1 | %======================================================================
|
---|
2 | \chapter{Variadic Functions}
|
---|
3 | %======================================================================
|
---|
4 |
|
---|
5 | \section{Design Criteria} % TODO: better section name???
|
---|
6 | C provides variadic functions through the manipulation of @va_list@ objects.
|
---|
7 | In C, a variadic function is one which contains at least one parameter, followed by @...@ as the last token in the parameter list.
|
---|
8 | In particular, some form of \emph{argument descriptor} or \emph{sentinel value} is needed to inform the function of the number of arguments and their types.
|
---|
9 | Two common argument descriptors are format strings or counter parameters.
|
---|
10 | It is important to note that both of these mechanisms are inherently redundant, because they require the user to explicitly specify information that the compiler already knows \footnote{While format specifiers can convey some information the compiler does not know, such as whether to print a number in decimal or hexadecimal, the number of arguments is wholly redundant.}.
|
---|
11 | This required repetition is error prone, because it is easy for the user to add or remove arguments without updating the argument descriptor.
|
---|
12 | In addition, C requires the programmer to hard code all of the possible expected types.
|
---|
13 | As a result, it is cumbersome to write a function that is open to extension.
|
---|
14 | For example, a simple function to sum $N$ @int@s,
|
---|
15 | \begin{cfacode}
|
---|
16 | int sum(int N, ...) {
|
---|
17 | va_list args;
|
---|
18 | va_start(args, N);
|
---|
19 | int ret = 0;
|
---|
20 | while(N) {
|
---|
21 | ret += va_arg(args, int); // have to specify type
|
---|
22 | N--;
|
---|
23 | }
|
---|
24 | va_end(args);
|
---|
25 | return ret;
|
---|
26 | }
|
---|
27 | sum(3, 10, 20, 30); // need to keep counter in sync
|
---|
28 | \end{cfacode}
|
---|
29 | The @va_list@ type is a special C data type that abstracts variadic-argument manipulation.
|
---|
30 | The @va_start@ macro initializes a @va_list@, given the last named parameter.
|
---|
31 | Each use of the @va_arg@ macro allows access to the next variadic argument, given a type.
|
---|
32 | Since the function signature does not provide any information on what types can be passed to a variadic function, the compiler does not perform any error checks on a variadic call.
|
---|
33 | As such, it is possible to pass any value to the @sum@ function, including pointers, floating-point numbers, and structures.
|
---|
34 | In the case where the provided type is not compatible with the argument's actual type after default argument promotions, or if too many arguments are accessed, the behaviour is undefined \cite[p.~81]{C11}.
|
---|
35 | Furthermore, there is no way to perform the necessary error checks in the @sum@ function at run-time, since type information is not carried into the function body.
|
---|
36 | Since they rely on programmer convention rather than compile-time checks, variadic functions are unsafe.
|
---|
37 |
|
---|
38 | In practice, compilers can provide warnings to help mitigate some of the problems.
|
---|
39 | For example, GCC provides the @format@ attribute to specify that a function uses a format string, which allows the compiler to perform some checks related to the standard format-specifiers.
|
---|
40 | Unfortunately, this approach does not permit extensions to the format-string syntax, so a programmer cannot extend the attribute to warn for mismatches with custom types.
|
---|
41 |
|
---|
42 | As a result, C's variadic functions are a deficient language feature.
|
---|
43 | Two options were examined to provide better, type-safe variadic functions in \CFA.
|
---|
44 | \subsection{Whole Tuple Matching}
|
---|
45 | Option 1 is to change the argument matching algorithm, so that type parameters can match whole tuples, rather than just their components.
|
---|
46 | This option could be implemented with two phases of argument matching when a function contains type parameters and the argument list contains tuple arguments.
|
---|
47 | If flattening and structuring fail to produce a match, a second attempt at matching the function and argument combination is made where tuple arguments are not expanded and structure must match exactly, modulo non-tuple implicit conversions.
|
---|
48 | For example:
|
---|
49 | \begin{cfacode}
|
---|
50 | forall(otype T, otype U | { T g(U); })
|
---|
51 | void f(T, U);
|
---|
52 |
|
---|
53 | [int, int] g([int, int, int, int]);
|
---|
54 |
|
---|
55 | f([1, 2], [3, 4, 5, 6]);
|
---|
56 | \end{cfacode}
|
---|
57 | With flattening and structuring, the call is first transformed into @f(1, 2, 3, 4, 5, 6)@.
