defining the ordering of a uStack and uQueue, and to insert and remove elements
|
---|
50 | // anywhere in the sequence. T must be a public descendant of uSeqable.
|
---|
51 |
|
---|
52 | // The implementation is a typical doubly-linked list, except the next field of the last node points at the first node
|
---|
53 | // and the back field of the last node points at the first node (circular).
|
---|
54 |
|
---|
55 | forall( T & ) {
|
---|
56 | struct Sequence {
|
---|
57 | // Plan 9 inheritance
|
---|
58 | inline Collection;
|
---|
59 | };
|
---|
60 |
|
---|
61 | static inline {
|
---|
62 | void ?{}( Sequence(T) &, const Sequence(T) & ) = void; // no copy
|
---|
63 | Sequence(T) & ?=?( const Sequence(T) & ) = void; // no assignment
|
---|
64 |
|
---|
65 | void ?{}( Sequence(T) & s ) with( s ) {
|
---|
66 | ((Collection &)s){};
|
---|
67 | } // post: isEmpty()
|
---|
68 | }
|
---|
69 |
|
---|
70 | static inline forall(| { T *& Back ( T * ); T *& Next ( T * ); }) {
|
---|
71 | // wrappers to make Collection have T
|
---|
72 | T & head( Sequence(T) & s ) with( s ) {
|
---|
73 | return *(T *)head( (Collection &)s );
|
---|
74 | } // post: empty() & head() == 0 | !empty() & head() in *s
|
---|
75 |
|
---|
76 | // Return a pointer to the last sequence element, without removing it.
|
---|
77 | T & tail( Sequence(T) & s ) with( s ) {
|
---|
78 | return root ? (T &)*Back( &head( s ) ) : *0p;
|
---|
79 | } // post: empty() & tail() == 0 | !empty() & tail() in *s
|
---|
80 |
|
---|
81 | // Return a pointer to the element after *n, or 0p if list empty.
|
---|
82 | T * succ( Sequence(T) & s, T * n ) with( s ) { // pre: *n in *s
|
---|
83 | #ifdef __CFA_DEBUG__
|
---|
84 | if ( ! listed( n ) ) abort( "(Sequence &)%p.succ( %p ) : Node is not on a list.", &s, n );
|
---|
85 | #endif // __CFA_DEBUG__
|
---|
86 | return Next( n ) == &head( s ) ? 0p : Next( n );
|
---|
87 | } // post: n == tail() & succ(n) == 0 | n != tail() & *succ(n) in *s
|
---|
88 |
|
---|
89 | // Return a pointer to the element before *n, or 0p if list empty.
|
---|
90 | T * pred( Sequence(T) & s, T * n ) with( s ) { // pre: *n in *s
|
---|
91 | #ifdef __CFA_DEBUG__
|
---|
92 | if ( ! listed( n ) ) abort( "(Sequence &)%p.pred( %p ) : Node is not on a list.", &s, n );
|
---|
93 | #endif // __CFA_DEBUG__
|
---|
94 | return n == &head( s ) ? 0p : Back( n );
|
---|
95 | } // post: n == head() & head(n) == 0 | n != head() & *pred(n) in *s
|
---|
96 |
|
---|
97 |
|
---|
98 | // Insert *n into the sequence before *bef, or at the end if bef == 0p.
