source: libcfa/src/bits/random.hfa@ 5a7789f

Last change on this file since 5a7789f was 90fb672, checked in by Peter A. Buhr <pabuhr@…>, 3 years ago

use splitmix32/64 to prime set seed for all PRNG

  • Property mode set to 100644
File size: 12.2 KB
RevLine 
[e57de69]1//
2// Cforall Version 1.0.0 Copyright (C) 2022 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// random.hfa --
8//
9// Author : Peter A. Buhr
10// Created On : Fri Jan 14 07:18:11 2022
11// Last Modified By : Peter A. Buhr
[90fb672]12// Last Modified On : Mon Mar 20 21:45:24 2023
13// Update Count : 186
[e57de69]14//
15
[13c5e19]16#pragma once
17
[d9585291]18#include <stdint.h> // uintXX_t
[13c5e19]19
[dd46fd3]20#define GLUE2( x, y ) x##y
21#define GLUE( x, y ) GLUE2( x, y )
22
[9fce2572]23// Set default PRNG for architecture size.
[d2ad151]24#ifdef __x86_64__ // 64-bit architecture
[261e107]25 // 64-bit generators
[b797d978]26 //#define LEHMER64
[261e107]27 //#define XORSHIFT_12_25_27
[b797d978]28 #define XOSHIRO256PP
[261e107]29 //#define KISS_64
[09965e5]30 // #define SPLITMIX_64
[261e107]31
32 // 32-bit generators
[b797d978]33 //#define XORSHIFT_6_21_7
34 #define XOSHIRO128PP
[4c6ba5a]35 // #define SPLITMIX_32
[d2ad151]36#else // 32-bit architecture
[261e107]37 // 64-bit generators
[b797d978]38 //#define XORSHIFT_13_7_17
39 #define XOSHIRO256PP
[09965e5]40 // #define SPLITMIX_64
[261e107]41
42 // 32-bit generators
[b797d978]43 //#define XORSHIFT_6_21_7
44 #define XOSHIRO128PP
[4c6ba5a]45 // #define SPLITMIX_32
[d2ad151]46#endif // __x86_64__
47
[4020f09]48// Define C/CFA PRNG name and random-state.
49
[261e107]50#ifdef XOSHIRO256PP
51#define PRNG_NAME_64 xoshiro256pp
52#define PRNG_STATE_64_T GLUE(PRNG_NAME_64,_t)
[a6bb5fc]53typedef struct { uint64_t s0, s1, s2, s3; } PRNG_STATE_64_T;
[261e107]54#endif // XOSHIRO256PP
55
56#ifdef XOSHIRO128PP
57#define PRNG_NAME_32 xoshiro128pp
58#define PRNG_STATE_32_T GLUE(PRNG_NAME_32,_t)
[a6bb5fc]59typedef struct { uint32_t s0, s1, s2, s3; } PRNG_STATE_32_T;
[261e107]60#endif // XOSHIRO128PP
61
[9fce2572]62#ifdef LEHMER64
[dd46fd3]63#define PRNG_NAME_64 lehmer64
64#define PRNG_STATE_64_T __uint128_t
[9fce2572]65#endif // LEHMER64
66
[261e107]67#ifdef WYHASH64
68#define PRNG_NAME_64 wyhash64
69#define PRNG_STATE_64_T uint64_t
70#endif // LEHMER64
71
[c8238c0]72#ifdef XORSHIFT_13_7_17
73#define PRNG_NAME_64 xorshift_13_7_17
74#define PRNG_STATE_64_T uint64_t
75#endif // XORSHIFT_13_7_17
76
[9fce2572]77#ifdef XORSHIFT_6_21_7
[dd46fd3]78#define PRNG_NAME_32 xorshift_6_21_7
79#define PRNG_STATE_32_T uint32_t
[9fce2572]80#endif // XORSHIFT_6_21_7
81
[261e107]82#ifdef XORSHIFT_12_25_27
83#define PRNG_NAME_64 xorshift_12_25_27
84#define PRNG_STATE_64_T uint64_t
85#endif // XORSHIFT_12_25_27
[dd46fd3]86
