[8d8ac3b] | 1 | \documentclass[english,aspectratio=169,svgnames,notes=hide,14pt,xcolor={dvipsnames}]{beamer}
|
---|
| 2 | \usepackage{graphicx}
|
---|
| 3 | \usepackage{epic,eepic}
|
---|
| 4 | \usepackage{presentationstyle}
|
---|
| 5 |
|
---|
| 6 | \title{The \CFA Scheduler}
|
---|
| 7 | \subtitle{PhD Comprehensive II Research Proposal}
|
---|
| 8 | \author{Thierry Delisle}
|
---|
| 9 | % \affil[1]{School of Computer Science, University of Waterloo}
|
---|
| 10 | % \affil[ ]{\textit {tdelisle@uwaterloo.ca}}
|
---|
| 11 |
|
---|
| 12 | \begin{document}
|
---|
| 13 | %==============================
|
---|
| 14 | \miniframesoff
|
---|
| 15 | \begin{frame}[noframenumbering,plain]
|
---|
| 16 | \titlepage
|
---|
| 17 | \end{frame}
|
---|
| 18 | %==============================
|
---|
| 19 | \section{Introduction}
|
---|
| 20 | %------------------------------
|
---|
| 21 | \begin{frame}[noframenumbering]
|
---|
| 22 | \tableofcontents
|
---|
| 23 | \end{frame}
|
---|
| 24 | \miniframeson
|
---|
| 25 | %==============================
|
---|
| 26 | \AtBeginSection[]{
|
---|
| 27 | \miniframesoff
|
---|
| 28 | \begin{frame}
|
---|
| 29 | \vfill
|
---|
| 30 | \centering
|
---|
| 31 | \begin{beamercolorbox}[sep=8pt,center,shadow=false,rounded=false]{title}
|
---|
| 32 | \usebeamerfont{title}\insertsectionhead\par%
|
---|
| 33 | \end{beamercolorbox}
|
---|
| 34 | \vfill
|
---|
| 35 | \end{frame}
|
---|
| 36 | \miniframeson
|
---|
| 37 | }
|
---|
[33c3ded] | 38 | \section{Concurrency and \CFA}
|
---|
| 39 | \begin{frame}{Project}
|
---|
| 40 | \begin{center}
|
---|
| 41 | {\large Produce a scheduler for \CFA that is simple for programmers to understand and offers good general performance.}
|
---|
| 42 | \end{center}
|
---|
| 43 | \end{frame}
|
---|
| 44 | %------------------------------
|
---|
[8d8ac3b] | 45 | \begin{frame}{\CFA}
|
---|
[33c3ded] | 46 | \CFA is a modern extension of C.
|
---|
| 47 | It adds to C : overloading, constructors/destructors, polymorphism, and much more.
|
---|
| 48 |
|
---|
| 49 | ~\newline
|
---|
| 50 | For this project, the relevant aspects are:
|
---|
| 51 | \begin{itemize}
|
---|
| 52 | \item Fast and safe system language.
|
---|
| 53 | \item Threading.
|
---|
| 54 | \item Manual memory management.
|
---|
| 55 | \end{itemize}
|
---|
[8d8ac3b] | 56 |
|
---|
| 57 | \end{frame}
|
---|
| 58 | %------------------------------
|
---|
| 59 | \begin{frame}{Concurrency in \CFA}
|
---|
| 60 | User Level Threading
|
---|
| 61 | \begin{itemize}
|
---|
| 62 | \item M:N threading.
|
---|
| 63 | \item User Level Context Switching causes kernel-threads to run a different user-thread.
|
---|
| 64 | \end{itemize}
|
---|
| 65 | ~\newline
|
---|
| 66 | Threads organized in clusters:
|
---|
| 67 | \begin{itemize}
|
---|
| 68 | \item Clusters have their own kernel threads.
|
---|
| 69 | \item Threads in a cluster are on run on the kernel threads of that cluster.
|
---|
| 70 | \end{itemize}
|
---|
| 71 | \end{frame}
|
---|
| 72 | %------------------------------
|
---|
| 73 | \begin{frame}{Concurrency in \CFA}
|
---|
| 74 | \begin{table}
|
---|
| 75 | {\resizebox{1\textwidth}{!}{\input{system.dark.pstex_t}}}
|
---|
| 76 | \end{table}
|
---|
| 77 | \end{frame}
|
---|
| 78 | %------------------------------
|
---|
| 79 | \begin{frame}{Scheduling goal for \CFA}
|
---|
| 80 | {\large
|
---|
| 81 | \begin{center}
|
---|
| 82 | The \CFA scheduler should be \textit{viable} for any workload.
