1 | //
|
---|
2 | // Cforall Version 1.0.0 Copyright (C) 2022 University of Waterloo
|
---|
3 | //
|
---|
4 | // The contents of this file are covered under the licence agreement in the
|
---|
5 | // file "LICENCE" distributed with Cforall.
|
---|
6 | //
|
---|
7 | // random.hfa --
|
---|
8 | //
|
---|
9 | // Author : Peter A. Buhr
|
---|
10 | // Created On : Fri Jan 14 07:18:11 2022
|
---|
11 | // Last Modified By : Peter A. Buhr
|
---|
12 | // Last Modified On : Mon Mar 20 21:45:24 2023
|
---|
13 | // Update Count : 186
|
---|
14 | //
|
---|
15 |
|
---|
16 | #pragma once
|
---|
17 |
|
---|
18 | #include <stdint.h> // uintXX_t
|
---|
19 |
|
---|
20 | #define GLUE2( x, y ) x##y
|
---|
21 | #define GLUE( x, y ) GLUE2( x, y )
|
---|
22 |
|
---|
23 | // Set default PRNG for architecture size.
|
---|
24 | #ifdef __x86_64__ // 64-bit architecture
|
---|
25 | // 64-bit generators
|
---|
26 | //#define LEHMER64
|
---|
27 | //#define XORSHIFT_12_25_27
|
---|
28 | #define XOSHIRO256PP
|
---|
29 | //#define KISS_64
|
---|
30 | // #define SPLITMIX_64
|
---|
31 |
|
---|
32 | // 32-bit generators
|
---|
33 | //#define XORSHIFT_6_21_7
|
---|
34 | #define XOSHIRO128PP
|
---|
35 | // #define SPLITMIX_32
|
---|
36 | #else // 32-bit architecture
|
---|
37 | // 64-bit generators
|
---|
38 | //#define XORSHIFT_13_7_17
|
---|
39 | #define XOSHIRO256PP
|
---|
40 | // #define SPLITMIX_64
|
---|
41 |
|
---|
42 | // 32-bit generators
|
---|
43 | //#define XORSHIFT_6_21_7
|
---|
44 | #define XOSHIRO128PP
|
---|
45 | // #define SPLITMIX_32
|
---|
46 | #endif // __x86_64__
|
---|
47 |
|
---|
48 | // Define C/CFA PRNG name and random-state.
|
---|
49 |
|
---|
50 | #ifdef XOSHIRO256PP
|
---|
51 | #define PRNG_NAME_64 xoshiro256pp
|
---|
52 | #define PRNG_STATE_64_T GLUE(PRNG_NAME_64,_t)
|
---|
53 | typedef struct { uint64_t s0, s1, s2, s3; } PRNG_STATE_64_T;
|
---|
54 | #endif // XOSHIRO256PP
|
---|
55 |
|
---|
56 | #ifdef XOSHIRO128PP
|
---|
57 | #define PRNG_NAME_32 xoshiro128pp
|
---|
58 | #define PRNG_STATE_32_T GLUE(PRNG_NAME_32,_t)
|
---|
59 | typedef struct { uint32_t s0, s1, s2, s3; } PRNG_STATE_32_T;
|
---|
60 | #endif // XOSHIRO128PP
|
---|
61 |
|
---|
62 | #ifdef LEHMER64
|
---|
63 | #define PRNG_NAME_64 lehmer64
|
---|
64 | #define PRNG_STATE_64_T __uint128_t
|
---|
65 | #endif // LEHMER64
|
---|
66 |
|
---|
67 | #ifdef WYHASH64
|
---|
68 | #define PRNG_NAME_64 wyhash64
|
---|
69 | #define PRNG_STATE_64_T uint64_t
|
---|
70 | #endif // LEHMER64
|
---|
71 |
|
---|
72 | #ifdef XORSHIFT_13_7_17
|
---|
73 | #define PRNG_NAME_64 xorshift_13_7_17
|
---|
74 | #define PRNG_STATE_64_T uint64_t
|
---|
75 | #endif // XORSHIFT_13_7_17
|
---|
76 |
