1 | <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" |
---|
2 | "http://www.w3.org/TR/html4/strict.dtd"> |
---|
3 | <html> |
---|
4 | <head> |
---|
5 | <title>Conversions for Cforall</title> |
---|
6 | <style type='text/css'> |
---|
7 | .rationale { font-size: smaller; background-color: #F0F0FF } |
---|
8 | pre { margin-left: 2em; border-width: 1px; } |
---|
9 | code, pre { font-family: courier; font-weight: bold; } |
---|
10 | pre i {font-weight: normal; } |
---|
11 | dfn {font-weight: bold; font-style: italic; } |
---|
12 | </style> |
---|
13 | </head> |
---|
14 | |
---|
15 | <body> |
---|
16 | <h1>Conversions for Cforall</h1> |
---|
17 | |
---|
18 | <p><b>NOTE:</b> This proposal for constructors and user-defined conversions |
---|
19 | does not represent the current state of Cforall language development, but is |
---|
20 | maintained for its possible utility in building user-defined conversions. See |
---|
21 | <tt>doc/proposals/user_conversions.md</tt> for a more current presentation of |
---|
22 | these ideas.</p> |
---|
23 | |
---|
24 | <p>This is the first draft of a description of a possible extension to the |
---|
25 | current definition of Cforall ("Cforall-as-is") that would let programmers |
---|
26 | fit new types into Cforall's system of conversions.</p> |
---|
27 | |
---|
28 | <ol> |
---|
29 | <li><a href="#notes">Design Notes</a> |
---|
30 | <ol> |
---|
31 | <li><a href="#goals">Goals</a></li> |
---|
32 | <li><a href="#conversions">Conversions</a></li> |
---|
33 | <li><a href="#constructors">Constructors</a></li> |
---|
34 | <li><a href="#ambiguity">Ambiguity</a></li> |
---|
35 | </ol> |
---|
36 | </li> |
---|
37 | <li><a href="#extension">Proposed Extension</a> |
---|
38 | <ol> |
---|
39 | <li><a href="#ops">New Operator Identifiers</a></li> |
---|
40 | <li><a href="#casts">Cast Expressions</a></li> |
---|
41 | <li><a href='#definitions'>Object Definitions</a></li> |
---|
42 | <li><a href='#default'>Default Functions</a></li> |
---|
43 | </ol> |
---|
44 | </li> |
---|
45 | <li><a href="#chaining">Conversion Composition</a></li> |
---|
46 | <li><a href='#cost'>Constructors and Cost</a></li> |
---|
47 | <li><a href='#heap'>Heap Allocation</a></li> |
---|
48 | <li><a href='#generic'>Generic Conversions and Constructors</a></li> |
---|
49 | <li><a href="#usual">C's "Usual Arithmetic Conversions"</a> |
---|
50 | <ol> |
---|
51 | <li><a href="#floating">Floating-Point Types</a></li> |
---|
52 | <li><a href="#largeint">Large Integer Types</a></li> |
---|
53 | <li><a href="#intpromo">C's "Integer Promotions"</a></li> |
---|
54 | </ol> |
---|
55 | </li> |
---|
56 | <li><a href="#otherpromo">Other Promotions</a></li> |
---|
57 | <li><a href="#demotions">Other Pre-Defined Implicit Conversions</a></li> |
---|
58 | <li><a href="#explicit">Pre-Defined Explicit Conversions</a></li> |
---|
59 | <li><a href="#nonconversions">Non-Conversions</a></li> |
---|
60 | <li><a href="#assignment">Assignment Operators</a></li> |
---|
61 | <li><a href="#overload">Overload Resolution</a></li> |
---|
62 | <li><a href="#final">Final Notes</a></li> |
---|
63 | </ol> |
---|
64 | |
---|
65 | <h2 id="notes">Design Notes</h2> |
---|
66 | |
---|
67 | <h3 id='goals'>Goals</h3> |
---|
68 | <p>My design goal for this extension is to provide a framework that |
---|
69 | explains the bulk of C's conversion semantics in terms of more basic |
---|
70 | languages, just as Cforall explains most expression semantics in terms of |
---|
71 | overloaded function calls.</p> |
---|
72 | |
---|
73 | <p>My pragmatic goal is to allow a programmer to define a portable rational |
---|
74 | number data type, fit it into the existing C type system, and use it in |
---|
75 | mixed-mode arithmetic expressions, all in a convenient and esthetically |
---|
76 | pleasing manner.</p> |
---|
77 | |
---|
78 | <h3 id="conversions">Conversions</h3> |
---|
79 | |
---|
80 | <p>A <dfn>conversion</dfn> creates a value from a value of a different |
---|
81 | type. C defines a large number of conversions, especially between |
---|
82 | arithmetic types. A subset of these can be performed by <dfn>implicit |
---|
83 | conversions</dfn>, which occurs in certain contexts: in assignment |
---|
84 | expressions, when passing arguments to function (where parameters are |
---|
85 | "assigned the value of the corresponding argument"), in initialized |
---|
86 | declarations (where "the same type constraints and conversions as for |
---|
87 | simple assignment apply"), and in mixed mode arithmetic. All conversions |
---|
88 | can be performed explicitly by cast expressions.</p> |
---|
89 | |
---|
90 | <p>C prefers some implicit conversions, the <dfn>promotions</dfn>, to the |
---|
91 | others. The promotions are ranked among themselves, creating a hierarchy |
---|
92 | of types. In mixed-mode operations, the "usual arithmetic conversions" |
---|
93 | promote the operands to what amounts to their least common supertype. |
---|
94 | Cforall-as-is uses a slightly larger set of promotions to choose the |
---|
95 | smallest possible promotion when resolving overloading.</p> |
---|
96 | |
---|
97 | <p>An extension should allow Cforall to explain C's conversions as a set of |
---|
98 | pre-defined functions, including its explicit conversions, implicit |
---|
99 | conversions, and preferences among conversions. The extension must let the |
---|
100 | programmer define new conversions for programmer-defined types, for |
---|
101 | instance so that new arithmetic types can be used conveniently in |
---|
102 | mixed-mode arithmetic.</p> |
---|
103 | |
---|
104 | <h3 id="constructors">Constructors</h3> |
---|
105 | |
---|
106 | <p>C++ introduced constructors to the C language family, and I will use its |
---|
107 | terminology. A <dfn>constructor</dfn> is a function that initializes an |
---|
108 | object. C does not have constructors; instead, it makes do with |
---|
109 | initialization, which works like assignment. Cforall-as-is does not have |
---|
110 | constructors, either: instead, by analogy with C's semantics, a |
---|
111 | programmer-defined assignment function may be called during initialization. |
---|
112 | However, there is a key difference between a function that implements |
---|
113 | assignment and a constructor: constructors assume that the object is |
---|
114 | uninitialized, and must set up any data structure invariants that the |
---|
115 | object is supposed to obey. An assignment function assumes that the target |
---|
116 | object obeys its invariants.</p> |
---|
117 | |
---|
118 | <p>A <dfn>default constructor</dfn> has no parameters other than the object it |
---|
119 | initializes. It establishes invariants, but need not do anything else. A |
---|
120 | default constructor for a rational number type might set the denominator to be |
---|
121 | non-zero, but leave the numerator undefined.</p> |
---|
122 | |
---|
123 | <p>A <dfn>copy constructor</dfn> has two parameters: the object it |
---|
124 | initializes, and a value of the same type. Its purpose is to copy the |
---|
125 | value into the object, and so it is very similar to an assignment |
---|
126 | function. In fact, it could be expressed as a call to a default constructor |
---|
127 | followed by an assignment.</p> |
---|
128 | |
---|
129 | <p>A <dfn>converting constructor</dfn> also has two parameters, but the |
---|
130 | second parameter is a value of some type different from the type |
---|
131 | of the object it initializes. Its purpose is to convert the value to the |
---|
132 | object's type before copying it, and so it is very similar to a C |
---|
133 | assignment operation that performs an implicit conversion.</p> |
---|
134 | |
---|
135 | <p>C++ sensibly defines parameter passing as call by initialization, since |
---|
136 | the parameter is uninitialized when the argument value is placed in it. |
---|
137 | Extended Cforall should do the same. However, parameter passing is one of |
---|
138 | the main places where implicit conversions occur. Hence in extended |
---|
139 | Cforall <em>constructors define the implicit conversions</em>. Cforall |
---|
140 | should also encourage programmers to maintain the similarity between |
---|
141 | constructors and assignment.</p> |
---|
142 | |
---|
143 | <h3 id="ambiguity">Ambiguity</h3> |
---|
144 | |
---|
145 | <p>In extended Cforall, programmer-defined conversions should fit in with |
---|
146 | the predefined conversions. For instance, programmer-defined promotions |
---|
147 | should interact with the normal promotions so that programmer-defined types |
---|
148 | can take part in mixed-mode arithmetic expressions. The first design that |
---|
149 | springs to mind is to define a minimal set of conversions between |
---|
150 | neighbouring types in the type hierarchy, and to have Cforall create |
---|
151 | conversions between more distant types by composition of predefined and |
---|
152 | programmer-defined conversions. Unfortunately, if one draws a graph of C's |
---|
153 | promotions, with C's types as vertices and C's promotions as edges, the |
---|
154 | result is a directed acyclic graph, not a tree. This means that an attempt |
---|
155 | to build the full set of promotions by composition of a minimal set of |
---|
156 | promotions will fail.</p> |
---|
157 | |
---|
158 | <p> Consider a simple processor with 32-bit <code>int</code> and |
---|
159 | <code>long</code> types. On such a machine, C's "usual arithmetic |
---|
160 | conversions" dictate that mixed-mode arithmetic that combines a signed |
---|
161 | integer with an unsigned integer must promote the signed integer to an |
---|
162 | unsigned type. Here is a directed graph showing the some of the minimal |
---|
163 | set of promotions. Each of the four promotions is necessary, because each |