|
---|
| 83 | \end{center}
|
---|
| 84 | }
|
---|
| 85 | ~\newline
|
---|
| 86 | This implies:
|
---|
| 87 | \begin{enumerate}
|
---|
| 88 | \item Producing a scheduler with sufficient fairness guarantees.
|
---|
| 89 | \item Handling kernel-threads running out of work.
|
---|
| 90 | \item Handling blocking I/O operations.
|
---|
| 91 | \end{enumerate}
|
---|
| 92 | \end{frame}
|
---|
| 93 | %==============================
|
---|
| 94 | \section{Scheduling in Practice}
|
---|
| 95 | %------------------------------
|
---|
| 96 | \begin{frame}{In the Wild}
|
---|
| 97 | Schedulers found in production application generally fall into two categories:
|
---|
| 98 | \newline
|
---|
| 99 |
|
---|
| 100 | \begin{itemize}
|
---|
| 101 | \item Feedback Scheduling\newline
|
---|
| 102 | \item Priority Scheduling (explicit or not)\newline
|
---|
| 103 | \end{itemize}
|
---|
| 104 | \end{frame}
|
---|
| 105 | %------------------------------
|
---|
| 106 | \begin{frame}{Feedback Scheduling}
|
---|
| 107 | Most operating systems based their scheduling on feedback loops.
|
---|
| 108 | ~\newline
|
---|
| 109 |
|
---|
| 110 | The scheduler runs a thread and adjusts some metric to choose when to run it, e.g., least CPU time first.
|
---|
| 111 | ~\newline
|
---|
| 112 |
|
---|
| 113 | Relies on the following assumptions:
|
---|
| 114 | \begin{enumerate}
|
---|
| 115 | \item Threads live long enough for useful feedback information to be to gathered.
|
---|
| 116 | \item Threads belong to multiple users so fairness across threads is insufficient.
|
---|
| 117 | \end{enumerate}
|
---|
| 118 | \end{frame}
|
---|
| 119 | %------------------------------
|
---|
| 120 | \begin{frame}{Priority Scheduling}
|
---|
| 121 | \begin{center}
|
---|
[33c3ded] | 122 | {\large
|
---|
[8d8ac3b] | 123 | Runs all ready threads in group \textit{A} before any ready threads in group \textit{B}.
|
---|
| 124 | }
|
---|
| 125 | \end{center}
|
---|
| 126 | \vspace{1em}
|
---|
| 127 |
|
---|
| 128 | Explicit priorities:
|
---|
| 129 | \begin{itemize}
|
---|
| 130 | \item Threads given a priority at creation, e.g., Thread A has priority 1, Thread B has priority 6.
|
---|
| 131 | \end{itemize}
|
---|
| 132 | \vspace{0.75em}
|
---|
| 133 |
|
---|
| 134 | Implicit priorities:
|
---|
| 135 | \begin{itemize}
|
---|
| 136 | \item Certain threads are preferred, based on various metrics, e.g., last run, last run on this CPU.
|
---|
| 137 | \end{itemize}
|
---|
| 138 | \end{frame}
|
---|
| 139 | %------------------------------
|
---|
| 140 | \begin{frame}{Priority Scheduling: Work-Stealing}
|
---|
| 141 | Work-Stealing is a very popular strategy.
|
---|
| 142 | \begin{block}{Algorithm}
|
---|
| 143 | \begin{enumerate}
|
---|
| 144 | \item Each processor has a list of ready threads.
|
---|
| 145 | \item Each processor runs threads from its ready queue first.
|
---|
| 146 | \item If a processor's ready queue is empty, attempt to run threads from some other processor's ready queue.
|
---|
| 147 | \end{enumerate}
|
---|
| 148 | \end{block}
|
---|
| 149 | ~
|
---|
| 150 |
|
---|
| 151 | Work-Stealing has implicit priorities: For a given processor, threads on it's queue have higher priority.
|
---|
| 152 |
|
---|
| 153 | Processors begin busy for long periods can mean starvation.
|
---|
| 154 | \end{frame}
|
---|
[33c3ded] | 155 | %------------------------------
|
---|
| 156 | \begin{frame}{Scheduling in Practice: Summary}
|
---|
| 157 | \begin{columns}
|
---|
| 158 | \begin{column}{0.5\textwidth}
|
---|
| 159 | \textbf{Feedback Scheduling}
|
---|
| 160 | \newline
|
---|
| 161 |
|
---|
| 162 | \begin{itemize}
|
---|
| 163 | \item Inappropriate for short lived threads.