|
---|
77 | #ifdef XORSHIFT_6_21_7
|
---|
78 | #define PRNG_NAME_32 xorshift_6_21_7
|
---|
79 | #define PRNG_STATE_32_T uint32_t
|
---|
80 | #endif // XORSHIFT_6_21_7
|
---|
81 |
|
---|
82 | #ifdef XORSHIFT_12_25_27
|
---|
83 | #define PRNG_NAME_64 xorshift_12_25_27
|
---|
84 | #define PRNG_STATE_64_T uint64_t
|
---|
85 | #endif // XORSHIFT_12_25_27
|
---|
86 |
|
---|
87 | #ifdef SPLITMIX_64
|
---|
88 | #define PRNG_NAME_64 splitmix64
|
---|
89 | #define PRNG_STATE_64_T uint64_t
|
---|
90 | #endif // SPLITMIX32
|
---|
91 |
|
---|
92 | #ifdef SPLITMIX_32
|
---|
93 | #define PRNG_NAME_32 splitmix32
|
---|
94 | #define PRNG_STATE_32_T uint32_t
|
---|
95 | #endif // SPLITMIX32
|
---|
96 |
|
---|
97 | #ifdef KISS_64
|
---|
98 | #define PRNG_NAME_64 kiss_64
|
---|
99 | #define PRNG_STATE_64_T GLUE(PRNG_NAME_64,_t)
|
---|
100 | typedef struct { uint64_t z, w, jsr, jcong; } PRNG_STATE_64_T;
|
---|
101 | #endif // KISS_^64
|
---|
102 |
|
---|
103 | #ifdef XORWOW
|
---|
104 | #define PRNG_NAME_32 xorwow
|
---|
105 | #define PRNG_STATE_32_T GLUE(PRNG_NAME_32,_t)
|
---|
106 | typedef struct { uint32_t a, b, c, d, counter; } PRNG_STATE_32_T;
|
---|
107 | #endif // XOSHIRO128PP
|
---|
108 |
|
---|
109 | #define PRNG_SET_SEED_64 GLUE(PRNG_NAME_64,_set_seed)
|
---|
110 | #define PRNG_SET_SEED_32 GLUE(PRNG_NAME_32,_set_seed)
|
---|
111 |
|
---|
112 |
|
---|
113 | // Default PRNG used by runtime.
|
---|
114 | #ifdef __x86_64__ // 64-bit architecture
|
---|
115 | #define PRNG_NAME PRNG_NAME_64
|
---|
116 | #define PRNG_STATE_T PRNG_STATE_64_T
|
---|
117 | #else // 32-bit architecture
|
---|
118 | #define PRNG_NAME PRNG_NAME_32
|
---|
119 | #define PRNG_STATE_T PRNG_STATE_32_T
|
---|
120 | #endif // __x86_64__
|
---|
121 |
|
---|
122 | #define PRNG_SET_SEED GLUE(PRNG_NAME,_set_seed)
|
---|
123 |
|
---|
124 |
|
---|
125 | // ALL PRNG ALGORITHMS ARE OPTIMIZED SO THAT THE PRNG LOGIC CAN HAPPEN IN PARALLEL WITH THE USE OF THE RESULT.
|
---|
126 | // Specifically, the current random state is copied for returning, before computing the next value. As a consequence,
|
---|
127 | // the set_seed routine primes the PRNG by calling it with the state so the seed is not return as the first random
|
---|
128 | // value.
|
---|
129 |
|
---|
130 |
|
---|
131 | #ifdef __cforall // don't include in C code (invoke.h)
|
---|
132 |
|
---|
133 | // https://rosettacode.org/wiki/Pseudo-random_numbers/Splitmix64
|
---|
134 | //
|
---|
135 | // Splitmix64 is not recommended for demanding random number requirements, but is often used to calculate initial states
|
---|
136 | // for other more complex pseudo-random number generators (see https://prng.di.unimi.it).