---|
164 | could be required by some mixed-mode expression, and none can be decomposed |
---|
165 | into simpler conversions.</p> |
---|
166 | |
---|
167 | <pre> |
---|
168 | long --------> unsigned long |
---|
169 | ^ ^ |
---|
170 | | | |
---|
171 | int ---------> unsigned int |
---|
172 | </pre> |
---|
173 | |
---|
174 | <p>Now imagine attempting to compose an <code>int</code>-to-<code>unsigned |
---|
175 | long</code> conversion from the minimal set: there are two paths through |
---|
176 | the graph, so the composition is ambiguous.</p> |
---|
177 | |
---|
178 | <p>(In C, and in Cforall-as-is, no ambiguity exists: there is just one |
---|
179 | <code>int</code>-to-<code>unsigned long</code> promotion, defined by the |
---|
180 | language semantics. In Cforall-as-is, the preference for |
---|
181 | <code>int</code>-to-<code>long</code> over |
---|
182 | <code>int</code>-to-<code>unsigned long</code> is determined by a |
---|
183 | "conversion cost" calculated from the graph of the full set of promotions, |
---|
184 | but the calculation depends on maximal path lengths, not the exact |
---|
185 | path.)</p> |
---|
186 | |
---|
187 | <p>Unfortunately, the same problem with ambiguity creeps in any time |
---|
188 | conversions might be chained together. The extension must carefully |
---|
189 | control conversion composition, so that programmers can avoid ambiguous |
---|
190 | conversions.</p> |
---|
191 | |
---|
192 | <h2 id='extension'>Proposed Extension</h2> |
---|
193 | |
---|
194 | <p>The rest of this document describes my proposal to add |
---|
195 | programmer-definable conversions and constructors to Cforall.</p> |
---|
196 | |
---|
197 | <p class='rationale'>If your browser supports CSS style sheets, the |
---|
198 | proposal will appear in "normal" paragraphs, and commentary on the proposal |
---|
199 | will have the same appearance as this paragraph.</p> |
---|
200 | |
---|
201 | <h3 id='ops'>New Operator Identifiers</h3> |
---|
202 | |
---|
203 | <p>Cforall would be given a <dfn>cast identifier</dfn>, two |
---|
204 | <dfn>constructor identifiers</dfn>, and a <dfn>destructor |
---|
205 | identifier</dfn>:</p> |
---|
206 | |
---|
207 | <ul> |
---|
208 | <li> <code>(?)?</code>, for cast functions.</li> |
---|
209 | <li> <code>(?create)?</code>, for constructors.</li> |
---|
210 | <li> <code>(?promote)?</code>, for constructors that are promotions.</li> |
---|
211 | <li> <code>(?destroy)?</code>, for destructors.</li> |
---|
212 | </ul> |
---|
213 | |
---|
214 | <div class='rationale'> |
---|
215 | <p>The ugly identifier <code>(?)?</code> is meant to be mnemonic for the |
---|
216 | cast expression. The other identifiers are pretty weak (suggestions, |
---|
217 | anyone?) but are supposed to remind the programmer of the connection |
---|
218 | between conversions and constructors.</p> |
---|
219 | |
---|
220 | <p>We could instead use a single <code>(?create)?</code> identifier for |
---|
221 | constructors and add a <code>promote</code> storage class specifier, at |
---|
222 | some small risk clashes of with identifiers in existing code.</p> </div> |
---|
223 | |
---|
224 | <p>It is an error to declare two functions with different constructor |
---|
225 | identifiers that have the same type in the same translation unit.</p> |
---|
226 | |
---|
227 | <p>Functions declared with these identifiers can be polymorphic. Unlike |
---|
228 | other polymorphic functions, the return type of a polymorphic cast function |
---|
229 | need not be derivable from the type of its parameters</p> |
---|
230 | |
---|
231 | <div class='rationale'> |
---|
232 | <p>The return type of a call to a polymorphic cast |
---|
233 | function can be deduced from the calling context.</p> |
---|
234 | |
---|
235 | <pre> |
---|
236 | forall(type T1) T1 (?)?(T2); // <i>Legal.</i> |
---|
237 | forall(type T1) T1 pfun(T2); // <i>Illegal -- no way to infer </i>T1. |
---|
238 | </pre> |
---|
239 | </div> |
---|
240 | |
---|
241 | <p>A <dfn>cast function</dfn> from type <code>T1</code> to type |
---|
242 | <code>T2</code> is named "<code>(?)?</code>", accepts exactly one explicit |
---|
243 | argument of type <i>T1</i>, and returns a value of type <i>T2</i>.</p> |
---|
244 | |
---|
245 | <p class='rationale'>If the cast function is polymorphic, it will have |
---|
246 | type parameters and assertion parameters as well, and can be said to be a |
---|
247 | cast function from many different types to many different types. |
---|
248 | </p> |
---|
249 | |
---|
250 | <p>A <dfn>default constructor function</dfn> for type <i>T</i> is named |
---|
251 | "<code>(?create)?</code>", accepts exactly one explicit argument of type |
---|
252 | <i>T</i><code>*</code>, and returns <code>void</code>.</p> |
---|
253 | |
---|
254 | <p>A <dfn>copy constructor function</dfn> for type <i>T</i> is named |
---|
255 | <code>"(?create)?</code>", accepts exactly two explicit arguments of types |
---|
256 | <i>T</i><code>*</code> and <i>T</i>, and returns <code>void</code>.</p> |
---|
257 | |
---|
258 | <p>A <dfn>converting constructor function</dfn> for type <i>T1</i> from |
---|
259 | <i>T2</i> is named "<code>(?create)?</code>" or "<code>(?promote)?</code>", |
---|
260 | accepts exactly two explicit arguments of types <i>T1</i><code>*</code> and |
---|
261 | <i>T2</i>, and returns <code>void</code>.</p> |
---|
262 | |
---|
263 | <p>A <dfn>destructor function</dfn> for type <i>T</i> is named |
---|
264 | "<code>(?destroy)?</code>", accepts exactly one explicit argument of type |
---|
265 | <i>T</i><code>*</code>, and returns <code>void</code>.</p> |
---|
266 | |
---|
267 | <div class='rationale'> |
---|
268 | |
---|
269 | <p>The monomorphic function prototypes for these functions are</p> |
---|
270 | <pre> |
---|
271 | <i>T1</i> (?)?(<i>T2</i>); |
---|
272 | void (?create)?(<i>T1</i>*); |
---|
273 | void (?create)?(<i>T1</i>*, <i>T2</i>); |
---|
274 | void (?promote)?(<i>T1</i>*, <i>T2</i>); |
---|
275 | void (?destroy)?(<i>T1</i>*); |
---|
276 | </pre> |
---|
277 | </div> |
---|
278 | |
---|
279 | <h3 id='casts'>Cast Expressions</h3> |
---|
280 | |
---|
281 | <p>In most cases the cast expression <code>(<i>T</i>)<i>e</i></code> would |
---|
282 | be treated like the function call <code>(?)?(<i>e</i>)</code>, except that |
---|
283 | only cast functions to type <i>T</i> would be valid interpretations of |
---|
284 | <code>(?)?</code>, and <code><i>e</i></code> would not be implicitly |
---|
285 | converted to the cast function's parameter type. In particular, the usual |
---|
286 | rules for resolving function overloading (see <a href='#overload'>below</a>) |
---|
287 | would be used to choose the best interpretation of the expression.</p> |
---|
288 | |
---|
289 | <div class='rationale'> |
---|
290 | <p>For example, in</p> |
---|
291 | <pre> |
---|
292 | type Wazzit; |
---|
293 | type Thingum; |
---|
294 | Wazzit w; |
---|
295 | (Thingum)w; |
---|
296 | </pre> |
---|
297 | <p>the cast function that is called must be "<code>Thingum |
---|
298 | (?)?(Wazzit)</code>", or a polymorphic function that can be specialized to |
---|
299 | that.</p> |
---|
300 | |
---|
301 | <p>The ban on implicit conversions within the cast allows programmers to |
---|
302 | explicitly control composition of conversions and avoid ambiguity. I also |
---|
303 | hope that this will make it easier for compilers and programmers to |
---|
304 | determine which conversions will be applied in which circumstances. If |
---|
305 | implicit conversions could be applied to the inputs and outputs of casts, |
---|
306 | when any and all of the conversion functions involved could be polymorphic |
---|
307 | ... the possibilities seem endless, unfortunately.</p> |
---|
308 | |
---|
309 | </div> |
---|
310 | |
---|
311 | <h3 id='definitions'>Object Definitions</h3> |
---|
312 | <p>A definition of an object <i>x</i> would call a constructor function. Let |
---|
313 | <i>T</i> be <i>x</i>'s type with type qualifiers removed, and let <i>a</i> |
---|
314 | be <i>x</i>'s address (with type <code><i>T</i>*</code>).</p> |
---|
315 | |
---|
316 | <p class='rationale'>If type qualifiers weren't ignored, <code>const</code> |
---|
317 | objects couldn't be initialized, and every constructor would have to be |
---|
318 | duplicated, with one version for <i>T</i>* objects and one for |
---|
319 | <code>volatile</code> <i>T</i>* objects.</p> |
---|
320 | |
---|
321 | <ul> |
---|
322 | <li>A definition with an initializer that is a single expression |
---|
323 | <i>e</i>, optionally enclosed in braces, would call a copy or converting |
---|
324 | constructor. The call would be treated much like the function call |
---|
325 | <code><i>f</i>(<i>a</i>,<i>e</i>)</code>, except that only copy and |
---|
326 | converting constructors for type <i>T</i> would be valid interpretations |
---|
327 | of <code><i>f</i></code>, and <i>e</i> would not be implicitly |
---|
328 | converted to the type of the constructor's second parameter.</li> |
---|
329 | <li>If <i>x</i> has automatic storage duration and is not initialized |
---|
330 | explicitly, the definition would call a default constructor function. |
---|
331 | The call would be treated much like the function call |
---|
332 | <code><i>f</i>(<i>a</i>)</code>, except that only default |
---|
333 | constructor functions for type <i>T</i> would be valid interpretations of |
---|
334 | <code><i>f</i></code>.</li> |
---|
335 | <li><p>If <i>x</i> has static storage duration and is not initialized |
---|
336 | explicitly, and is defined within the scope of a type definition that |
---|
337 | defines <i>T</i>, then <i>T</i>'s implementation type would determine how |
---|
338 | <i>x</i> is initialized.</p> |
---|
339 | <div class='rationale'> |
---|
340 | <pre> |
---|
341 | type Rational = struct { int numerator; unsigned denominator; }; |