|
---|
| 164 | \item Overkill for cooperating threads.\newline
|
---|
| 165 | \end{itemize}
|
---|
| 166 | \end{column}
|
---|
| 167 | \begin{column}{0.5\textwidth}
|
---|
| 168 | \textbf{Priority Scheduling}
|
---|
| 169 | \newline
|
---|
| 170 |
|
---|
| 171 | \begin{itemize}
|
---|
| 172 | \item Allows lasting starvation.\newline
|
---|
| 173 | \item Hard to reason about.\newline~\newline
|
---|
| 174 | \end{itemize}
|
---|
| 175 | \end{column}
|
---|
| 176 | \end{columns}
|
---|
| 177 |
|
---|
| 178 | ~\newline
|
---|
| 179 | ~\newline
|
---|
| 180 | \CFA would benefit from something different.
|
---|
| 181 | \end{frame}
|
---|
[8d8ac3b] | 182 | %==============================
|
---|
| 183 | \section{Project: Proposal \& Details}
|
---|
| 184 | %------------------------------
|
---|
| 185 | \begin{frame}{Central Ready-Queue}
|
---|
| 186 | \CFA will have a single ready-queue per cluster.
|
---|
| 187 | \newline
|
---|
| 188 |
|
---|
| 189 | The ready-queue will be sharded internally to reduce contention.
|
---|
| 190 | \newline
|
---|
| 191 |
|
---|
| 192 | No strong coupling between internal queues and processors.
|
---|
| 193 | \newline
|
---|
| 194 |
|
---|
| 195 | Constrasts with work-stealing which has a queue per processor.
|
---|
| 196 | \newline
|
---|
| 197 | \end{frame}
|
---|
| 198 | %------------------------------
|
---|
| 199 | \begin{frame}{Central Ready-Queue}
|
---|
| 200 | \begin{table}
|
---|
| 201 | {\resizebox{0.8\textwidth}{!}{\input{base.dark.pstex_t}}}
|
---|
| 202 | \end{table}
|
---|
| 203 | ~
|
---|
| 204 | \end{frame}
|
---|
| 205 | %------------------------------
|
---|
| 206 | \begin{frame}{Central Ready-Queue Challenges}
|
---|
| 207 | \begin{columns}
|
---|
| 208 | \begin{column}{0.55\textwidth}
|
---|
| 209 | Semi-``Empty'' ready-queues means success rate of randomly guessing goes down.
|
---|
| 210 | \end{column}
|
---|
| 211 | \begin{column}{0.45\textwidth}
|
---|
| 212 | \begin{table}
|
---|
| 213 | {\resizebox{1\textwidth}{!}{\input{empty.dark.pstex_t}}}
|
---|
| 214 | \end{table}
|
---|
| 215 | \end{column}
|
---|
| 216 | \end{columns}
|
---|
| 217 |
|
---|
| 218 | Possible solutions:
|
---|
| 219 | \begin{itemize}
|
---|
| 220 | \item Data structure tracking the work, can be dense or sparse, global or sharded.
|
---|
| 221 | \item Add bias towards certain sub-queues.
|
---|
| 222 | \end{itemize}
|
---|
| 223 | \end{frame}
|
---|
| 224 | %------------------------------
|
---|
| 225 | \begin{frame}{Dynamic Resizing}
|
---|
| 226 | Processors can be added at anytime on a cluster.
|
---|
| 227 | \newline
|
---|
| 228 |
|
---|
| 229 | The array of queues needs to be adjusted in consequence.
|
---|
| 230 | \newline
|
---|
| 231 |
|
---|
| 232 | Solution: Global Reader-Writer lock
|
---|
| 233 | \begin{itemize}
|
---|
| 234 | \item Acquire for reading for normal scheduling operations.
|
---|
[33c3ded] | 235 | \item Acquire for writing when resizing the array and creating/deleting internal queues.
|
---|
[8d8ac3b] | 236 | \end{itemize}
|
---|
| 237 | \end{frame}
|
---|
| 238 | %------------------------------
|
---|
| 239 | \begin{frame}{Idle Sleep}
|
---|
| 240 | Processors which cannot find threads to run should sleep, using \texttt{pthread\_cond\_wait}, \texttt{sigwaitinfo}, etc.
|
---|
| 241 | \newline
|
---|
| 242 |
|
---|
| 243 | Scheduling a thread may \textit{need} to wake sleeping processors.