|
---|
137 | // Also https://rosettacode.org/wiki/Pseudo-random_numbers/Splitmix64.
|
---|
138 | static inline uint64_t splitmix64( uint64_t & state ) {
|
---|
139 | state += 0x9e3779b97f4a7c15;
|
---|
140 | uint64_t z = state;
|
---|
141 | z = (z ^ (z >> 30)) * 0xbf58476d1ce4e5b9;
|
---|
142 | z = (z ^ (z >> 27)) * 0x94d049bb133111eb;
|
---|
143 | return z ^ (z >> 31);
|
---|
144 | } // splitmix64
|
---|
145 |
|
---|
146 | static inline void splitmix64_set_seed( uint64_t & state , uint64_t seed ) {
|
---|
147 | state = seed;
|
---|
148 | splitmix64( state ); // prime
|
---|
149 | } // splitmix64_set_seed
|
---|
150 |
|
---|
151 | // https://github.com/bryc/code/blob/master/jshash/PRNGs.md#splitmix32
|
---|
152 | //
|
---|
153 | // Splitmix32 is not recommended for demanding random number requirements, but is often used to calculate initial states
|
---|
154 | // for other more complex pseudo-random number generators (see https://prng.di.unimi.it).
|
---|
155 |
|
---|
156 | static inline uint32_t splitmix32( uint32_t & state ) {
|
---|
157 | state += 0x9e3779b9;
|
---|
158 | uint64_t z = state;
|
---|
159 | z = (z ^ (z >> 15)) * 0x85ebca6b;
|
---|
160 | z = (z ^ (z >> 13)) * 0xc2b2ae35;
|
---|
161 | return z ^ (z >> 16);
|
---|
162 | } // splitmix32
|
---|
163 |
|
---|
164 | static inline void splitmix32_set_seed( uint32_t & state, uint64_t seed ) {
|
---|
165 | state = seed;
|
---|
166 | splitmix32( state ); // prime
|
---|
167 | } // splitmix32_set_seed
|
---|
168 |
|
---|
169 | #ifdef __SIZEOF_INT128__
|
---|
170 | //--------------------------------------------------
|
---|
171 | static inline uint64_t lehmer64( __uint128_t & state ) {
|
---|
172 | __uint128_t ret = state;
|
---|
173 | state *= 0x_da94_2042_e4dd_58b5;
|
---|
174 | return ret >> 64;
|
---|
175 | } // lehmer64
|
---|
176 |
|
---|
177 | static inline void lehmer64_set_seed( __uint128_t & state, uint64_t seed ) {
|
---|
178 | // The seed needs to be coprime with the 2^64 modulus to get the largest period, so no factors of 2 in the seed.
|
---|
179 | state = splitmix64( seed ); // prime
|
---|
180 | } // lehmer64_set_seed
|
---|
181 |
|
---|
182 | //--------------------------------------------------
|
---|
183 | static inline uint64_t wyhash64( uint64_t & state ) {
|
---|
184 | uint64_t ret = state;
|
---|
185 | state += 0x_60be_e2be_e120_fc15;
|
---|
186 | __uint128_t tmp;
|
---|
187 | tmp = (__uint128_t) ret * 0x_a3b1_9535_4a39_b70d;
|
---|
188 | uint64_t m1 = (tmp >> 64) ^ tmp;
|
---|
189 | tmp = (__uint128_t)m1 * 0x_1b03_7387_12fa_d5c9;
|
---|
190 | uint64_t m2 = (tmp >> 64) ^ tmp;
|
---|
191 | return m2;
|
---|
192 | } // wyhash64
|
---|
193 |
|
---|
194 | static inline void wyhash64_set_seed( uint64_t & state, uint64_t seed ) {
|
---|
195 | state = splitmix64( seed ); // prime
|
---|
196 | } // wyhash64_set_seed
|
---|
197 | #endif // __SIZEOF_INT128__
|
---|
198 |
|
---|
199 | // https://prng.di.unimi.it/xoshiro256starstar.c
|
---|
200 | //
|
---|
201 | // This is xoshiro256++ 1.0, one of our all-purpose, rock-solid generators. It has excellent (sub-ns) speed, a state
|
---|
202 | // (256 bits) that is large enough for any parallel application, and it passes all tests we are aware of.