---|
342 | Rational r; // Both members initialized to 0. |
---|
343 | </pre> |
---|
344 | </div> |
---|
345 | </li> |
---|
346 | <li><p>If <i>x</i> has static storage duration and is not initialized |
---|
347 | explicitly, and the type <i>T</i> is an opaque type, the definition |
---|
348 | would be treated as if <i>x</i> was initialized with the expression |
---|
349 | <code>0</code>.</p> |
---|
350 | <div class='rationale'> |
---|
351 | <p>This is a simple extension of C's rules for static objects, |
---|
352 | which initialized them all to 0. Frequently, the 0 involved |
---|
353 | will have type <i>T</i>, and the definition will call a copy |
---|
354 | constructor.</p> |
---|
355 | <pre> |
---|
356 | extern type Rational; |
---|
357 | extern Rational 0; |
---|
358 | static Rational r; // initialized with the Rational 0. |
---|
359 | </pre> |
---|
360 | <p>In other cases, the 0 will be an integer or null pointer, and the |
---|
361 | definition will call a converting constructor.</p> |
---|
362 | |
---|
363 | <p>The obvious alternative design would call <i>T</i>'s default |
---|
364 | constructor. That design would be inconsistent, because some static |
---|
365 | objects would go uninitialized. It would also cause subtle problems, |
---|
366 | because a particular static definition could be uninitialized or |
---|
367 | initialized to 0 depending on whether <i>T</i> is an <code>extern |
---|
368 | type</code> or a <code>typedef</code>.</p> |
---|
369 | </div> |
---|
370 | </li> |
---|
371 | </ul> |
---|
372 | |
---|
373 | <p>Except when calling constructors, parameter passing invokes constructor |
---|
374 | functions. Passing argument expression <i>e</i> to a parameter would be |
---|
375 | equivalent to initializing the parameter with that expression. When |
---|
376 | calling constructors, the value of the argument would be copied into the |
---|
377 | parameter.</p> |
---|
378 | |
---|
379 | <p>When the lifetime of <i>x</i> ends, a destructor function would be called. |
---|
380 | The call would be treated much like the function call |
---|
381 | <code>(?destroy)?(<i>a</i>)</code>. When a block ends, the objects that were |
---|
382 | defined in the block would be destroyed in the reverse of the order in which |
---|
383 | they are declared.</p> |
---|
384 | |
---|
385 | <p>The storage class specifier <code>register</code> will have the |
---|
386 | semantics that it has in C++, instead of the semantics of C: it is merely a |
---|
387 | hint to the implementation that the object will be heavily used, and does |
---|
388 | not prevent programs from computing the address of the object.</p> |
---|
389 | |
---|
390 | <h3 id='default'>Default Functions</h3> |
---|
391 | |
---|
392 | <p>In Cforall-as-is, every declaration with type-class <code>type</code> |
---|
393 | implicitly declares a default assignment function, with the same scope and |
---|
394 | linkage as the type. Extended Cforall would also declare a <dfn>default |
---|
395 | default constructor</dfn> and a <dfn>default destructor</dfn>.</p> |
---|
396 | |
---|
397 | <div class='rationale'> |
---|
398 | <pre> |
---|
399 | { |
---|
400 | extern type T; |
---|
401 | T t; // <i>calls external constructor for T.</i> |
---|
402 | } // <i>calls external destructor for T.</i> |
---|
403 | </pre> |
---|
404 | <p>The destructor and some sort of constructor are necessary to instantiate |
---|
405 | the type. I include the default constructor because it is the most basic. |
---|
406 | Arguably the declaration should also declare a default copy constructor, |
---|
407 | but I chose not to because Cforall can construct a copy constructor from |
---|
408 | the default constructor and the assignment operator, as will be seen |
---|
409 | <a href="#generic">below</a>.</p> |
---|
410 | |
---|
411 | <p>If the type does not need to be instantiated, it probably should have |
---|
412 | been declared by <code>dtype</code> instead of by <code>type</code>.</p> |
---|
413 | </div> |
---|
414 | |
---|
415 | <p>A type definition would implicitly define a default constructor and |
---|
416 | destructor by inheriting the implementation type's default constructor and |
---|
417 | destructor, just as is done for the implicitly defined default assignment |
---|
418 | function.</p> |
---|
419 | |
---|
420 | <h2 id='chaining'>Conversion Composition</h2> |
---|
421 | |
---|
422 | <p>As mentioned above, Cforall does not apply implicit conversions to the |
---|
423 | arguments and results of cast expressions or constructor calls. Neither |
---|
424 | does it automatically create conversions or constructors by composing |
---|
425 | programmer-defined compositions: given</p> |
---|
426 | |
---|
427 | <pre> |
---|
428 | T1 (?)?(T2); |
---|
429 | T2 (?)?(T3); |
---|
430 | T3 v3; |
---|
431 | (T1)v3; |
---|
432 | </pre> |
---|
433 | |
---|
434 | <p>then Cforall does not automatically create</p> |
---|
435 | |
---|
436 | <pre> |
---|
437 | T1 (?)?(T3 p) { return (T1)(T2)p; } |
---|
438 | </pre> |
---|
439 | |
---|
440 | <p>Composition of conversions does show up through a third mechanism where |
---|
441 | the programmer has more control: assertion lists. Consider a |
---|
442 | <code>Month</code> type, that represents months as integers between 0 and |
---|
443 | 11. Clearly a <code>Month</code> can be promoted to <code>unsigned</code>, |
---|
444 | and to any type above <code>unsigned</code> in the arithmetic type |
---|
445 | hierarchy as well.</p> |
---|
446 | |
---|
447 | <pre id='monthpromo'> |
---|
448 | type Month = unsigned; |
---|
449 | |
---|
450 | forall(type T | void (?promote)(T*, unsigned)) |
---|
451 | void (?promote)?(T* target, Month source) { |
---|
452 | unsigned u_temp = (unsigned)source; |
---|
453 | T t_temp = u_temp; // <i>calls the assertion parameter.</i> |
---|
454 | *target = t_temp; |
---|
455 | } |
---|
456 | </pre> |
---|
457 | |
---|
458 | <p>The intimidating polymorphic promotion declaration says that, if |
---|
459 | <code>T</code> is a type and <code>unsigned</code> can be promoted to |
---|
460 | <code>T</code>, then the function can promote <code>Month</code> to |
---|
461 | <code>T</code>.</p> |
---|
462 | |
---|
463 | <pre> |
---|
464 | Month m; |
---|
465 | unsigned long ul = m; |
---|
466 | </pre> |
---|
467 | |
---|
468 | <p>To initialize <code>ul</code>, Cforall must bind <code>T</code> to |
---|
469 | <code>unsigned long</code>, find the (pre-defined) |
---|
470 | <code>unsigned</code>-to-<code>unsigned long</code> promotion, and pass it |
---|
471 | to the assertion parameter of the polymorphic |
---|
472 | <code>Month</code>-to-<code>T</code> function.</p> |
---|
473 | |
---|
474 | <p>But what about converting from <code>Month</code> to |
---|
475 | <code>unsigned</code> itself?</p> |
---|
476 | |
---|
477 | <pre> |
---|
478 | unsigned u = m; // <i>How?</i> |
---|
479 | </pre> |
---|
480 | |
---|
481 | <p>A monomorphic <code>Month</code>-to-<code>unsigned</code> constructor |
---|
482 | would do the job, but its body would mostly duplicate the body of the |
---|
483 | polymorphic function.</p> |
---|
484 | |
---|
485 | <p>Instead, Cforall should use the polymorphic promotion and the |
---|
486 | <code>unsigned</code> copy constructor. To initialize <code>u</code>, |
---|
487 | Cforall should pass the <code>unsigned</code> copy constructor to the assertion |
---|
488 | parameter of the polymorphic <code>Month</code> promotion, and bind |
---|
489 | <code>T</code> to <code>unsigned</code>.</p> |
---|
490 | |
---|
491 | <p>Note that the polymorphic promotion can promote <code>Month</code> to |
---|
492 | the standard types, to implementation-defined extended types, and to |
---|
493 | programmer-defined types that have yet to be written. This is much better |
---|
494 | than writing a flock of monomorphic promotions, with function bodies that |
---|
495 | would be nearly identical, to convert <code>Month</code> to each unsigned |
---|
496 | type individually. The predefined constructors make heavy use of this |
---|
497 | <dfn id='idiom'>constructor idiom</dfn>: instead of writing</p> |
---|
498 | |
---|
499 | <pre> |
---|
500 | void (?promote)? (T1*, T2); |
---|
501 | </pre> |
---|
502 | |
---|
503 | <p>("You can make a T2 into a T1"), write</p> |
---|
504 | <pre> |
---|
505 | forall(type T | void (?promote)?(T*, T1) ) void (?promote)?(T*, T2); |
---|
506 | </pre> |
---|
507 | |
---|
508 | <p>("You can make a T2 into anything that can be made from a T1").</p> |
---|
509 | |
---|
510 | <h2 id='cost'>Constructors and Cost</h2> |
---|
511 | |
---|
512 | <p>Calls to constructors have <dfn>construction costs</dfn>, which let |
---|
513 | Cforall choose the least expensive implicit conversion when given a |
---|
514 | choice.</p> |
---|
515 | |
---|
516 | <ol> |
---|
517 | <li>The cost of a call to a copy constructor is 0.</li> |
---|
518 | <li>The cost of a call to a monomorphic constructor is 1.</li> |
---|
519 | <li>The cost of a call to a polymorphic constructor, or a specialization |
---|
520 | of it, is 1 plus the sum of the construction costs of constructors |
---|
521 | that are passed to it through assertion parameters.</li> |
---|
522 | </ol> |
---|
523 | |
---|
524 | <div class='rationale'> |
---|
525 | |
---|
526 | <p>Note that, although point 3 refers to constructors that are |
---|
527 | passed at run-time, the translator statically matches arguments to |
---|
528 | assertion parameters, so it can determine construction costs statically.</p> |
---|
529 | |
---|
530 | <p>Construction cost is defined for <em>every</em> |
---|
531 | constructor, not just the promotions (which are the equivalent of the safe |
---|
532 | conversions of Cforall-as-is). This seemed like the easiest way to handle |
---|