[09965e5]87#ifdef SPLITMIX_64
88#define PRNG_NAME_64 splitmix64
89#define PRNG_STATE_64_T uint64_t
90#endif // SPLITMIX32
91
92#ifdef SPLITMIX_32
93#define PRNG_NAME_32 splitmix32
94#define PRNG_STATE_32_T uint32_t
95#endif // SPLITMIX32
96
[261e107]97#ifdef KISS_64
98#define PRNG_NAME_64 kiss_64
99#define PRNG_STATE_64_T GLUE(PRNG_NAME_64,_t)
[a6bb5fc]100typedef struct { uint64_t z, w, jsr, jcong; } PRNG_STATE_64_T;
[261e107]101#endif // KISS_^64
[4020f09]102
103#ifdef XORWOW
104#define PRNG_NAME_32 xorwow
105#define PRNG_STATE_32_T GLUE(PRNG_NAME_32,_t)
[a6bb5fc]106typedef struct { uint32_t a, b, c, d, counter; } PRNG_STATE_32_T;
[dd46fd3]107#endif // XOSHIRO128PP
108
109#define PRNG_SET_SEED_64 GLUE(PRNG_NAME_64,_set_seed)
110#define PRNG_SET_SEED_32 GLUE(PRNG_NAME_32,_set_seed)
111
112
113// Default PRNG used by runtime.
114#ifdef __x86_64__ // 64-bit architecture
115#define PRNG_NAME PRNG_NAME_64
116#define PRNG_STATE_T PRNG_STATE_64_T
117#else // 32-bit architecture
118#define PRNG_NAME PRNG_NAME_32
119#define PRNG_STATE_T PRNG_STATE_32_T
120#endif // __x86_64__
121
122#define PRNG_SET_SEED GLUE(PRNG_NAME,_set_seed)
123
124
[261e107]125// ALL PRNG ALGORITHMS ARE OPTIMIZED SO THAT THE PRNG LOGIC CAN HAPPEN IN PARALLEL WITH THE USE OF THE RESULT.
[b797d978]126// Specifically, the current random state is copied for returning, before computing the next value. As a consequence,
127// the set_seed routine primes the PRNG by calling it with the state so the seed is not return as the first random
128// value.
129
[261e107]130
[9fce2572]131#ifdef __cforall // don't include in C code (invoke.h)
132
[09965e5]133// https://rosettacode.org/wiki/Pseudo-random_numbers/Splitmix64
[90fb672]134//
135// Splitmix64 is not recommended for demanding random number requirements, but is often used to calculate initial states
136// for other more complex pseudo-random number generators (see https://prng.di.unimi.it).
137// Also https://rosettacode.org/wiki/Pseudo-random_numbers/Splitmix64.
[09965e5]138static inline uint64_t splitmix64( uint64_t & state ) {
[12b006c]139 state += 0x9e3779b97f4a7c15;
140 uint64_t z = state;
141 z = (z ^ (z >> 30)) * 0xbf58476d1ce4e5b9;
142 z = (z ^ (z >> 27)) * 0x94d049bb133111eb;
143 return z ^ (z >> 31);
144} // splitmix64
[09965e5]145
146static inline void splitmix64_set_seed( uint64_t & state , uint64_t seed ) {
147 state = seed;
148 splitmix64( state ); // prime
[12b006c]149} // splitmix64_set_seed
[09965e5]150
[4c6ba5a]151// https://github.com/bryc/code/blob/master/jshash/PRNGs.md#splitmix32
[90fb672]152//
153// Splitmix32 is not recommended for demanding random number requirements, but is often used to calculate initial states
154// for other more complex pseudo-random number generators (see https://prng.di.unimi.it).