|
---|
58 | Since the first argument of type @T@ does not have a tuple type, unification decides that @T=int@ and @1@ is matched as the first parameter.
|
---|
59 | Likewise, @U@ does not have a tuple type, so @U=int@ and @2@ is accepted as the second parameter.
|
---|
60 | There are now no remaining formal parameters, but there are remaining arguments and the function is not variadic, so the match fails.
|
---|
61 |
|
---|
62 | With the addition of an exact matching attempt, @T=[int,int]@ and @U=[int,int,int,int]@, and so the arguments type check.
|
---|
63 | Likewise, when inferring assertion @g@, an exact match is found.
|
---|
64 |
|
---|
65 | This approach is strict with respect to argument structure, by nature, which makes it syntactically awkward to use in ways that the existing tuple design is not.
|
---|
66 | For example, consider a @new@ function that allocates memory using @malloc@, and constructs the result using arbitrary arguments.
|
---|
67 | \begin{cfacode}
|
---|
68 | struct Array;
|
---|
69 | void ?{}(Array *, int, int, int);
|
---|
70 |
|
---|
71 | forall(dtype T, otype Params | sized(T) | { void ?{}(T *, Params); })
|
---|
72 | T * new(Params p) {
|
---|
73 | return malloc(){ p };
|
---|
74 | }
|
---|
75 | Array(int) * x = new([1, 2, 3]);
|
---|
76 | \end{cfacode}
|
---|
77 | The call to @new@ is not particularly appealing, since it requires the use of square brackets at the call-site, which is not required in any other function call.
|
---|
78 | This shifts the burden from the compiler to the programmer, which is almost always wrong, and creates an odd inconsistency within the language.
|
---|
79 | Similarly, in order to pass 0 variadic arguments, an explicit empty tuple must be passed into the argument list, otherwise the exact matching rule would not have an argument to bind against.
|
---|
80 |
|
---|
81 | It should be otherwise noted that the addition of an exact matching rule only affects the outcome for polymorphic type-binding when tuples are involved.
|
---|
82 | For non-tuple arguments, exact matching and flattening and structuring are equivalent.
|
---|
83 | For tuple arguments to a function without polymorphic formal-parameters, flattening and structuring work whenever an exact match would have worked, since the tuple is flattened and implicitly restructured to its original structure.
|
---|
84 | Thus there is nothing to be gained from permitting the exact matching rule to take effect when a function does not contain polymorphism and none of the arguments are tuples.
|
---|
85 |
|
---|
86 | Overall, this option takes a step in the right direction, but is contrary to the flexibility of the existing tuple design.
|
---|
87 |
|
---|
88 | \subsection{A New Typeclass}
|
---|
89 | A second option is the addition of another kind of type parameter, @ttype@.
|
---|
90 | Matching against a @ttype@ parameter consumes all remaining argument components and packages them into a tuple, binding to the resulting tuple of types.
|
---|
91 | In a given parameter list, there should be at most one @ttype@ parameter that must occur last, otherwise the call can never resolve, given the previous rule.
|
---|
92 | This idea essentially matches normal variadic semantics, with a strong feeling of similarity to \CCeleven variadic templates.
|
---|
93 | As such, @ttype@ variables are also referred to as argument packs.
|
---|
94 | This approach is the option that has been added to \CFA.
|
---|
95 |
|
---|
96 | Like variadic templates, the main way to manipulate @ttype@ polymorphic functions is through recursion.
|
---|
97 | Since nothing is known about a parameter pack by default, assertion parameters are key to doing anything meaningful.
|
---|
98 | Unlike variadic templates, @ttype@ polymorphic functions can be separately compiled.
|
---|
99 |
|
---|
100 | For example, a simple translation of the C sum function using @ttype@ is
|
---|
101 | \begin{cfacode}
|
---|
102 | int sum(void){ return 0; } // (0)
|
---|
103 | forall(ttype Params | { int sum(Params); })
|
---|
104 | int sum(int x, Params rest) { // (1)
|
---|
105 | return x+sum(rest);
|
---|
106 | }
|
---|
107 | sum(10, 20, 30);
|
---|
108 | \end{cfacode}
|
---|
109 | Since (0) does not accept any arguments, it is not a valid candidate function for the call @sum(10, 20, 30)@.
|
---|
110 | In order to call (1), @10@ is matched with @x@, and the argument resolution moves on to the argument pack @rest@, which consumes the remainder of the argument list and @Params@ is bound to @[20, 30]@.