533 | (admittedly dicey) "mixed" constructors, where the constructor and its |
---|
534 | assertion parameter have different identifiers:</p> |
---|
535 | |
---|
536 | <pre> |
---|
537 | type Thingum; |
---|
538 | type Wazzit; |
---|
539 | forall(type T | void (?create)?(T*, Thingum) ) |
---|
540 | void (?promote)?(T*, Wazzit); |
---|
541 | </pre> |
---|
542 | </div> |
---|
543 | |
---|
544 | <h3>Examples:</h3> |
---|
545 | <p>"<code>unsigned ui = 42U;</code>" calls a copy constructor, and so has |
---|
546 | cost 0.</p> |
---|
547 | |
---|
548 | <p>"<code>unsigned ui = m;</code>", where <code>m</code> has type |
---|
549 | <code>Month</code>, calls the polymorphic <code>Month</code> promotion |
---|
550 | defined <a href="#monthpromo">previously</a>. It passes the |
---|
551 | <code>unsigned</code>-to-<code>unsigned</code> copy constructor to the |
---|
552 | assertion parameter, and so has cost 1+0 = 1.</p> |
---|
553 | |
---|
554 | <p>"<code>unsigned long ul = m;</code>" calls the polymorphic |
---|
555 | <code>Month</code> promotion, passing the |
---|
556 | <code>unsigned</code>-to-<code>unsigned long</code> constructor to the |
---|
557 | assertion parameter. <code>unsigned</code>-to-<code>unsigned long</code> |
---|
558 | is defined below and will turn out to have cost 1, so the total cost is 2.</p> |
---|
559 | |
---|
560 | <p>Inside the body of the <code>Month</code> promotion, the assertion |
---|
561 | parameter has a monomorphic type, and so has a construction cost of 1 where |
---|
562 | it is called by the initialization of <code>t_temp</code>. The cost of the |
---|
563 | <em>argument</em> passed through the assertion parameter has no relevance |
---|
564 | inside the body of the promotion.</p> |
---|
565 | |
---|
566 | <h2 id='overload'>Overload Resolution</h2> |
---|
567 | |
---|
568 | <p>In Cforall-as-is, there is at most one language-defined implicit |
---|
569 | conversion between any two types. In extended Cforall, more than one |
---|
570 | conversion may be applicable, and overload resolution must be adapted to |
---|
571 | account for that, by using the lowest-cost conversion.</p> |
---|
572 | |
---|
573 | <p>The <dfn>unsafe conversion cost</dfn> of a function call expression |
---|
574 | would be the total conversion cost of implicit calls of |
---|
575 | <code>(?create)?()</code> constructors applied directly to arguments of the |
---|
576 | function -- 0 if there are none.</p> |
---|
577 | |
---|
578 | <p class='rationale'>This would replace a rule in Cforall-as-is, which |
---|
579 | considers all unsafe conversions to be equally bad and just counts them. I |
---|
580 | think the difference would be subtle and unimportant.</p> |
---|
581 | |
---|
582 | <p>The <dfn>promotion cost</dfn> would be the total conversion costs of |
---|
583 | implicit calls of <code>(?promote)?()</code> constructors applied directly |
---|
584 | to arguments of the function -- 0 if there are none.</p> |
---|
585 | |
---|
586 | <p>Overload resolution would examine each argument expression individually. |
---|
587 | The best interpretations of an expression would be:</p> |
---|
588 | |
---|
589 | <ol> |
---|
590 | <li>the interpretations with the lowest unsafe conversion cost;</li> |
---|
591 | <li>of these, the interpretations with the lowest promotion cost;</li> |
---|
592 | <li>of these, if any can be promoted to the parameter type, then just |
---|
593 | those that can be converted at minimal cost; otherwise, all remaining |
---|
594 | interpretations.</li> |
---|
595 | </ol> |
---|
596 | |
---|
597 | <p>The best interpretation would be implicitly converted to the parameter |
---|
598 | type, by calling the conversion function with minimal cost. If there is |
---|
599 | more than one best interpretation, or if there is more than one |
---|
600 | minimal-cost conversion, the argument is ambiguous.</p> |
---|
601 | |
---|
602 | <p>A maximal set of interpretations of the function call expression that |
---|
603 | have compatible result types produces a single interpretation: the |
---|
604 | interpretations with the lowest unsafe conversion cost, and of these, the |
---|
605 | interpretations with the lowest promotion cost. If there is more than one |
---|
606 | such interpretation, the function call expression is ambiguous.</p> |
---|
607 | |
---|
608 | <h2 id='heap'>Heap Allocation</h2> |
---|
609 | |
---|
610 | <p>Cforall would define new heap allocation functions that would ensure |
---|
611 | that constructors and destructors would be applied to objects in the |
---|
612 | heap. There's lots of room for ambitious design here, but a simple |
---|
613 | facility might look like this:</p> |
---|
614 | |
---|
615 | <pre> |
---|
616 | forall(type T) void delete(T const volatile restrict* ptr) { |
---|
617 | if (ptr) (?destroy)?(ptr); |
---|
618 | free(ptr); |
---|
619 | } |
---|
620 | </pre> |
---|
621 | |
---|
622 | <div class='rationale'> |
---|
623 | <p>In a call to <code>delete()</code>, the argument might be a pointer to a |
---|
624 | pointer: <code>T</code> would be a pointer type, and the argument might |
---|
625 | have all three type qualifiers. (If it doesn't, pointer conversions will add |
---|
626 | missing qualifiers to the argument.)</p> |
---|
627 | <pre> |
---|
628 | // <i>Pointer to a const volatile restricted pointer to an int:</i> |
---|
629 | int * const volatile restrict * pcvrpi; |
---|
630 | // <i>...</i> |
---|
631 | delete(cvrpi); // T<i> bound to </i>int * |
---|
632 | </pre> |
---|
633 | </div> |
---|
634 | |
---|
635 | <p>A <code>new()</code> function would take the address of a pointer and an |
---|
636 | initial value, and points the pointer at heap storage initialized to that |
---|
637 | value.</p> |
---|
638 | <pre> |
---|
639 | forall(type T | void (?create)?(T*, T)) |
---|
640 | void new(T* volatile restrict* ptr, T val) { |
---|
641 | *ptr = malloc(sizeof(T)); |
---|
642 | if (*ptr) (?create)?(*ptr, val); // <i>explicit constructor call</i> |
---|
643 | } |
---|
644 | |
---|
645 | forall(type T | void (?create)?(T*, T)) |
---|
646 | void new(T const* volatile restrict* ptr, T val), |
---|
647 | new(T volatile* volatile restrict* ptr, T val), |
---|
648 | new(T restrict* volatile restrict* ptr, T val), |
---|
649 | new(T const volatile* volatile restrict* ptr, T val), |
---|
650 | new(T const restrict* volatile restrict* ptr, T val), |
---|
651 | new(T volatile restrict* volatile restrict* ptr, T val), |
---|
652 | new(T const volatile restrict* volatile restrict* ptr, T val); |
---|
653 | </pre> |
---|
654 | <p class='rationale'>Cforall can't add type qualifiers to pointed-at |
---|
655 | pointer types, so <code>new()</code> needs one variation for each set of |
---|
656 | type qualifiers.</p> |
---|
657 | |
---|
658 | <p>Another <code>new()</code> function would omit the initial value, and |
---|
659 | apply the default constructor. <span class='rationale'>Obviously, there's |
---|
660 | no point in allocating <code>const</code>-qualified uninitialized |
---|
661 | storage.</span></p> |
---|
662 | <pre> |
---|
663 | forall(type T) |
---|
664 | void new(T* volatile restrict * ptr) { |
---|
665 | *ptr = malloc(sizeof(T)); |
---|
666 | if (*ptr) (?create)?(*ptr); // <i>Explicit default constructor call.</i> |
---|
667 | } |
---|
668 | |
---|
669 | forall(type T) |
---|
670 | void new(T volatile* volatile restrict*), |
---|
671 | void new(T restrict* volatile restrict*), |
---|
672 | void new(T volatile restrict* volatile restrict*); |
---|
673 | </pre> |
---|
674 | |
---|
675 | <h2 id='generic'>Generic Conversions and Constructors</h2> |
---|
676 | |
---|
677 | <p>Cforall would provide a polymorphic default constructor function and |
---|
678 | destructor function, for types that do not have their own:</p> |
---|
679 | |
---|
680 | <pre> |
---|
681 | forall(type T) |
---|
682 | void (?create)?(T*) { return; }; |
---|
683 | |
---|
684 | forall(type T) |
---|
685 | void (?destroy)?(T*) { return; }; |
---|
686 | </pre> |
---|
687 | |
---|
688 | <p class='rationale'>The generic default constructor and destructor provide |
---|
689 | C semantics for uninitialized variables: "do nothing".</p> |
---|
690 | |
---|
691 | <p>For every structure type <code>struct <i>s</i></code> Cforall would define a |
---|
692 | default constructor function that applies a default constructor to each |
---|
693 | member, in no particular order. Similarly, it would define a destructor that |
---|
694 | applies the destructor of each member in no particular order.</p> |
---|
695 | |
---|
696 | <p>Any promotion would be treated as a plain constructor:</p> |
---|
697 | <pre> |
---|
698 | forall(type T, type S | void (?promote)(T*, S)) |
---|
699 | void (?create)?(T*, S) { |
---|
700 | (?promote)?(T*, S); // <i>Explicit constructor call!</i> |
---|
701 | } |
---|
702 | </pre> |
---|
703 | |
---|
704 | <p>A predefined cast function would allow explicit conversions anywhere |
---|
705 | that implicit conversions are possible:</p> |
---|
706 | <pre> |
---|
707 | forall(type T, type S | void (?create)?(T*, S)) |
---|
708 | T (?)?(S source) { |
---|
709 | T temp = source; |
---|
710 | return temp; |
---|
711 | } |
---|
712 | </pre> |
---|
713 | |
---|
714 | <p>A predefined converting constructor would allow initialization anywhere |
---|
715 | that assignment is defined:</p> |
---|
716 | <pre> |
---|
717 | forall(type T | void (?create)?(T*), type S | T ?=?(T*, S)) |
---|
718 | void (?create)?(T* target, S source) { |
---|
719 | (?create)?(target); |
---|
720 | *target = source; |
---|
721 | } |
---|
722 | </pre> |
---|
723 | |
---|
724 | <p class='rationale'>This implements the typical semantic link between |
---|
725 | assignment and initialization.</p> |
---|
726 | |
---|
727 | <p>The predefined copy constructor function is</p> |
---|
728 | <pre> |