|
---|
99 | T & insertBef( Sequence(T) & s, T & n, T & bef ) with( s ) { // pre: !n->listed() & *bef in *s
|
---|
100 | #ifdef __CFA_DEBUG__
|
---|
101 | if ( listed( &n ) ) abort( "(Sequence &)%p.insertBef( %p, %p ) : Node is already on another list.", &s, n, &bef );
|
---|
102 | #endif // __CFA_DEBUG__
|
---|
103 | if ( &bef == &head( s ) ) { // must change root
|
---|
104 | if ( root ) {
|
---|
105 | Next( &n ) = &head( s );
|
---|
106 | Back( &n ) = Back( &head( s ) );
|
---|
107 | // inserted node must be consistent before it is seen
|
---|
108 | asm( "" : : : "memory" ); // prevent code movement across barrier
|
---|
109 | Back( &head( s ) ) = &n;
|
---|
110 | Next( Back( &n ) ) = &n;
|
---|
111 | } else {
|
---|
112 | Next( &n ) = &n;
|
---|
113 | Back( &n ) = &n;
|
---|
114 | } // if
|
---|
115 | // inserted node must be consistent before it is seen
|
---|
116 | asm( "" : : : "memory" ); // prevent code movement across barrier
|
---|
117 | root = &n;
|
---|
118 | } else {
|
---|
119 | if ( ! &bef ) &bef = &head( s );
|
---|
120 | Next( &n ) = &bef;
|
---|
121 | Back( &n ) = Back( &bef );
|
---|
122 | // inserted node must be consistent before it is seen
|
---|
123 | asm( "" : : : "memory" ); // prevent code movement across barrier
|
---|
124 | Back( &bef ) = &n;
|
---|
125 | Next( Back( &n ) ) = &n;
|
---|
126 | } // if
|
---|
127 | return n;
|
---|
128 | } // post: n->listed() & *n in *s & succ(n) == bef
|
---|
129 |
|
---|
130 |
|
---|
131 | // Insert *n into the sequence after *aft, or at the beginning if aft == 0.
|
---|
132 | T & insertAft( Sequence(T) & s, T & aft, T & n ) with( s ) { // pre: !n->listed() & *aft in *s
|
---|
133 | #ifdef __CFA_DEBUG__
|
---|
134 | if ( listed( &n ) ) abort( "(Sequence &)%p.insertAft( %p, %p ) : Node is already on another list.", &s, &aft, &n );
|
---|
135 | #endif // __CFA_DEBUG__
|
---|
136 | if ( ! &aft ) { // must change root
|
---|
137 | if ( root ) {
|
---|
138 | Next( &n ) = &head( s );
|
---|
139 | Back( &n ) = Back( &head( s ) );
|
---|
140 | // inserted node must be consistent before it is seen
|
---|
141 | asm( "" : : : "memory" ); // prevent code movement across barrier
|
---|
142 | Back( &head( s ) ) = &n;
|
---|
143 | Next( Back( &n ) ) = &n;
|
---|
144 | } else {
|
---|
145 | Next( &n ) = &n;
|
---|
146 | Back( &n ) = &n;
|
---|
147 | } // if
|
---|
148 | asm( "" : : : "memory" ); // prevent code movement across barrier
|
---|
149 | root = &n;
|
---|
150 | } else {
|
---|
151 | Next( &n ) = Next( &aft );
|
---|
152 | Back( &n ) = &aft;
|
---|
153 | // inserted node must be consistent before it is seen
|
---|
154 | asm( "" : : : "memory" ); // prevent code movement across barrier
|
---|
155 | Back( Next( &n ) ) = &n;
|
---|
156 | Next( &aft ) = &n;
|
---|
157 | } // if
|
---|
158 | return n;
|
---|
159 | } // post: n->listed() & *n in *s & succ(n) == bef
|
---|
160 |
|
---|
161 | // pre: n->listed() & *n in *s
|
---|
162 | T & remove( Sequence(T) & s, T & n ) with( s ) { // O(1)
|
---|
163 | #ifdef __CFA_DEBUG__
|
---|
164 | if ( ! listed( &n ) ) abort( "(Sequence &)%p.remove( %p ) : Node is not on a list.", &s, &n );
|
---|
165 | #endif // __CFA_DEBUG__
|
---|
166 | if ( &n == &head( s ) ) {
|
---|
167 | if ( Next( &head( s ) ) == &head( s ) ) root = 0p;
|
---|
168 | else root = Next( &head( s ) );
|
---|
169 | } // if
|
---|
170 | Back( Next( &n ) ) = Back( &n );
|
---|
171 | Next( Back( &n ) ) = Next( &n );
|
---|
172 | Next( &n ) = Back( &n ) = 0p;
|
---|
173 | return n;
|
---|
174 | } // post: !n->listed()
|
---|
175 |
|
---|
176 | // Add an element to the head of the sequence.
|
---|
177 | T & addHead( Sequence(T) & s, T & n ) { // pre: !n->listed(); post: n->listed() & head() == n
|
---|
178 | return insertAft( s, *0p, n );
|
---|
179 | }
|
---|
180 |
|
---|
181 | // Add an element to the tail of the sequence.