|
---|
111 | In order to finish the resolution of @sum@, an assertion parameter that matches @int sum(int, int)@ is required.
|
---|
112 | Like in the previous iteration, (0) is not a valid candidate, so (1) is examined with @Params@ bound to @[int]@, requiring the assertion @int sum(int)@.
|
---|
113 | Next, (0) fails, and to satisfy (1) @Params@ is bound to @[]@, requiring an assertion @int sum()@.
|
---|
114 | Finally, (0) matches and (1) fails, which terminates the recursion.
|
---|
115 | Effectively, this traces as @sum(10, 20, 30)@ $\rightarrow$ @10+sum(20, 30)@ $\rightarrow$ @10+(20+sum(30))@ $\rightarrow$ @10+(20+(30+sum()))@ $\rightarrow$ @10+(20+(30+0))@.
|
---|
116 |
|
---|
117 | Interestingly, this version does not require any form of argument descriptor, since the \CFA type system keeps track of all of these details.
|
---|
118 | It might be reasonable to take the @sum@ function a step further to enforce a minimum number of arguments, which could be done simply
|
---|
119 | \begin{cfacode}
|
---|
120 | int sum(int x, int y){
|
---|
121 | return x+y;
|
---|
122 | }
|
---|
123 | forall(ttype Params | { int sum(int, Params); })
|
---|
124 | int sum(int x, int y, Params rest) {
|
---|
125 | return sum(x+y, rest);
|
---|
126 | }
|
---|
127 | sum(10); // invalid
|
---|
128 | sum(10, 20); // valid
|
---|
129 | sum(10, 20, 30); // valid
|
---|
130 | ...
|
---|
131 | \end{cfacode}
|
---|
132 |
|
---|
133 | One more iteration permits the summation of any summable type, as long as all arguments are the same type.
|
---|
134 | \begin{cfacode}
|
---|
135 | trait summable(otype T) {
|
---|
136 | T ?+?(T, T);
|
---|
137 | };
|
---|
138 | forall(otype R | summable(R))
|
---|
139 | R sum(R x, R y){
|
---|
140 | return x+y;
|
---|
141 | }
|
---|
142 | forall(otype R, ttype Params
|
---|
143 | | summable(R)
|
---|
144 | | { R sum(R, Params); })
|
---|
145 | R sum(R x, R y, Params rest) {
|
---|
146 | return sum(x+y, rest);
|
---|
147 | }
|
---|
148 | sum(3, 10, 20, 30);
|
---|
149 | \end{cfacode}
|
---|
150 | Unlike C, it is not necessary to hard code the expected type.
|
---|
151 | This @sum@ function is naturally open to extension, in that any user-defined type with a @?+?@ operator is automatically able to be used with the @sum@ function.
|
---|
152 | That is to say, the programmer who writes @sum@ does not need full program knowledge of every possible data type, unlike what is necessary to write an equivalent function using the standard C mechanisms.
|
---|
153 |
|
---|
154 | \begin{sloppypar}
|
---|
155 | Going one last step, it is possible to achieve full generality in \CFA, allowing the summation of arbitrary lists of summable types.
|
---|
156 | \begin{cfacode}
|
---|
157 | trait summable(otype T1, otype T2, otype R) {
|
---|
158 | R ?+?(T1, T2);
|
---|
159 | };
|
---|
160 | forall(otype T1, otype T2, otype R | summable(T1, T2, R))
|
---|
161 | R sum(T1 x, T2 y) {
|
---|
162 | return x+y;
|
---|
163 | }
|
---|
164 | forall(otype T1, otype T2, otype T3, otype R, ttype Params
|
---|
165 | | summable(T1, T2, T3)
|
---|
166 | | { R sum(T3, Params); })
|
---|
167 | R sum(T1 x, T2 y, Params rest ) {
|
---|
168 | return sum(x+y, rest);
|
---|
169 | }
|
---|
170 | sum(3, 10.5, 20, 30.3);
|
---|
171 | \end{cfacode}
|
---|
172 | The \CFA translator requires adding explicit @double ?+?(int, double)@ and @double ?+?(double, int)@ functions for this call to work, since implicit conversions are not supported for assertions.
|
---|
173 | \end{sloppypar}
|
---|
174 |
|
---|
175 | A notable limitation of this approach is that it heavily relies on recursive assertions.
|
---|
176 | The \CFA translator imposes a limitation on the depth of the recursion for assertion satisfaction.