---|
729 | forall(type T) |
---|
730 | void (?promote)?(T* target, T source) { |
---|
731 | (?create)?(target); |
---|
732 | *target = source; |
---|
733 | } |
---|
734 | </pre> |
---|
735 | |
---|
736 | <p class='rationale'>Since Cforall defines assignment and default |
---|
737 | constructors for structure types, this provides the copy constructor for |
---|
738 | structure types.</p> |
---|
739 | |
---|
740 | <p>Finally, Cforall defines the conversion to <code>void</code>, which |
---|
741 | discards its argument.</p> |
---|
742 | <pre> |
---|
743 | forall(type T) void (?promote)(void*, T); |
---|
744 | </pre> |
---|
745 | |
---|
746 | <h2 id='usual'>C's "Usual Arithmetic Conversions"</h2> |
---|
747 | |
---|
748 | <p>C has five groups of arithmetic types: signed integers, unsigned |
---|
749 | integers, complex floating-point numbers, imaginary floating-point numbers, |
---|
750 | and real floating-point numbers. (Implementations are not required to |
---|
751 | provide complex and imaginary types.) Some of the "usual arithmetic |
---|
752 | conversions" promote upward within a group or to a more general group: from |
---|
753 | <code>int</code> to <code>long long</code>, for instance. Others |
---|
754 | promote across from a type in one group to a similar type in another group: |
---|
755 | for instance, from <code>int</code> to <code>unsigned int</code>.</p> |
---|
756 | |
---|
757 | <h3 id='floating'>Floating-Point Types</h3> |
---|
758 | |
---|
759 | <p>The floating point types would use the <a href="#idiom">constructor |
---|
760 | idiom</a> for upward promotions, and monomorphic constructors for |
---|
761 | promotions across from real and imaginary types to complex types with the |
---|
762 | same precision.</p> |
---|
763 | |
---|
764 | <p>I will use a macro to abbreviate the constructor idiom. |
---|
765 | "<code>Promoter(T,S)</code>" promotes <code>S</code> to any type that |
---|
766 | <code>T</code> can be promoted to</p> |
---|
767 | <pre> |
---|
768 | #define Promoter(Target, Source) \ |
---|
769 | forall(type T | void (?promote)?(T*, Target)) void (?promote)?(T*, Source) |
---|
770 | |
---|
771 | Promoter(long double _Complex, double _Complex); // <i>a</i> |
---|
772 | Promoter(double _Complex, float _Complex); // <i>b</i> |
---|
773 | Promoter(long double, double); // <i>c</i> |
---|
774 | Promoter(double, float); // <i>d</i> |
---|
775 | Promoter(long double _Imaginary, double _Imaginary); // <i>e</i> |
---|
776 | Promoter(double _Imaginary, float _Imaginary); // <i>f</i> |
---|
777 | |
---|
778 | void (?promote)?(long double _Complex*, long double); // <i>g</i> |
---|
779 | void (?promote)?(long double _Complex*, long double _Imaginary); // <i>h</i> |
---|
780 | void (?promote)?(double _Complex*, double); // <i>i</i> |
---|
781 | void (?promote)?(double _Complex*, double _Imaginary); // <i>j</i> |
---|
782 | void (?promote)?(float _Complex*, float); // <i>k</i> |
---|
783 | void (?promote)?(float _Complex*, float _Imaginary); // <i>l</i> |
---|
784 | </pre> |
---|
785 | |
---|
786 | <div class='rationale'> |
---|
787 | <p>It helps to draw a graph of the promotions. In this diagram, |
---|
788 | monomorphic promotions are solid arrows from the source type to the target |
---|
789 | type, and polymorphic promotions are dotted arrows from the source type to |
---|
790 | a bubble that surrounds all possible target types. (Twenty years after |
---|
791 | first hearing about them, I have finally found a use for directed |
---|
792 | multigraphs!) To determine the promotion from one type to another, find a |
---|
793 | path of zero or more dotted arrows optionally ending with a solid arrow.</p> |
---|
794 | <div> |
---|
795 | <img alt="Floating point promotions" src="./float_promo.png"> |
---|
796 | </div> |
---|
797 | |
---|
798 | <p>A <code>long double _Complex</code> can be constructed from</p> |
---|
799 | <ol> |
---|
800 | <li>a <code>double _Complex</code>, via <i>a</i>, with a <code>double |
---|
801 | _Complex</code> copy constructor passed as the assertion |
---|
802 | parameter.</li> |
---|
803 | <li>a <code>long double</code>, via constructor <i>g</i>.</li> |
---|
804 | <li>a <code>double</code>, via <i>c</i> (which promotes |
---|
805 | <code>double</code> to <code>long double</code> and higher), with |
---|
806 | <i>g</i> passed as the assertion parameter. In other words, the path |
---|
807 | from <code>double</code> to <code>long double _Complex</code> passes |
---|
808 | through <code>long double</code></li> |
---|
809 | <li>a <code>float _Complex</code>, via <i>b</i>. For the assertion |
---|
810 | parameter, Cforall passes a <code>double |
---|
811 | _Complex</code>-to-<code>long double _Complex</code> constructor that |
---|
812 | it makes by specializing <i>a</i>; for the assertion parameter of the |
---|
813 | specialization, it passes a <code>long double |
---|
814 | _Complex</code>-to-<code>long double _Complex</code> copy |
---|
815 | constructor.</li> |
---|
816 | <li>a <code>float</code>, via <i>d</i>, with a specialization of <i>c</i> |
---|
817 | passed as its assertion parameter, with <i>g</i> passed as the |
---|
818 | specialization's assertion parameter.</li> |
---|
819 | </ol> |
---|
820 | |
---|
821 | <p>Note how "upward" and "across" promotions interact. Polymorphic |
---|
822 | "upward" promotions connect widely separated types by composing |
---|
823 | constructors through their assertion parameters. Monomorphic "across" |
---|
824 | promotions extend composition one step across to corresponding types in |
---|
825 | different groups.</p> |
---|
826 | |
---|
827 | <p>Defining the set of predefined promotions turned out to be quite tricky. |
---|
828 | For example, if "across" promotions used the constructor idiom, ambiguity |
---|
829 | would result: a conversion from <code>float</code> to <code>double |
---|
830 | _Complex</code> could convert upward through <code>double</code> or across |
---|
831 | through <code>float _Complex</code>. The key points are:</p> |
---|
832 | <ol> |
---|
833 | <li>Monomorphic constructors are only used to connect neighbouring types |
---|
834 | in the conversion hierarchy, because they have constructor cost 1.</li> |
---|
835 | <li>Polymorphic constructors only connect directly to neighbours, because |
---|
836 | their minimal cost is 1. They reach other types by composition.</li> |
---|
837 | <li>The types in the assertion parameter of a polymorphic constructor |
---|
838 | specify the exact path between two types by specifying the |
---|
839 | next type in a sequence of composed constructors.</li> |
---|
840 | <li>There can be more than one path between two types, provided that the |
---|
841 | paths have different construction costs or degrees of |
---|
842 | polymorphism.</li> |
---|
843 | </ol> |
---|
844 | |
---|
845 | </div> |
---|
846 | |
---|
847 | <h3 id='largeint'>Large Integer Types</h3> |
---|
848 | |
---|
849 | <p class='rationale'>The conversions for the integer types cannot be |
---|
850 | defined by a simple list, because the set of integer types is |
---|
851 | implementation-defined, the range of each type is implementation-defined, |
---|
852 | and the set of promotions depend on whether a particular signed type can |
---|
853 | represent all values of a particular unsigned type. As I read the C |
---|
854 | standard, every signed type has a matching unsigned type, but the reverse |
---|
855 | is not true. This complicates the definitions below.</p> |
---|
856 | |
---|
857 | <ul> |
---|
858 | <li>Let the <dfn>rank</dfn> of an integer type be the integer conversion |
---|
859 | rank defined in C99, with the added condition that the ranks form a |
---|
860 | continuous sequence of integers.</li> |
---|
861 | <li>Let <dfn><i>r</i><sub>int</sub></dfn> be the rank of |
---|
862 | <code>int</code>.</li> |
---|
863 | <li>Let <dfn><code>signed(<i>r</i>)</code></dfn> and |
---|
864 | <dfn><code>unsigned(<i>r</i>)</code></dfn> |
---|
865 | be the signed integer type and unsigned integer type with rank |
---|
866 | <i>r</i>.</li> |
---|
867 | </ul> |
---|
868 | |
---|
869 | <p>Integers promote upward to floating-point types. Let <i>SMax</i> be the |
---|
870 | highest ranking signed integer type, and let <i>UMax</i> be the highest |
---|
871 | ranking unsigned integer type. Then Cforall would define</p> |
---|
872 | |
---|
873 | <pre> |
---|
874 | Promoter(float, <i>SMax</i>); |
---|
875 | Promoter(float, <i>Umax</i>); |
---|
876 | </pre> |
---|
877 | |
---|
878 | <p>Signed types promote across to unsigned types with the same rank. For |
---|
879 | every <i>r</i> >= <i>r</i><sub>int</sub> such that |
---|
880 | <code>signed(<i>r</i>)</code> exists, Cforall would define</p> |
---|
881 | |
---|
882 | <pre> |
---|
883 | void (?promote)?( unsigned(<i>r</i>)*, signed(<i>r</i>) ); |
---|
884 | </pre> |
---|
885 | |
---|
886 | <p>Lower-ranking signed integers promote to higher-ranking signed integers. |
---|
887 | For every signed integer type <i>T</i> with rank greater than |
---|
888 | <i>r</i><sub>int</sub>, let <i>S</i> be the signed integer type with the |
---|
889 | next lowest rank. Then Cforall would define</p> |
---|
890 | |
---|
891 | <pre> |
---|
892 | Promoter(<i>T</i>, <i>S</i>); |
---|
893 | </pre> |
---|
894 | |
---|
895 | <p>Similarly, lower-ranking unsigned integers promote to higher-ranking |
---|
896 | unsigned integers. For every <i>r</i> > <i>r</i><sub>int</sub>, Cforall |
---|
897 | would define</p> |
---|
898 | |
---|
899 | <pre> |
---|
900 | Promoter(unsigned(<i>r</i>), unsigned(<i>r</i>-1)); |
---|
901 | </pre> |
---|
902 | |
---|
903 | <p>C's usual arithmetic conversions may promote an unsigned type to a |
---|
904 | signed type, but only if the signed type can represent every value of the |
---|