|
---|
| 244 | \begin{itemize}
|
---|
| 245 | \item Threads can be scheduled from processors terminating or running outside the cluster.
|
---|
| 246 | In this case, all processors on the cluster could be sleeping.
|
---|
| 247 | \end{itemize}
|
---|
| 248 | ~
|
---|
| 249 |
|
---|
| 250 | If \textit{some} processors are sleeping, waking more may be wasteful.
|
---|
| 251 |
|
---|
| 252 | A heuristic for this case is outside the scope of this project.
|
---|
| 253 | \end{frame}
|
---|
| 254 | %------------------------------
|
---|
| 255 | \begin{frame}{Asynchronous I/O}
|
---|
| 256 | \begin{itemize}
|
---|
| 257 | \item I/O Operations should block user-threads rather than kernel-threads. \vspace{1cm}
|
---|
| 258 | \item This requires 3 components:
|
---|
| 259 | \begin{enumerate}
|
---|
| 260 | \item an OS abstraction layer over the asynchronous interface, \vspace{0.2cm}
|
---|
| 261 | \item an event-engine to (de)multiplex the operations, \vspace{0.2cm}
|
---|
| 262 | \item and a synchronous interface for users to use. \vspace{0.2cm}
|
---|
| 263 | \end{enumerate}
|
---|
| 264 | \end{itemize}
|
---|
| 265 | \end{frame}
|
---|
| 266 | %------------------------------
|
---|
| 267 | \begin{frame}{Asynchronous I/O: OS Abstraction}
|
---|
| 268 | \framesubtitle{\vskip0.5mm\large\texttt{select}}
|
---|
| 269 | \vskip5mm
|
---|
| 270 |
|
---|
| 271 | {\large ``select() allows a program to monitor multiple file descriptors, waiting until one
|
---|
| 272 | or more of the file descriptors become ``ready'' for some class of I/O operation.''}
|
---|
| 273 |
|
---|
| 274 | \hspace*\fill{\small--- Linux Programmer's Manual}
|
---|
| 275 |
|
---|
| 276 | \vskip5mm
|
---|
| 277 | \begin{itemize}
|
---|
| 278 | \item[+] moderate overhead per \texttt{syscall}
|
---|
| 279 | \item[-] Relies on \texttt{syscall}s returning \texttt{EWOULDBLOCK}.
|
---|
| 280 | \end{itemize}
|
---|
| 281 | \end{frame}
|
---|
| 282 | %------------------------------
|
---|
| 283 | \begin{frame}{Asynchronous I/O: OS Abstraction}
|
---|
| 284 | \framesubtitle{\vskip0.5mm\large\texttt{epoll}}
|
---|
| 285 | \vskip2mm
|
---|
| 286 |
|
---|
| 287 | More recent system call with a similar purpose.
|
---|
| 288 |
|
---|
| 289 | \vskip5mm
|
---|
| 290 | \begin{itemize}
|
---|
| 291 | \item[+] Smaller overhead per \texttt{syscall}.
|
---|
| 292 | \item[+] Shown to work well for sockets.
|
---|
| 293 | \item[-] Still relies on \texttt{syscall}s returning \texttt{EWOULDBLOCK}.
|
---|
| 294 | \item[-] Does not support linux pipes and TTYs.
|
---|
| 295 | \end{itemize}
|
---|
| 296 | \end{frame}
|
---|
| 297 | %------------------------------
|
---|
| 298 | \begin{frame}{Asynchronous I/O: OS Abstraction}
|
---|
| 299 | \framesubtitle{\vskip0.5mm\large Kernel Threads}
|
---|
| 300 | \vskip2mm
|
---|
| 301 |
|
---|
| 302 | Use a pool of kernel-threads, to which blocking calls are delegated.
|
---|
| 303 |
|
---|
| 304 | \vskip5mm
|
---|
| 305 | \begin{itemize}
|
---|
| 306 | \item Technique used by many existing systems, e.g., Go, libuv
|
---|
| 307 | \item[+] Definitely works for all \texttt{syscall}s.
|
---|
| 308 | \item[$-$] Can require many kernel threads.
|
---|
| 309 | \end{itemize}
|
---|
| 310 | \end{frame}
|
---|
| 311 | %------------------------------
|
---|
| 312 | \begin{frame}{Asynchronous I/O: OS Abstraction}
|
---|
| 313 | \framesubtitle{\vskip0.5mm\large\texttt{io\_uring}}
|
---|
| 314 | \vskip2mm
|
---|
| 315 |
|
---|
| 316 | A very recent framework for asynchronous operations available in Linux 5.1 and later.