|
---|
182 | T & addTail( Sequence(T) & s, T & n ) { // pre: !n->listed(); post: n->listed() & head() == n
|
---|
183 | return insertBef( s, n, *0p );
|
---|
184 | }
|
---|
185 |
|
---|
186 | // Add an element to the tail of the sequence.
|
---|
187 | T & add( Sequence(T) & s, T & n ) { // pre: !n->listed(); post: n->listed() & head() == n
|
---|
188 | return addTail( s, n );
|
---|
189 | }
|
---|
190 |
|
---|
191 | // Remove and return the head element in the sequence.
|
---|
192 | T & dropHead( Sequence(T) & s ) {
|
---|
193 | T & n = head( s );
|
---|
194 | return &n ? remove( s, n ), n : *0p;
|
---|
195 | }
|
---|
196 |
|
---|
197 | // Remove and return the head element in the sequence.
|
---|
198 | T & drop( Sequence(T) & s ) {
|
---|
199 | return dropHead( s );
|
---|
200 | }
|
---|
201 |
|
---|
202 | // Remove and return the tail element in the sequence.
|
---|
203 | T & dropTail( Sequence(T) & s ) {
|
---|
204 | T & n = tail( s );
|
---|
205 | return &n ? remove( s, n ), n : *0p;
|
---|
206 | }
|
---|
207 |
|
---|
208 | // Transfer the "from" list to the end of s sequence; the "from" list is empty after the transfer.
|
---|
209 | void transfer( Sequence(T) & s, Sequence(T) & from ) with( s ) {
|
---|
210 | if ( empty( from ) ) return; // "from" list empty ?
|
---|
211 | if ( empty( s ) ) { // "to" list empty ?
|
---|
212 | root = from.root;
|
---|
213 | } else { // "to" list not empty
|
---|
214 | T * toEnd = Back( &head( s ) );
|
---|
215 | T * fromEnd = Back( &head( from ) );
|
---|
216 | Back( (T *)root ) = fromEnd;
|
---|
217 | Next( fromEnd ) = &head( s );
|
---|
218 | Back( (T *)from.root ) = toEnd;
|
---|
219 | Next( toEnd ) = &head( from );
|
---|
220 | } // if
|
---|
221 | from.root = 0p; // mark "from" list empty
|
---|
222 | }
|
---|
223 |
|
---|
224 | // Transfer the "from" list up to node "n" to the end of s list; the "from" list becomes the sequence after node "n".
|
---|
225 | // Node "n" must be in the "from" list.
|
---|
226 | void split( Sequence(T) & s, Sequence(T) & from, T & n ) with( s ) {
|
---|
227 | #ifdef __CFA_DEBUG__
|
---|
228 | if ( ! listed( &n ) ) abort( "(Sequence &)%p.split( %p ) : Node is not on a list.", &s, &n );
|
---|
229 | #endif // __CFA_DEBUG__
|
---|
230 | Sequence(T) to;
|
---|
231 | to.root = from.root; // start of "to" list
|
---|
232 | from.root = Next( &n ); // start of "from" list
|
---|
233 | if ( to.root == from.root ) { // last node in list ?
|
---|
234 | from.root = 0p; // mark "from" list empty
|
---|
235 | } else {
|
---|
236 | Back( &head( from ) ) = Back( &head( to ) ); // fix "from" list
|
---|
237 | Next( Back( &head( to ) ) ) = &head( from );
|
---|
238 | Next( &n ) = &head( to ); // fix "to" list
|
---|
239 | Back( &head( to ) ) = &n;
|
---|
240 | } // if
|
---|
241 | transfer( s, to );
|
---|
242 | }
|
---|
243 | } // distribution
|
---|
244 | } // distribution
|
---|
245 |
|
---|
246 | forall( T & | { T *& Back ( T * ); T *& Next ( T * ); } ) {
|
---|
247 | // SeqIter(T) is used to iterate over a Sequence(T) in head-to-tail order.
|
---|
248 | struct SeqIter {
|
---|
249 | inline ColIter;
|
---|
250 | // The Sequence must be passed to pred and succ to check for the end of the Sequence and return 0p. Without
|
---|
251 | // passing the sequence, traversing would require its length. Thus the iterator needs a pointer to the sequence
|
---|
252 | // to pass to succ/pred. Both stack and queue just encounter 0p since the lists are not circular.