905 | unsigned type. For every <i>r</i> >= <i>r</i><sub>int</sub>, if there |
---|
906 | are any signed types that can represent every value in |
---|
907 | <code>unsigned(<i>r</i>)</code>, let <i>S</i> be the |
---|
908 | lowest ranking of these types; then Cforall defines</p> |
---|
909 | |
---|
910 | <pre> |
---|
911 | Promoter(<i>S</i>, unsigned(<i>r</i>)); |
---|
912 | </pre> |
---|
913 | |
---|
914 | <h3 id='intpromo'>C's "Integer Promotions"</h3> |
---|
915 | |
---|
916 | <div class='rationale'> |
---|
917 | |
---|
918 | <p>C's <dfn>integer promotions</dfn> apply to "small" types (those with |
---|
919 | rank less than <i>r</i><sub>int</sub>): they promote to <code>int</code> if |
---|
920 | <code>int</code> can hold all of their values, and to <code>unsigned |
---|
921 | int</code> otherwise. At least one unsigned type, <code>_Bool</code>, |
---|
922 | will promote to <code>int</code>. This breaks the pattern set by the usual |
---|
923 | arithmetic conversions, where unsigned types always promote to the next |
---|
924 | larger unsigned type. Consider a machine with 32-bit <code>int</code>s and |
---|
925 | 16-bit <code>unsigned short</code>s: if two <code>unsigned short</code>s |
---|
926 | are added, they must be promoted to <code>int</code> instead of |
---|
927 | <code>unsigned int</code>. Hence for this machine there must <em>not</em> |
---|
928 | be a promotion from <code>unsigned short</code> to <code>unsigned |
---|
929 | int</code>.</p> |
---|
930 | |
---|
931 | <p>Since the C integer promotions always promote small signed types to |
---|
932 | <code>int</code>, Cforall would extend the chain of polymorphic "upward" |
---|
933 | and monomorphic "across" signed integer promotions to the small |
---|
934 | signed types.</p> |
---|
935 | </div> |
---|
936 | |
---|
937 | <p>For every signed integer type <i>S</i> with rank less than |
---|
938 | <i>r</i><sub>int</sub>, Cforall would define</p> |
---|
939 | <pre> |
---|
940 | Promoter(<i>T</i>, <i>S</i>); |
---|
941 | </pre> |
---|
942 | <p>where <i>T</i> is the signed integer type with the next highest |
---|
943 | rank.</p> |
---|
944 | |
---|
945 | <p>Let <i>r</i><sub>break</sub> be the rank of the highest-ranking unsigned |
---|
946 | type whose values can all be represented by <code>int</code>, and let |
---|
947 | <i>T</i> be the lowest-ranking signed type that can represent all of the |
---|
948 | values of <code>unsigned(<i>r</i><sub>break</sub>)</code>. Cforall would |
---|
949 | define</p> |
---|
950 | |
---|
951 | <pre> |
---|
952 | Promoter(T, unsigned(<i>r</i><sub>break</sub>)); |
---|
953 | </pre> |
---|
954 | |
---|
955 | <p>For every |
---|
956 | <i>r</i> less than <i>r</i><sub>int</sub> except |
---|
957 | <i>r</i><sub>break</sub>, Cforall would define</p> |
---|
958 | <pre> |
---|
959 | Promoter(unsigned(<i>r+1</i>), unsigned(<i>r</i>)); |
---|
960 | </pre> |
---|
961 | |
---|
962 | <p class='rationale'><i>r</i><sub>break</sub> is the point where the normal |
---|
963 | pattern of unsigned promotion breaks. Unsigned types with higher rank |
---|
964 | promote upward toward <code>unsigned int</code>. Unsigned types with |
---|
965 | lower rank promote upward to the type at the break, which promotes upward |
---|
966 | to a signed type and onward toward <code>int</code>.</p> |
---|
967 | |
---|
968 | <p>For each <i>r</i> < <i>r</i><sub>int</sub> such that |
---|
969 | <code>signed(<i>r</i>)</code> exists, Cforall would define</p> |
---|
970 | <pre> |
---|
971 | void (?promote)?(unsigned(<i>r</i>)*, signed(<i>r</i>)); |
---|
972 | </pre> |
---|
973 | |
---|
974 | <p class='rationale'>These "across" promotions are not strictly necessary, |
---|
975 | but it seems useful to extend the pattern of signed-to-unsigned monomorphic |
---|
976 | conversions established by the larger integer types. Note that because of |
---|
977 | these promotions, <code>unsigned(<i>r</i><sub>break</sub>)</code> does |
---|
978 | promote to the next larger unsigned type, after a detour through a signed |
---|
979 | type that increases the conversion cost.</p> |
---|
980 | |
---|
981 | <p>Finally, <code>char</code> is equivalent to <code>signed char</code> or |
---|
982 | <code>unsigned char</code>, on an implementation-defined basis. If |
---|
983 | <code>char</code> is equivalent to <code>signed char</code>, the |
---|
984 | implementation would define</p> |
---|
985 | |
---|
986 | <pre> |
---|
987 | Promoter(signed char, char); |
---|
988 | </pre> |
---|
989 | |
---|
990 | <p>Otherwise, it would define</p> |
---|
991 | <pre> |
---|
992 | Promoter(unsigned char, char); |
---|
993 | </pre> |
---|
994 | |
---|
995 | <h2 id="otherpromo">Other Promotions</h2> |
---|
996 | <p>Promotions can add qualifiers to the pointed-to type of a |
---|
997 | pointer type.</p> |
---|
998 | <pre> |
---|
999 | forall(dtype DT) void (?promote)?(const DT**, DT*); |
---|
1000 | forall(dtype DT) void (?promote)?(volatile DT**, DT*); |
---|
1001 | forall(dtype DT) void (?promote)?(restrict DT**, DT*); |
---|
1002 | forall(dtype DT) void (?promote)?(const volatile DT**, DT*); |
---|
1003 | forall(dtype DT) void (?promote)?(const restrict DT**, DT*); |
---|
1004 | forall(dtype DT) void (?promote)?(volatile restrict DT**, DT*); |
---|
1005 | forall(dtype DT) void (?promote)?(const volatile restrict DT**, DT*); |
---|
1006 | |
---|
1007 | forall(dtype DT) void (?promote)?(const volatile DT**, const DT*); |
---|
1008 | forall(dtype DT) void (?promote)?(const restrict DT**, const DT*); |
---|
1009 | forall(dtype DT) void (?promote)?(const volatile restrict DT**, const DT*); |
---|
1010 | |
---|
1011 | forall(dtype DT) void (?promote)?(const volatile DT**, volatile DT*); |
---|
1012 | forall(dtype DT) void (?promote)?(volatile restrict DT**, volatile DT*); |
---|
1013 | forall(dtype DT) void (?promote)?(const volatile restrict DT**, volatile DT*); |
---|
1014 | |
---|
1015 | forall(dtype DT) void (?promote)?(const restrict DT**, restrict DT*); |
---|
1016 | forall(dtype DT) void (?promote)?(volatile restrict DT**, restrict DT*); |
---|
1017 | forall(dtype DT) void (?promote)?(const volatile restrict DT**, restrict |
---|
1018 | DT*); |
---|
1019 | |
---|
1020 | forall(dtype DT) void (?promote)?(const volatile restrict DT**, const volatile DT); |
---|
1021 | forall(dtype DT) void (?promote)?(const volatile restrict DT**, const restrict DT); |
---|
1022 | forall(dtype DT) void (?promote)?(const volatile restrict DT**, volatile restrict DT); |
---|
1023 | </pre> |
---|
1024 | |
---|
1025 | <p class='rationale'> The type qualifier promotions are simple, but verbose |
---|
1026 | because Cforall doesn't abstract over type qualifiers very well. They also |
---|
1027 | give <em>every</em> type qualifier promotion a cost of 1. It is possible |
---|
1028 | to define a smaller set of promotions, some using the constructor idiom, |
---|
1029 | that gives greater cost to promotions that add more qualifiers, but the set |
---|
1030 | is arbitrary and asymmetric: only one of the three promotions that add one |
---|
1031 | qualifier to an unqualified pointer type can use the constructor idiom, or |
---|
1032 | else ambiguity results.</p> |
---|
1033 | |
---|
1034 | <p>Within the scope of a type definition <code>type <i>T1</i> = |
---|
1035 | <i>T2</i>;</code>, constructors would convert between the new type and its |
---|
1036 | implementation type.</p> |
---|
1037 | |
---|
1038 | <pre> |
---|
1039 | void (?promote)(<i>T2</i>*, <i>T1</i>); |
---|
1040 | void (?promote)(<i>T2</i>**, <i>T1</i>*); |
---|
1041 | void (?create)?(<i>T1</i>*, <i>T2</i>); |
---|
1042 | void (?create)?(<i>T1</i>**, <i>T2</i>*); |
---|
1043 | </pre> |
---|
1044 | |
---|
1045 | <p class='rationale'>The conversion from the implementation type |
---|
1046 | <code><i>T2</i></code> to the new type <code><i>T1</i></code> gives |
---|
1047 | functions that implement operations on <code><i>T1</i></code> access to the |
---|
1048 | type's implementation. The conversion is a promotion because most such |
---|
1049 | functions work with the implementation most of the time. The reverse |
---|
1050 | conversion is merely implicit, so that mixed operations won't be |
---|
1051 | ambiguous.</p> |
---|
1052 | |
---|
1053 | <h2 id="demotions">Other Pre-Defined Implicit Conversions</h2> |
---|
1054 | <h3>Arithmetic Conversions</h3> |
---|
1055 | |
---|
1056 | <p class='rationale'>C defines implicit conversions between any two |
---|
1057 | arithmetic types. In Cforall terms, the conversions that are not |
---|
1058 | promotions are ordinary conversions. Most of the ordinary conversions |
---|
1059 | follow a pattern that looks like the <a href='#usual'>Usual Arithmetic |
---|
1060 | Conversions</a> in reverse. Once again, I will use a macro to hide details |
---|
1061 | of the constructor idiom.</p> |
---|
1062 | |
---|
1063 | <pre> |
---|
1064 | #define Creator(Target, Source) \ |
---|
1065 | forall(type T | void (?create)?(T*, Target)) void (?create)?(T*, Source) |
---|
1066 | |
---|
1067 | Creator(double _Complex, long double _Complex); |
---|
1068 | Creator(float _Complex, double _Complex); |
---|
1069 | Creator(double, long double); |
---|
1070 | Creator(float, double); |
---|
1071 | Creator(double _Imaginary, long double _Imaginary); |
---|
1072 | Creator(float _Imaginary, double _Imaginary); |
---|
1073 | |
---|
1074 | void (?create)?(long double*, long double _Complex); |
---|
1075 | void (?create)?(long double _Imaginary*, long double _Complex); |
---|
1076 | void (?create)?(double*, double _Complex); |
---|
1077 | void (?create)?(double _Imaginary*, double _Complex); |
---|
1078 | void (?create)?(float*, float _Complex); |
---|
1079 | void (?create)?(float _Imaginary*, float _Complex); |
---|
1080 | </pre> |
---|
1081 | |
---|
1082 | <p class='rationale'>The C99 draft standards that I have access to state |