|
---|
| 317 | Uses two ring buffers to submit operations and poll completions.
|
---|
| 318 |
|
---|
| 319 | \vskip5mm
|
---|
| 320 | \begin{itemize}
|
---|
| 321 | \item[+] Handles many \texttt{syscall}s.
|
---|
| 322 | \item[+] Does \textit{not} rely on \texttt{syscall}s returning \texttt{EWOULDBLOCK}.
|
---|
| 323 | \item[$-$] Requires synchronization on submission.
|
---|
| 324 | \item[$-$] System call itself is serialized in the kernel.
|
---|
| 325 | \end{itemize}
|
---|
| 326 | \end{frame}
|
---|
| 327 | %------------------------------
|
---|
| 328 | \begin{frame}{Asynchronous I/O: Event Engine}
|
---|
| 329 | An event engine must be built to fit the chosen OS Abstraction.
|
---|
| 330 | \newline
|
---|
| 331 |
|
---|
| 332 | The engine must park user-threads until operation is completed.
|
---|
| 333 | \newline
|
---|
| 334 |
|
---|
| 335 | Depending on the chosen abstraction the engine may need to serialize operation submission.
|
---|
| 336 | \newline
|
---|
| 337 |
|
---|
| 338 | Throughput and latency are important metrics.
|
---|
| 339 | \end{frame}
|
---|
| 340 | %------------------------------
|
---|
| 341 | \begin{frame}{Asynchronous I/O: The interface}
|
---|
| 342 | The Asynchronous I/O needs an interface.
|
---|
| 343 | \newline
|
---|
| 344 |
|
---|
| 345 | Several options to take into consideration:
|
---|
| 346 | \begin{itemize}
|
---|
| 347 | \item Adding to existing call interface, e.g., \texttt{read} and \texttt{cfaread}. \vspace{0.2cm}
|
---|
| 348 | \item Replacing existing call interface. \vspace{0.2cm}
|
---|
| 349 | \item True asynchronous interface, e.g., callbacks, futures. \vspace{0.2cm}
|
---|
| 350 | \end{itemize}
|
---|
| 351 |
|
---|
| 352 | \end{frame}
|
---|
| 353 | %==============================
|
---|
| 354 | \section{Conclusion}
|
---|
| 355 | %------------------------------
|
---|
| 356 | \begin{frame}{Summary}
|
---|
| 357 | Runtime system and scheduling are still open topics.
|
---|
| 358 | \newline
|
---|
[33c3ded] | 359 | \newline
|
---|
[8d8ac3b] | 360 |
|
---|
| 361 | This work offers a novel runtime and scheduling package.
|
---|
| 362 | \newline
|
---|
[33c3ded] | 363 | \newline
|
---|
[8d8ac3b] | 364 |
|
---|
| 365 | Existing work only offers fragments that users must assemble themselves when possible.
|
---|
| 366 | \end{frame}
|
---|
| 367 | %------------------------------
|
---|
| 368 | \begin{frame}{Timeline}
|
---|
| 369 | \begin{tabular}{ || m{0.1mm} m{0.75cm} m{1cm} | l }
|
---|
| 370 | % \hline
|
---|
| 371 | \phantom{100000cm} \phantom{100000cm} \phantom{100000cm} & {\small May Oct} & {\small 2020 2020} & Creation of the performance benchmark. \\
|
---|
| 372 | \hline
|
---|
| 373 | \phantom{100000cm} \phantom{100000cm} \phantom{100000cm} & {\small Nov Mar} & {\small 2020 2021} & Completion of the implementation. \\
|
---|
| 374 | \hline
|
---|
| 375 | \phantom{100000cm} \phantom{100000cm} \phantom{100000cm} & {\small Mar Apr} & {\small 2021 2021} & Final performance experiments. \\
|
---|
| 376 | \hline
|
---|
| 377 | \phantom{100000cm} \phantom{100000cm} \phantom{100000cm} & {\small May Aug} & {\small 2021 2021} & Thesis writing and defense. \\
|
---|
| 378 | % \hline
|
---|
| 379 | \end{tabular}
|
---|
| 380 | \end{frame}
|
---|
| 381 |
|
---|
| 382 | %------------------------------
|
---|
[33c3ded] | 383 | \begin{frame}{}
|
---|
[8d8ac3b] | 384 | \begin{center}
|
---|
| 385 | {\large Questions?}
|
---|
| 386 | \end{center}
|
---|
| 387 | \end{frame}
|
---|
| 388 | \end{document}
|
---|