|
---|
203 | //
|
---|
204 | // For generating just floating-point numbers, xoshiro256+ is even faster.
|
---|
205 | //
|
---|
206 | // The state must be seeded so that it is not everywhere zero. If you have a 64-bit seed, we suggest to seed a
|
---|
207 | // splitmix64 generator and use its output to fill s.
|
---|
208 |
|
---|
209 | #ifndef XOSHIRO256PP
|
---|
210 | typedef struct { uint64_t s0, s1, s2, s3; } xoshiro256pp_t;
|
---|
211 | #endif // ! XOSHIRO256PP
|
---|
212 |
|
---|
213 | static inline uint64_t xoshiro256pp( xoshiro256pp_t & rs ) with(rs) {
|
---|
214 | inline uint64_t rotl( const uint64_t x, int k ) {
|
---|
215 | return (x << k) | (x >> (64 - k));
|
---|
216 | } // rotl
|
---|
217 |
|
---|
218 | const uint64_t result = rotl( s0 + s3, 23 ) + s0;
|
---|
219 | const uint64_t t = s1 << 17;
|
---|
220 |
|
---|
221 | s2 ^= s0;
|
---|
222 | s3 ^= s1;
|
---|
223 | s1 ^= s2;
|
---|
224 | s0 ^= s3;
|
---|
225 | s2 ^= t;
|
---|
226 | s3 = rotl( s3, 45 );
|
---|
227 | return result;
|
---|
228 | } // xoshiro256pp
|
---|
229 |
|
---|
230 | static inline void xoshiro256pp_set_seed( xoshiro256pp_t & state, uint64_t seed ) {
|
---|
231 | // To attain repeatable seeding, compute seeds separately because the order of argument evaluation is undefined.
|
---|
232 | uint64_t seed1 = splitmix64( seed ); // prime
|
---|
233 | uint64_t seed2 = splitmix64( seed );
|
---|
234 | uint64_t seed3 = splitmix64( seed );
|
---|
235 | uint64_t seed4 = splitmix64( seed );
|
---|
236 | state = (xoshiro256pp_t){ seed1, seed2, seed3, seed4 };
|
---|
237 | } // xoshiro256pp_set_seed
|
---|
238 |
|
---|
239 | // https://prng.di.unimi.it/xoshiro128plusplus.c
|
---|
240 | //
|
---|
241 | // This is xoshiro128++ 1.0, one of our 32-bit all-purpose, rock-solid generators. It has excellent speed, a state size
|
---|
242 | // (128 bits) that is large enough for mild parallelism, and it passes all tests we are aware of.
|
---|
243 | //
|
---|
244 | // For generating just single-precision (i.e., 32-bit) floating-point numbers, xoshiro128+ is even faster.
|
---|
245 | //
|
---|
246 | // The state must be seeded so that it is not everywhere zero.
|
---|
247 |
|
---|
248 | #ifndef XOSHIRO128PP
|
---|
249 | typedef struct { uint32_t s0, s1, s2, s3; } xoshiro128pp_t;
|
---|
250 | #endif // ! XOSHIRO128PP
|
---|
251 |
|
---|
252 | static inline uint32_t xoshiro128pp( xoshiro128pp_t & rs ) with(rs) {
|
---|
253 | inline uint32_t rotl( const uint32_t x, int k ) {
|
---|
254 | return (x << k) | (x >> (32 - k));
|
---|
255 | } // rotl
|
---|
256 |
|
---|
257 | const uint32_t result = rotl( s0 + s3, 7 ) + s0;
|
---|
258 | const uint32_t t = s1 << 9;
|
---|
259 |
|
---|
260 | s2 ^= s0;
|
---|
261 | s3 ^= s1;
|
---|
262 | s1 ^= s2;
|
---|
263 | s0 ^= s3;
|
---|
264 | s2 ^= t;
|
---|
265 | s3 = rotl( s3, 11 );
|
---|
266 | return result;
|
---|
267 | } // xoshiro128pp
|
---|
268 |
|
---|
269 | static inline void xoshiro128pp_set_seed( xoshiro128pp_t & state, uint32_t seed ) {
|
---|
270 | // To attain repeatable seeding, compute seeds separately because the order of argument evaluation is undefined.