---|
1083 | that real types and imaginary types are implicitly interconvertible. This |
---|
1084 | seems like a mistake, since the result of the conversion will always be |
---|
1085 | zero, but ...</p> |
---|
1086 | |
---|
1087 | <pre> |
---|
1088 | void (?create)?(long double*, long double _Imaginary); |
---|
1089 | void (?create)?(long double _Imaginary*, long double); |
---|
1090 | void (?create)?(double*, double _Imaginary); |
---|
1091 | void (?create)?(double _Imaginary*, double); |
---|
1092 | void (?create)?(float*, float _Imaginary); |
---|
1093 | void (?create)?(float _Imaginary*, float); |
---|
1094 | </pre> |
---|
1095 | |
---|
1096 | <p>Let <i>SMax</i> be the highest ranking signed integer type, and let |
---|
1097 | <i>UMax</i> be the highest ranking unsigned integer type. Then Cforall |
---|
1098 | would define</p> |
---|
1099 | |
---|
1100 | <pre> |
---|
1101 | Creator(<i>SMax</i>, float); |
---|
1102 | Creator(<i>SMax</i>, float _Complex); |
---|
1103 | Creator(<i>SMax</i>, float _Imaginary); |
---|
1104 | Creator(<i>UMax</i>, float); |
---|
1105 | Creator(<i>UMax</i>, float _Complex); |
---|
1106 | Creator(<i>UMax</i>, float _Imaginary); |
---|
1107 | </pre> |
---|
1108 | |
---|
1109 | <p>For every signed integer type <i>T</i> with rank greater than that of |
---|
1110 | <code>signed char</code>, Cforall would define</p> |
---|
1111 | |
---|
1112 | <pre> |
---|
1113 | Creator(<i>S</i>, <i>T</i>); |
---|
1114 | </pre> |
---|
1115 | <p>where <i>S</i> is the signed integer type with the next lowest rank.</p> |
---|
1116 | |
---|
1117 | <p>For every rank <i>r</i> greater than the rank of <code>_Bool</code>, |
---|
1118 | Cforall would define</p> |
---|
1119 | |
---|
1120 | <pre> |
---|
1121 | Creator(unsigned(<i>r</i>-1), unsigned(<i>r</i>)); |
---|
1122 | </pre> |
---|
1123 | |
---|
1124 | <p>For every rank <i>r</i> such that <code>signed(<i>r</i>)</code> exists, |
---|
1125 | Cforall would define</p> |
---|
1126 | |
---|
1127 | <pre> |
---|
1128 | void (?create)?( signed(<i>r</i>)*, unsigned(<i>r</i>) ); |
---|
1129 | </pre> |
---|
1130 | |
---|
1131 | <p><code>char</code> and <code>_Bool</code> are interconvertible.</p> |
---|
1132 | <pre> |
---|
1133 | void (?create)?(char*, _Bool); |
---|
1134 | void (?create)?(_Bool*, char); |
---|
1135 | </pre> |
---|
1136 | |
---|
1137 | <p>If <code>char</code> is equivalent to <code>signed char</code>, the |
---|
1138 | implementation would define</p> |
---|
1139 | |
---|
1140 | <pre> |
---|
1141 | Creator(char, signed char); |
---|
1142 | void (?create)?(char*, unsigned char); |
---|
1143 | </pre> |
---|
1144 | |
---|
1145 | <p>Otherwise, the implementation would define</p> |
---|
1146 | <pre> |
---|
1147 | Creator(char, unsigned char); |
---|
1148 | void (?create)?(char*, signed char); |
---|
1149 | void (?create)?(_Bool*, signed char); |
---|
1150 | void (?create)?(signed char*, _Bool); |
---|
1151 | </pre> |
---|
1152 | |
---|
1153 | <h3>Pointer conversions</h3> |
---|
1154 | |
---|
1155 | <p>Pointer types are implicitly interconvertible with pointers to void, |
---|
1156 | provided that the target type has all of the qualifiers of the source |
---|
1157 | type.</p> |
---|
1158 | |
---|
1159 | <pre> |
---|
1160 | forall(dtype SourceType, |
---|
1161 | type QVPtr | void (?promote)?(QVPtr*, void*)) |
---|
1162 | void (?create)?(QVPtr*, SourceType*); |
---|
1163 | </pre> |
---|
1164 | |
---|
1165 | <p class='rationale'>This conversion uses the constructor idiom, but note |
---|
1166 | that the assertion parameter is a promotion even though the conversion |
---|
1167 | itself is not a promotion. My intent is that the assertion parameter will |
---|
1168 | be bound to a promotion that adds <a href='#otherpromo'>type qualifiers</a> |
---|
1169 | to a pointer type. A conversion from <code>int*</code> to <code>const |
---|
1170 | void*</code> would bind <code>SourceType</code> to <code>int</code>, |
---|
1171 | <code>QVPtr</code> to <code>const void*</code>, and the assertion parameter |
---|
1172 | to a promotion from <code>void*</code> to <code>const void*</code> (which |
---|
1173 | is a specialization of one of the polymorphic type qualifier promotions |
---|
1174 | given above). Because of this composition of pointer conversions, I don't |
---|
1175 | have to define conversions for every combination of type qualifiers on the |
---|
1176 | target type. I do have to handle all combinations of qualifiers on the |
---|
1177 | source type:</p> |
---|
1178 | |
---|
1179 | <pre> |
---|
1180 | forall(dtype SourceType, |
---|
1181 | type QVPtr | void (?promote)?(QVPtr*, const void*)) |
---|
1182 | void (?create)?(QVPtr*, const SourceType*); |
---|
1183 | forall(dtype SourceType, |
---|
1184 | type QVPtr | void (?promote)?(QVPtr*, volatile void*)) |
---|
1185 | void (?create)?(QVPtr*, volatile SourceType*); |
---|
1186 | forall(dtype SourceType, |
---|
1187 | type QVPtr | void (?promote)?(QVPtr*, restrict void*)) |
---|
1188 | void (?create)?(QVPtr*, restrict SourceType*); |
---|
1189 | forall(dtype SourceType, |
---|
1190 | type QVPtr | void (?promote)?(QVPtr*, const volatile void*)) |
---|
1191 | void (?create)?(QVPtr*, const volatile SourceType*); |
---|
1192 | forall(dtype SourceType, |
---|
1193 | type QVPtr | void (?promote)?(QVPtr*, const restrict void*)) |
---|
1194 | void (?create)?(QVPtr*, const restrict SourceType*); |
---|
1195 | forall(dtype SourceType, |
---|
1196 | type QVPtr | void (?promote)?(QVPtr*, volatile restrict void*)) |
---|
1197 | void (?create)?(QVPtr*, volatile restrict SourceType*); |
---|
1198 | forall(dtype SourceType, |
---|
1199 | type QVPtr | void (?promote)?(QVPtr*, const volatile restrict void*)) |
---|
1200 | void (?create)?(QVPtr*, const volatile restrict SourceType*); |
---|
1201 | |
---|
1202 | forall(type QTPtr, |
---|
1203 | dtype TargetType | void (?promote)?(QTPtr*, TargetType*) |
---|
1204 | void (?create)?(QTPtr*, void*); |
---|
1205 | forall(type QTPtr, |
---|
1206 | dtype TargetType | void (?promote)?(QTPtr*, const TargetType*) |
---|
1207 | void (?create)?(QTPtr*, const void*); |
---|
1208 | forall(type QTPtr, |
---|
1209 | dtype TargetType | void (?promote)?(QTPtr*, volatile TargetType*) |
---|
1210 | void (?create)?(QTPtr*, volatile void*); |
---|
1211 | forall(type QTPtr, |
---|
1212 | dtype TargetType | void (?promote)?(QTPtr*, restrict TargetType*) |
---|
1213 | void (?create)?(QTPtr*, restrict void*); |
---|
1214 | forall(type QTPtr, |
---|
1215 | dtype TargetType | void (?promote)?(QTPtr*, const volatile TargetType*) |
---|
1216 | void (?create)?(QTPtr*, const volatile void*); |
---|
1217 | forall(type QTPtr, |
---|
1218 | dtype TargetType | void (?promote)?(QTPtr*, const restrict TargetType*) |
---|
1219 | void (?create)?(QTPtr*, const restrict void*); |
---|
1220 | forall(type QTPtr, |
---|
1221 | dtype TargetType | void (?promote)?(QTPtr*, volatile restrict TargetType*) |
---|
1222 | void (?create)?(QTPtr*, volatile restrict void*); |
---|
1223 | forall(type QTPtr, |
---|
1224 | dtype TargetType | void (?promote)?(QTPtr*, const volatile restrict TargetType*) |
---|
1225 | void (?create)?(QTPtr*, const volatile restrict void*); |
---|
1226 | </pre> |
---|
1227 | |
---|
1228 | <h2 id="explicit">Pre-Defined Explicit Conversions</h2> |
---|
1229 | <p>Function pointers are interconvertible.</p> |
---|
1230 | <pre> |
---|
1231 | forall(ftype FT1, ftype FT2, type T | FT1* (?)?(T) ) FT2* (?)?(FT1*); |
---|
1232 | </pre> |
---|
1233 | |
---|
1234 | <p>Data pointers including pointers to <code>void</code> are |
---|
1235 | interconvertible, regardless of type qualifiers.</p> |
---|
1236 | |
---|
1237 | <pre> |
---|
1238 | forall(dtype DT1, dtype DT2) DT2* (?)?(DT1*); |
---|
1239 | forall(dtype DT1, dtype DT2) const DT2* (?)?(DT1*); |
---|
1240 | forall(dtype DT1, dtype DT2) volatile DT2* (?)?(DT1*); |
---|
1241 | forall(dtype DT1, dtype DT2) const volatile DT2* (?)?(DT1*); |
---|
1242 | |
---|
1243 | forall(dtype DT1, dtype DT2) DT2* (?)?(const DT1*); |
---|
1244 | forall(dtype DT1, dtype DT2) const DT2* (?)?(const DT1*); |
---|
1245 | forall(dtype DT1, dtype DT2) volatile DT2* (?)?(const DT1*); |
---|
1246 | forall(dtype DT1, dtype DT2) const volatile DT2* (?)?(const DT1*); |
---|
1247 | |
---|
1248 | forall(dtype DT1, dtype DT2) DT2* (?)?(volatile DT*); |
---|
1249 | forall(dtype DT1, dtype DT2) const DT2* (?)?(volatile DT*); |
---|
1250 | forall(dtype DT1, dtype DT2) volatile DT2* (?)?(volatile DT*); |
---|
1251 | forall(dtype DT1, dtype DT2) const volatile DT2* (?)?(volatile DT*); |
---|
1252 | |
---|
1253 | forall(dtype DT1, dtype DT2) DT2* (?)?(const volatile DT*); |
---|
1254 | forall(dtype DT1, dtype DT2) const DT2* (?)?(const volatile DT*); |
---|
1255 | forall(dtype DT1, dtype DT2) volatile DT2* (?)?(const volatile DT*); |
---|
1256 | forall(dtype DT1, dtype DT2) const volatile DT2* (?)?(const volatile DT*); |
---|
1257 | </pre> |
---|
1258 | |
---|
1259 | <p>Integers and pointers are interconvertible. For every integer type |
---|
1260 | <i>I</i> define</p> |
---|
1261 | <pre> |
---|
1262 | forall(dtype DT, type T | <i>I</i> (?)?(T) ) DT* ?(?)(T); |
---|
1263 | forall(ftype FT, type T | <i>I</i> (?)?(T) ) FT* ?(?)(T); |
---|
1264 | |
---|
1265 | forall(dtype DT, type T | DT* (?)?(T) ) <i>I</i> (?)?(T); |
---|
1266 | forall(dtype DT, type T | DT* (?)?(T) ) <i>I</i> (?)?(T); |
---|
1267 | </pre> |
---|
1268 | |
---|
1269 | <h2 id='nonconversions'>Non-Conversions</h2> |
---|
1270 | <p>C99 has a few other "conversions" that don't fit into this proposal. |
---|
1271 | Outside of some special circumstances (such as application of |
---|
1272 | <code>sizeof</code>),</p> |
---|
1273 | <ul> |
---|
1274 | <li>array lvalues "convert" to pointers</li> |
---|
1275 | <li>function designators "convert" to pointers to functions</li> |