|
---|
253 | Sequence(T) * seq; // FIX ME: cannot be reference
|
---|
254 | };
|
---|
255 |
|
---|
256 | static inline {
|
---|
257 | void ?{}( SeqIter(T) & si ) with( si ) {
|
---|
258 | ((ColIter &)si){};
|
---|
259 | seq = 0p;
|
---|
260 | } // post: elts = null
|
---|
261 |
|
---|
262 | // Create a iterator active in sequence s.
|
---|
263 | void ?{}( SeqIter(T) & si, Sequence(T) & s ) with( si ) {
|
---|
264 | ((ColIter &)si){};
|
---|
265 | seq = &s;
|
---|
266 | curr = &head( s );
|
---|
267 | } // post: elts = null
|
---|
268 |
|
---|
269 | void ?{}( SeqIter(T) & si, Sequence(T) & s, T & start ) with( si ) {
|
---|
270 | ((ColIter &)si){};
|
---|
271 | seq = &s;
|
---|
272 | curr = &start;
|
---|
273 | } // post: elts = null
|
---|
274 |
|
---|
275 | // Make the iterator active in sequence s.
|
---|
276 | void over( SeqIter(T) & si, Sequence(T) & s ) with( si ) {
|
---|
277 | seq = &s;
|
---|
278 | curr = &head( s );
|
---|
279 | } // post: elts = {e in s}
|
---|
280 |
|
---|
281 | bool ?|?( SeqIter(T) & si, T && tp ) with( si ) {
|
---|
282 | if ( curr ) {
|
---|
283 | &tp = Curr( si );
|
---|
284 | T * n = succ( *seq, Curr( si ) );
|
---|
285 | curr = n == &head( *seq ) ? 0p : n;
|
---|
286 | } else &tp = 0p;
|
---|
287 | return &tp != 0p;
|
---|
288 | }
|
---|
289 | } // distribution
|
---|
290 |
|
---|
291 |
|
---|
292 | // A SeqIterRev(T) is used to iterate over a Sequence(T) in tail-to-head order.
|
---|
293 | struct SeqIterRev {
|
---|
294 | inline ColIter;
|
---|
295 | // See above for explanation.
|
---|
296 | Sequence(T) * seq; // FIX ME: cannot be reference
|
---|
297 | };
|
---|
298 |
|
---|
299 | static inline {
|
---|
300 | void ?{}( SeqIterRev(T) & si ) with( si ) {
|
---|
301 | ((ColIter &)si){};
|
---|
302 | seq = 0p;
|
---|
303 | } // post: elts = null
|
---|
304 |
|
---|
305 | // Create a iterator active in sequence s.
|
---|
306 | void ?{}( SeqIterRev(T) & si, Sequence(T) & s ) with( si ) {
|
---|
307 | ((ColIter &)si){};
|
---|
308 | seq = &s;
|
---|
309 | curr = &tail( s );
|
---|
310 | } // post: elts = null
|
---|
311 |
|
---|
312 | void ?{}( SeqIterRev(T) & si, Sequence(T) & s, T & start ) with( si ) {
|
---|
313 | ((ColIter &)si){};
|
---|
314 | seq = &s;
|
---|
315 | curr = &start;
|
---|
316 | } // post: elts = null
|
---|
317 |
|
---|
318 | // Make the iterator active in sequence s.
|
---|
319 | void over( SeqIterRev(T) & si, Sequence(T) & s ) with( si ) {
|
---|
320 | seq = &s;
|
---|
321 | curr = &tail( s );
|
---|
322 | } // post: elts = {e in s}
|
---|
323 |
|
---|
324 | bool ?|?( SeqIterRev(T) & si, T && tp ) with( si ) {
|
---|
325 | if ( curr ) {
|
---|
326 | &tp = Curr( si );
|
---|
327 | T * n = pred( *seq, Curr( si ) );
|
---|
328 | curr = n == &tail( *seq ) ? 0p : n;
|
---|
329 | } else &tp = 0p;
|
---|
330 | return &tp != 0p;
|
---|
331 | }
|
---|
332 | } // distribution
|
---|
333 | } // distribution
|
---|
334 |
|
---|
335 | #endif
|
---|