155
[4c6ba5a]156static inline uint32_t splitmix32( uint32_t & state ) {
157 state += 0x9e3779b9;
158 uint64_t z = state;
159 z = (z ^ (z >> 15)) * 0x85ebca6b;
160 z = (z ^ (z >> 13)) * 0xc2b2ae35;
161 return z ^ (z >> 16);
[12b006c]162} // splitmix32
[4c6ba5a]163
[12b006c]164static inline void splitmix32_set_seed( uint32_t & state, uint64_t seed ) {
[4c6ba5a]165 state = seed;
166 splitmix32( state ); // prime
167} // splitmix32_set_seed
168
169#ifdef __SIZEOF_INT128__
[90fb672]170//--------------------------------------------------
171static inline uint64_t lehmer64( __uint128_t & state ) {
172 __uint128_t ret = state;
173 state *= 0x_da94_2042_e4dd_58b5;
174 return ret >> 64;
175} // lehmer64
176
177static inline void lehmer64_set_seed( __uint128_t & state, uint64_t seed ) {
178 // The seed needs to be coprime with the 2^64 modulus to get the largest period, so no factors of 2 in the seed.
179 state = splitmix64( seed ); // prime
180} // lehmer64_set_seed
181
182//--------------------------------------------------
183static inline uint64_t wyhash64( uint64_t & state ) {
184 uint64_t ret = state;
185 state += 0x_60be_e2be_e120_fc15;
186 __uint128_t tmp;
187 tmp = (__uint128_t) ret * 0x_a3b1_9535_4a39_b70d;
188 uint64_t m1 = (tmp >> 64) ^ tmp;
189 tmp = (__uint128_t)m1 * 0x_1b03_7387_12fa_d5c9;
190 uint64_t m2 = (tmp >> 64) ^ tmp;
191 return m2;
192} // wyhash64
193
194static inline void wyhash64_set_seed( uint64_t & state, uint64_t seed ) {
195 state = splitmix64( seed ); // prime
196} // wyhash64_set_seed
[4c6ba5a]197#endif // __SIZEOF_INT128__
198
[4020f09]199// https://prng.di.unimi.it/xoshiro256starstar.c
[dd46fd3]200//
201// This is xoshiro256++ 1.0, one of our all-purpose, rock-solid generators. It has excellent (sub-ns) speed, a state
202// (256 bits) that is large enough for any parallel application, and it passes all tests we are aware of.
203//
204// For generating just floating-point numbers, xoshiro256+ is even faster.
205//
206// The state must be seeded so that it is not everywhere zero. If you have a 64-bit seed, we suggest to seed a
207// splitmix64 generator and use its output to fill s.
208
209#ifndef XOSHIRO256PP
[a6bb5fc]210typedef struct { uint64_t s0, s1, s2, s3; } xoshiro256pp_t;
[dd46fd3]211#endif // ! XOSHIRO256PP
212
213static inline uint64_t xoshiro256pp( xoshiro256pp_t & rs ) with(rs) {
[b797d978]214 inline uint64_t rotl( const uint64_t x, int k ) {
[dd46fd3]215 return (x << k) | (x >> (64 - k));
[4020f09]216 } // rotl
[dd46fd3]217
[b797d978]218 const uint64_t result = rotl( s0 + s3, 23 ) + s0;
219 const uint64_t t = s1 << 17;
[dd46fd3]220
[b797d978]221 s2 ^= s0;
222 s3 ^= s1;
223 s1 ^= s2;
224 s0 ^= s3;
225 s2 ^= t;
226 s3 = rotl( s3, 45 );
[dd46fd3]227 return result;
[4020f09]228} // xoshiro256pp
[dd46fd3]229
[b797d978]230static inline void xoshiro256pp_set_seed( xoshiro256pp_t & state, uint64_t seed ) {
[90fb672]231 // To attain repeatable seeding, compute seeds separately because the order of argument evaluation is undefined.