---|
1276 | <li>non-array lvalues "convert" to plain values</li> |
---|
1277 | <li>bit fields undergo "integer promotion" to <code>int</code> or |
---|
1278 | <code>unsigned int</code> values.</li> |
---|
1279 | </ul> |
---|
1280 | |
---|
1281 | <p>I'd like to stop calling these "conversions". Perhaps they could be |
---|
1282 | handled by some verbiage in the semantics of "Primary Expressions".</p> |
---|
1283 | |
---|
1284 | <p>Cforall-as-is provides "specialization", which reduces the number of |
---|
1285 | type parameters or assertion parameters of a polymorphic object or |
---|
1286 | function. Specialization looks like a conversion -- it can happen |
---|
1287 | implicitly or as a result of a cast -- but would no longer be considered to |
---|
1288 | be a conversion.</p> |
---|
1289 | |
---|
1290 | <h2 id='assignment'>Assignment</h2> |
---|
1291 | |
---|
1292 | <p>Since extended Cforall separates conversion from assignment, it can |
---|
1293 | simplify Cforall-as-is's set of assignment operators. Implicit conversions |
---|
1294 | can add type qualifiers to the target's type, and to the source's type in |
---|
1295 | the case of pointer assignment.</p> |
---|
1296 | |
---|
1297 | <pre> |
---|
1298 | char ?=?(volatile char*, char); |
---|
1299 | char ?+=?(volatile char*, char); |
---|
1300 | // <i>... and similarly for the rest of the basic types and</i> |
---|
1301 | // <i>compound assignment operators.</i> |
---|
1302 | </pre> |
---|
1303 | <pre class='rationale'> |
---|
1304 | char c; |
---|
1305 | c = 'a'; // <i>=> ?=?( &c, 'a' );</i> |
---|
1306 | // <i>=> ?=?( (volatile char*)&c, 'a' );</i> |
---|
1307 | </pre> |
---|
1308 | |
---|
1309 | <pre> |
---|
1310 | // <i>Assignment between data pointers, where the target has all of</i> |
---|
1311 | // <i>the qualifiers of the source.</i> |
---|
1312 | forall(dtype DT) |
---|
1313 | DT* ?=?(DT* volatile restrict*, DT*); |
---|
1314 | forall(dtype DT) |
---|
1315 | const DT* ?=?(const DT* volatile restrict*, const DT*); |
---|
1316 | forall(dtype DT) |
---|
1317 | volatile DT* ?=?(volatile DT* volatile restrict*, volatile DT*); |
---|
1318 | forall(dtype DT) |
---|
1319 | const volatile DT* ?=?(const volatile DT* volatile restrict*, const volatile DT*); |
---|
1320 | |
---|
1321 | // <i>Assignment to data pointers from </i>void<i>pointers.</i> |
---|
1322 | forall(dtype DT) DT* ?=?(DT* volatile restrict*, void*) |
---|
1323 | forall(dtype DT) |
---|
1324 | const DT* ?=?(const DT* volatile restrict*, const void*); |
---|
1325 | forall(dtype DT) |
---|
1326 | volatile DT* ?=?(volatile DT* volatile restrict*, volatile void*); |
---|
1327 | forall(dtype DT) |
---|
1328 | const volatile DT* ?=?(const volatile DT* volatile restrict*, const volatile void*); |
---|
1329 | |
---|
1330 | // <i>Assignment to </i>void<i> pointers from data pointers.</i> |
---|
1331 | forall(dtype DT) |
---|
1332 | void* ?=?(void* volatile restrict*, DT*); |
---|
1333 | forall(dtype DT) |
---|
1334 | const void* ?=?(const void* volatile restrict*, const DT*); |
---|
1335 | forall(dtype DT) |
---|
1336 | volatile void* ?=?(volatile void* volatile restrict*, volatile DT*); |
---|
1337 | forall(dtype DT) |
---|
1338 | const volatile void* ?=?(const volatile void* volatile restrict*, const volatile DT*); |
---|
1339 | |
---|
1340 | // <i>Assignment from null pointers to other pointer types.</i> |
---|
1341 | forall(dtype DT) |
---|
1342 | void* ?=?(void* volatile restrict*, forall(dtype DT2) const DT2*); |
---|
1343 | forall(dtype DT) |
---|
1344 | const void* ?=?(const void* volatile restrict*, forall(dtype DT2) const DT2*); |
---|
1345 | forall(dtype DT) |
---|
1346 | volatile void* ?=?(volatile void* volatile restrict*, forall(dtype DT2) const DT2*); |
---|
1347 | forall(dtype DT) |
---|
1348 | const volatile void* ?=?(const volatile void* volatile restrict*, forall(dtype DT2) const DT2*); |
---|
1349 | |
---|
1350 | // <i>Function pointer assignment</i> |
---|
1351 | forall(ftype FT) FT* ?=?(FT* volatile restrict*, FT*); |
---|
1352 | forall(ftype FT) FT* ?=?(FT* volatile restrict*, forall(ftype FT2) FT2*); |
---|
1353 | </pre> |
---|
1354 | |
---|
1355 | <div class='rationale'> |
---|
1356 | |
---|
1357 | <p>The difference, relative to Cforall-as-is, is that assignment operators |
---|
1358 | come in one flavor (a pointer to a volatile value as the first operand) |
---|
1359 | instead of two (a pointer to volatile in one case, a plain pointer in the |
---|
1360 | other) or the four that <code>restrict</code> would have led to.</p> |
---|
1361 | |
---|
1362 | <p>However, to make this work, the type of <dfn>default assignment</dfn> |
---|
1363 | functions must also change. A declaration of a type <code>T</code> would |
---|
1364 | implicitly declare</p> <pre> T ?=?(T volatile restrict*, T) </pre> </div> |
---|
1365 | |
---|
1366 | <h2 id='final'>Final Notes</h2> |
---|
1367 | |
---|
1368 | <p>The <a href='#idiom'>constructor idiom</a> is polymorphic in the |
---|
1369 | object's type: an initial value of one particular type can initialize |
---|
1370 | objects of many types. The constructor that promotes a <code>Wazzit</code> |
---|
1371 | into a <code>Thingum</code> is declared</p> |
---|
1372 | |
---|
1373 | <pre> |
---|
1374 | forall(type T | void (?promote)?(T*, Thingum) ) |
---|
1375 | void (?promote)?(T*, Wazzit); |
---|
1376 | </pre> |
---|
1377 | <p>("You can make a <code>Wazzit</code> into a <code>Thingum</code> and |
---|
1378 | types higher in the hierarchy.")</p> |
---|
1379 | |
---|
1380 | <p>It would also be possible to use a constructor idiom where the object's |
---|
1381 | type is fixed and the initial value's type is polymorphic:</p> |
---|
1382 | |
---|
1383 | <pre> |
---|
1384 | forall(type T | void (?promote)?(Wazzit*, T) ) |
---|
1385 | void (?promote)?(Thingum*, T); |
---|
1386 | </pre> |
---|
1387 | <p>("You can make a <code>Thingum</code> from a <code>Wazzit</code> and |
---|
1388 | types lower in the hierarchy.")</p> |
---|
1389 | |
---|
1390 | <p>The "polymorphic value" idiom has the advantage that it is fairly |
---|
1391 | obvious that the function is a constructor for type <code>Thingum</code>. |
---|
1392 | In the "polymorphic object" idiom, <code>Thingum</code> is buried in the |
---|
1393 | assertion parameter.</p> |
---|
1394 | |
---|
1395 | <p>However, I chose the "polymorphic object" idiom because it matches C's |
---|
1396 | semantics for signed-to-unsigned integer conversions. In the "polymorphic |
---|
1397 | object" idiom, the natural way to write the polymorphic promoter from |
---|
1398 | <code>int</code> to larger types is |
---|
1399 | </p> |
---|
1400 | |
---|
1401 | <pre> |
---|
1402 | forall(type T | void (?promote)?(T*, long) ) |
---|
1403 | void (?promote)?(T* tp, int i) { |
---|
1404 | long l = i; |
---|
1405 | *tp = (T)l; // <i>calls the assertion parameter.</i> |
---|
1406 | } |
---|
1407 | </pre> |
---|
1408 | |
---|
1409 | <p>Now consider the case of a CPU with 16-bit <code>int</code>s, where we |
---|
1410 | need to convert an <code>int</code> value <code>-1</code> to a 32-bit |
---|
1411 | <code>unsigned long</code>. The assertion parameter will be bound to the |
---|
1412 | monomorphic <code>long</code>-to-<code>unsigned long</code> promoter. The |
---|
1413 | function body above converts the <code>int</code> -1 to a <code>long</code> |
---|
1414 | -1, and then uses the assertion parameter to convert the result to the |
---|
1415 | correct <code>unsigned long</code> value: 4,294,967,295.</p> |
---|
1416 | |
---|
1417 | <p>In the "polymorphic value" idiom, the conversion would be done by |
---|
1418 | calling the polymorphic promoter to <code>unsigned long</code> from smaller |
---|
1419 | types:</p> |
---|
1420 | |
---|
1421 | <pre> |
---|
1422 | forall(type T | void (?promote)?(unsigned*, T) ) |
---|
1423 | void (?promote)?(unsigned long* ulp, T t) { |
---|
1424 | unsigned u = t; // <i>calls the assertion parameter.</i> |
---|
1425 | *ulp = u; |
---|
1426 | } |
---|
1427 | </pre> |
---|
1428 | |
---|
1429 | <p>This time the assertion parameter will be bound to the |
---|
1430 | <code>int</code>-to-<code>unsigned</code> promoter. The function body uses |
---|
1431 | the assertion parameter to convert the integer -1 to <code>unsigned</code> |
---|
1432 | 65,565, and then converts the result to the incorrect <code>unsigned |
---|
1433 | long</code> value 65,535.</p> |
---|
1434 | |
---|
1435 | <p>Clearly the "polymorphic value" idiom would require the implementation |
---|
1436 | to do some unnatural, and probably implementation-dependent, bit mangling |
---|
1437 | to get the right answer. Of course, an implementation is allowed to |
---|
1438 | perform any unnatural acts it chooses. But programmers would have to |
---|
1439 | conform to the prevailing constructor idiom when writing their |
---|
1440 | constructors, and will want to write natural and portable code.</p> |
---|
1441 | |
---|
1442 | <!-- |
---|
1443 | Multi-argument constructors and {...} notation. Default and keyword |
---|
1444 | parameters? |
---|
1445 | |
---|
1446 | mutable. |
---|
1447 | |
---|
1448 | Automating implementation-dependent promotion, so new types can fit in |
---|
1449 | easily. |
---|
1450 | |
---|
1451 | Cast has no cost; implicit construction does. |
---|
1452 | |
---|
1453 | Allow instantiation of dtype/incomplete type if the type has a constructor? |
---|
1454 | The problem is space allocation: constructors would have to allocate space, |
---|
1455 | which would interfere with their use in dynamic allocation. |
---|
1456 | |
---|
1457 | generic function that treates promoters as creators might cause loops when |
---|
1458 | chaining creators. |
---|
1459 | |
---|
1460 | --> |
---|
1461 | </body> |
---|
1462 | </html> |
---|