|
---|
271 | uint32_t seed1 = splitmix32( seed ); // prime
|
---|
272 | uint32_t seed2 = splitmix32( seed );
|
---|
273 | uint32_t seed3 = splitmix32( seed );
|
---|
274 | uint32_t seed4 = splitmix32( seed );
|
---|
275 | state = (xoshiro128pp_t){ seed1, seed2, seed3, seed4 };
|
---|
276 | } // xoshiro128pp_set_seed
|
---|
277 |
|
---|
278 | //--------------------------------------------------
|
---|
279 | static inline uint64_t xorshift_13_7_17( uint64_t & state ) {
|
---|
280 | uint64_t ret = state;
|
---|
281 | state ^= state << 13;
|
---|
282 | state ^= state >> 7;
|
---|
283 | state ^= state << 17;
|
---|
284 | return ret;
|
---|
285 | } // xorshift_13_7_17
|
---|
286 |
|
---|
287 | static inline void xorshift_13_7_17_set_seed( uint64_t & state, uint64_t seed ) {
|
---|
288 | state = splitmix64( seed ); // prime
|
---|
289 | } // xorshift_13_7_17_set_seed
|
---|
290 |
|
---|
291 | //--------------------------------------------------
|
---|
292 | // Marsaglia shift-XOR PRNG with thread-local state
|
---|
293 | // Period is 4G-1
|
---|
294 | // 0 is absorbing and must be avoided
|
---|
295 | // Low-order bits are not particularly random
|
---|
296 | static inline uint32_t xorshift_6_21_7( uint32_t & state ) {
|
---|
297 | uint32_t ret = state;
|
---|
298 | state ^= state << 6;
|
---|
299 | state ^= state >> 21;
|
---|
300 | state ^= state << 7;
|
---|
301 | return ret;
|
---|
302 | } // xorshift_6_21_7
|
---|
303 |
|
---|
304 | static inline void xorshift_6_21_7_set_seed( uint32_t & state, uint32_t seed ) {
|
---|
305 | state = splitmix32( seed ); // prime
|
---|
306 | } // xorshift_6_21_7_set_seed
|
---|
307 |
|
---|
308 | //--------------------------------------------------
|
---|
309 | // The state must be seeded with a nonzero value.
|
---|
310 | static inline uint64_t xorshift_12_25_27( uint64_t & state ) {
|
---|
311 | uint64_t ret = state;
|
---|
312 | state ^= state >> 12;
|
---|
313 | state ^= state << 25;
|
---|
314 | state ^= state >> 27;
|
---|
315 | return ret * 0x_2545_F491_4F6C_DD1D;
|
---|
316 | } // xorshift_12_25_27
|
---|
317 |
|
---|
318 | static inline void xorshift_12_25_27_set_seed( uint64_t & state, uint64_t seed ) {
|
---|
319 | state = splitmix64( seed ); // prime
|
---|
320 | } // xorshift_12_25_27_set_seed
|
---|
321 |
|
---|
322 | //--------------------------------------------------
|
---|
323 | // The state must be seeded with a nonzero value.