232 uint64_t seed1 = splitmix64( seed ); // prime
[09965e5]233 uint64_t seed2 = splitmix64( seed );
234 uint64_t seed3 = splitmix64( seed );
235 uint64_t seed4 = splitmix64( seed );
[4c6ba5a]236 state = (xoshiro256pp_t){ seed1, seed2, seed3, seed4 };
[dd46fd3]237} // xoshiro256pp_set_seed
238
[4020f09]239// https://prng.di.unimi.it/xoshiro128plusplus.c
240//
241// This is xoshiro128++ 1.0, one of our 32-bit all-purpose, rock-solid generators. It has excellent speed, a state size
242// (128 bits) that is large enough for mild parallelism, and it passes all tests we are aware of.
243//
244// For generating just single-precision (i.e., 32-bit) floating-point numbers, xoshiro128+ is even faster.
245//
246// The state must be seeded so that it is not everywhere zero.
247
248#ifndef XOSHIRO128PP
[a6bb5fc]249typedef struct { uint32_t s0, s1, s2, s3; } xoshiro128pp_t;
[4020f09]250#endif // ! XOSHIRO128PP
251
252static inline uint32_t xoshiro128pp( xoshiro128pp_t & rs ) with(rs) {
253 inline uint32_t rotl( const uint32_t x, int k ) {
254 return (x << k) | (x >> (32 - k));
255 } // rotl
256
[b797d978]257 const uint32_t result = rotl( s0 + s3, 7 ) + s0;
258 const uint32_t t = s1 << 9;
[4020f09]259
[b797d978]260 s2 ^= s0;
261 s3 ^= s1;
262 s1 ^= s2;
263 s0 ^= s3;
264 s2 ^= t;
265 s3 = rotl( s3, 11 );
[4020f09]266 return result;
267} // xoshiro128pp
268
269static inline void xoshiro128pp_set_seed( xoshiro128pp_t & state, uint32_t seed ) {
[90fb672]270 // To attain repeatable seeding, compute seeds separately because the order of argument evaluation is undefined.
271 uint32_t seed1 = splitmix32( seed ); // prime
[4c6ba5a]272 uint32_t seed2 = splitmix32( seed );
273 uint32_t seed3 = splitmix32( seed );
274 uint32_t seed4 = splitmix32( seed );
275 state = (xoshiro128pp_t){ seed1, seed2, seed3, seed4 };
[4020f09]276} // xoshiro128pp_set_seed
277
[13c5e19]278//--------------------------------------------------
[611f29d]279static inline uint64_t xorshift_13_7_17( uint64_t & state ) {
280 uint64_t ret = state;
281 state ^= state << 13;
282 state ^= state >> 7;
283 state ^= state << 17;
284 return ret;
[4020f09]285} // xorshift_13_7_17
[13c5e19]286
[261e107]287static inline void xorshift_13_7_17_set_seed( uint64_t & state, uint64_t seed ) {
[90fb672]288 state = splitmix64( seed ); // prime
[4020f09]289} // xorshift_13_7_17_set_seed
[dd46fd3]290
[611f29d]291//--------------------------------------------------
[4020f09]292// Marsaglia shift-XOR PRNG with thread-local state
293// Period is 4G-1
294// 0 is absorbing and must be avoided
295// Low-order bits are not particularly random
[611f29d]296static inline uint32_t xorshift_6_21_7( uint32_t & state ) {
297 uint32_t ret = state;
298 state ^= state << 6;
299 state ^= state >> 21;
300 state ^= state << 7;
301 return ret;
302} // xorshift_6_21_7
303
[dd46fd3]304static inline void xorshift_6_21_7_set_seed( uint32_t & state, uint32_t seed ) {
[90fb672]305 state = splitmix32( seed ); // prime
[4020f09]306} // xorshift_6_21_7_set_seed
[dd46fd3]307
[261e107]308//--------------------------------------------------
309// The state must be seeded with a nonzero value.
310static inline uint64_t xorshift_12_25_27( uint64_t & state ) {
311 uint64_t ret = state;
312 state ^= state >> 12;
313 state ^= state << 25;
314 state ^= state >> 27;
315 return ret * 0x_2545_F491_4F6C_DD1D;
316} // xorshift_12_25_27
317
318static inline void xorshift_12_25_27_set_seed( uint64_t & state, uint64_t seed ) {
[90fb672]319 state = splitmix64( seed ); // prime
[261e107]320} // xorshift_12_25_27_set_seed
321
322//--------------------------------------------------
323// The state must be seeded with a nonzero value.
324#ifndef KISS_64
[a6bb5fc]325typedef struct { uint64_t z, w, jsr, jcong; } kiss_64_t;
[261e107]326#endif // ! KISS_64
327
[b797d978]328static inline uint64_t kiss_64( kiss_64_t & rs ) with(rs) {
329 kiss_64_t ret = rs;
[261e107]330 z = 36969 * (z & 65535) + (z >> 16);
331 w = 18000 * (w & 65535) + (w >> 16);
332 jsr ^= (jsr << 13);
[b797d978]333 jsr ^= (jsr >> 17);
[261e107]334 jsr ^= (jsr << 5);
335 jcong = 69069 * jcong + 1234567;
[3ff64cb]336 return (((ret.z << 16) + ret.w) ^ ret.jcong) + ret.jsr;
[261e107]337} // kiss_64
338
[b797d978]339static inline void kiss_64_set_seed( kiss_64_t & rs, uint64_t seed ) with(rs) {
[90fb672]340 z = 1; w = 1; jsr = 4; jcong = splitmix64( seed ); // prime
[261e107]341} // kiss_64_set_seed
342
[13c5e19]343//--------------------------------------------------
[4020f09]344// The state array must be initialized to non-zero in the first four words.
345#ifndef XORWOW
[a6bb5fc]346typedef struct { uint32_t a, b, c, d, counter; } xorwow_t;
[4020f09]347#endif // ! XORWOW
[13c5e19]348
[b797d978]349static inline uint32_t xorwow( xorwow_t & rs ) with(rs) {
[e57de69]350 // Algorithm "xorwow" from p. 5 of Marsaglia, "Xorshift RNGs".
[261e107]351 uint32_t ret = a + counter;
352 uint32_t t = d;
[13c5e19]353
[261e107]354 uint32_t const s = a;
355 d = c;
356 c = b;
357 b = s;
[13c5e19]358
359 t ^= t >> 2;
360 t ^= t << 1;
361 t ^= s ^ (s << 4);
[261e107]362 a = t;
363 counter += 362437;
[611f29d]364 return ret;
[4020f09]365} // xorwow
366
[b797d978]367static inline void xorwow_set_seed( xorwow_t & rs, uint32_t seed ) {
[90fb672]368 // To attain repeatable seeding, compute seeds separately because the order of argument evaluation is undefined.
369 uint32_t seed1 = splitmix32( seed ); // prime
[4c6ba5a]370 uint32_t seed2 = splitmix32( seed );
371 uint32_t seed3 = splitmix32( seed );
372 uint32_t seed4 = splitmix32( seed );
373 rs = (xorwow_t){ seed1, seed2, seed3, seed4, 0 };
[4020f09]374} // xorwow_set_seed
[611f29d]375
376//--------------------------------------------------
[4020f09]377// Used in __tls_rand_fwd
[611f29d]378#define M (1_l64u << 48_l64u)
[90fb672]379#define A (25_214_903_917_l64u)
380#define AI (18_446_708_753_438_544_741_l64u)
[611f29d]381#define C (11_l64u)
382#define D (16_l64u)
383
[e57de69]384// Bi-directional LCG random-number generator
[b797d978]385static inline uint32_t LCGBI_fwd( uint64_t & rs ) {
386 rs = (A * rs + C) & (M - 1);
387 return rs >> D;
[4020f09]388} // LCGBI_fwd
[611f29d]389
[b797d978]390static inline uint32_t LCGBI_bck( uint64_t & rs ) {
391 unsigned int r = rs >> D;
392 rs = AI * (rs - C) & (M - 1);
[611f29d]393 return r;
[4020f09]394} // LCGBI_bck
[611f29d]395
396#undef M
397#undef A
398#undef AI
399#undef C
400#undef D
[9fce2572]401
402#endif // __cforall
Note: See TracBrowser for help on using the repository browser.