|
---|
324 | #ifndef KISS_64
|
---|
325 | typedef struct { uint64_t z, w, jsr, jcong; } kiss_64_t;
|
---|
326 | #endif // ! KISS_64
|
---|
327 |
|
---|
328 | static inline uint64_t kiss_64( kiss_64_t & rs ) with(rs) {
|
---|
329 | kiss_64_t ret = rs;
|
---|
330 | z = 36969 * (z & 65535) + (z >> 16);
|
---|
331 | w = 18000 * (w & 65535) + (w >> 16);
|
---|
332 | jsr ^= (jsr << 13);
|
---|
333 | jsr ^= (jsr >> 17);
|
---|
334 | jsr ^= (jsr << 5);
|
---|
335 | jcong = 69069 * jcong + 1234567;
|
---|
336 | return (((ret.z << 16) + ret.w) ^ ret.jcong) + ret.jsr;
|
---|
337 | } // kiss_64
|
---|
338 |
|
---|
339 | static inline void kiss_64_set_seed( kiss_64_t & rs, uint64_t seed ) with(rs) {
|
---|
340 | z = 1; w = 1; jsr = 4; jcong = splitmix64( seed ); // prime
|
---|
341 | } // kiss_64_set_seed
|
---|
342 |
|
---|
343 | //--------------------------------------------------
|
---|
344 | // The state array must be initialized to non-zero in the first four words.
|
---|
345 | #ifndef XORWOW
|
---|
346 | typedef struct { uint32_t a, b, c, d, counter; } xorwow_t;
|
---|
347 | #endif // ! XORWOW
|
---|
348 |
|
---|
349 | static inline uint32_t xorwow( xorwow_t & rs ) with(rs) {
|
---|
350 | // Algorithm "xorwow" from p. 5 of Marsaglia, "Xorshift RNGs".
|
---|
351 | uint32_t ret = a + counter;
|
---|
352 | uint32_t t = d;
|
---|
353 |
|
---|
354 | uint32_t const s = a;
|
---|
355 | d = c;
|
---|
356 | c = b;
|
---|
357 | b = s;
|
---|
358 |
|
---|
359 | t ^= t >> 2;
|
---|
360 | t ^= t << 1;
|
---|
361 | t ^= s ^ (s << 4);
|
---|
362 | a = t;
|
---|
363 | counter += 362437;
|
---|
364 | return ret;
|
---|
365 | } // xorwow
|
---|
366 |
|
---|
367 | static inline void xorwow_set_seed( xorwow_t & rs, uint32_t seed ) {
|
---|
368 | // To attain repeatable seeding, compute seeds separately because the order of argument evaluation is undefined.
|
---|
369 | uint32_t seed1 = splitmix32( seed ); // prime
|
---|
370 | uint32_t seed2 = splitmix32( seed );
|
---|
371 | uint32_t seed3 = splitmix32( seed );
|
---|
372 | uint32_t seed4 = splitmix32( seed );
|
---|
373 | rs = (xorwow_t){ seed1, seed2, seed3, seed4, 0 };
|
---|
374 | } // xorwow_set_seed
|
---|
375 |
|
---|
376 | //--------------------------------------------------
|
---|
377 | // Used in __tls_rand_fwd
|
---|
378 | #define M (1_l64u << 48_l64u)
|
---|
379 | #define A (25_214_903_917_l64u)
|
---|
380 | #define AI (18_446_708_753_438_544_741_l64u)
|
---|
381 | #define C (11_l64u)
|
---|
382 | #define D (16_l64u)
|
---|
383 |
|
---|
384 | // Bi-directional LCG random-number generator
|
---|
385 | static inline uint32_t LCGBI_fwd( uint64_t & rs ) {
|
---|
386 | rs = (A * rs + C) & (M - 1);
|
---|
387 | return rs >> D;
|
---|
388 | } // LCGBI_fwd
|
---|
389 |
|
---|
390 | static inline uint32_t LCGBI_bck( uint64_t & rs ) {
|
---|
391 | unsigned int r = rs >> D;
|
---|
392 | rs = AI * (rs - C) & (M - 1);
|
---|
393 | return r;
|
---|
394 | } // LCGBI_bck
|
---|
395 |
|
---|
396 | #undef M
|
---|
397 | #undef A
|
---|
398 | #undef AI
|
---|
399 | #undef C
|
---|
400 | #undef D
|
---|
401 |
|
---|
402 | #endif // __cforall
|
---|