|
---|
177 | Currently, the limit is set to 4, which means that the first version of the @sum@ function is limited to at most 5 arguments, while the second version can support up to 6 arguments.
|
---|
178 | The limit is set low due to inefficiencies in the current implementation of the \CFA expression resolver.
|
---|
179 | There is ongoing work to improve the performance of the resolver, and with noticeable gains, the limit can be relaxed to allow longer argument lists to @ttype@ functions.
|
---|
180 |
|
---|
181 | C variadic syntax and @ttype@ polymorphism probably should not be mixed, since it is not clear where to draw the line to decide which arguments belong where.
|
---|
182 | Furthermore, it might be desirable to disallow polymorphic functions to use C variadic syntax to encourage a \CFA style.
|
---|
183 | Aside from calling C variadic functions, it is not obvious that there is anything that can be done with C variadics that could not also be done with @ttype@ parameters.
|
---|
184 |
|
---|
185 | Variadic templates in \CC require an ellipsis token to express that a parameter is a parameter pack and to expand a parameter pack.
|
---|
186 | \CFA does not need an ellipsis in either case, since the type class @ttype@ is only used for variadics.
|
---|
187 | An alternative design is to use an ellipsis combined with an existing type class.
|
---|
188 | This approach was not taken because the largest benefit of the ellipsis token in \CC is the ability to expand a parameter pack within an expression, \eg, in fold expressions, which requires compile-time knowledge of the structure of the parameter pack, which is not available in \CFA.
|
---|
189 | \begin{cppcode}
|
---|
190 | template<typename... Args>
|
---|
191 | void f(Args &... args) {
|
---|
192 | g(&args...); // expand to addresses of pack elements
|
---|
193 | }
|
---|
194 | \end{cppcode}
|
---|
195 | As such, the addition of an ellipsis token would be purely an aesthetic change in \CFA today.
|
---|
196 |
|
---|
197 | It is possible to write a type-safe variadic print routine, which can replace @printf@
|
---|
198 | \begin{cfacode}
|
---|
199 | struct S { int x, y; };
|
---|
200 | forall(otype T, ttype Params |
|
---|
201 | { void print(T); void print(Params); })
|
---|
202 | void print(T arg, Params rest) {
|
---|
203 | print(arg);
|
---|
204 | print(rest);
|
---|
205 | }
|
---|
206 | void print(char * x) { printf("%s", x); }
|
---|
207 | void print(int x) { printf("%d", x); }
|
---|
208 | void print(S s) { print("{ ", s.x, ",", s.y, " }"); }
|
---|
209 | print("s = ", (S){ 1, 2 }, "\n");
|
---|
210 | \end{cfacode}
|
---|
211 | This example routine showcases a variadic-template-like decomposition of the provided argument list.
|
---|
212 | The individual @print@ routines allow printing a single element of a type.
|
---|
213 | The polymorphic @print@ allows printing any list of types, as long as each individual type has a @print@ function.
|
---|
214 | The individual print functions can be used to build up more complicated @print@ routines, such as for @S@, which is something that cannot be done with @printf@ in C.
|
---|
215 |
|
---|
216 | It is also possible to use @ttype@ polymorphism to provide arbitrary argument forwarding functions.
|
---|
217 | For example, it is possible to write @new@ as a library function.
|
---|
218 | \begin{cfacode}
|
---|
219 | struct Array;
|
---|
220 | void ?{}(Array *, int, int, int);
|
---|
221 |
|
---|
222 | forall(dtype T, ttype Params | sized(T) | { void ?{}(T *, Params); })
|
---|
223 | T * new(Params p) {
|
---|
224 | return malloc(){ p }; // construct result of malloc
|
---|
225 | }
|
---|
226 | Array * x = new(1, 2, 3);
|
---|
227 | \end{cfacode}
|
---|
228 | In the call to @new@, @Array@ is selected to match @T@, and @Params@ is expanded to match @[int, int, int, int]@. To satisfy the assertions, a constructor with an interface compatible with @void ?{}(Array *, int, int, int)@ must exist in the current scope.
|
---|
229 |
|
---|
230 | The @new@ function provides the combination of polymorphic @malloc@ with a constructor call, so that it becomes impossible to forget to construct dynamically-allocated objects.
|
---|
231 | This approach provides the type-safety of @new@ in \CC, without the need to specify the allocated type, thanks to return-type inference.
|
---|
232 |
|
---|
233 | \section{Implementation}
|
---|
234 |
|
---|
235 | The definition of @new@
|
---|
236 | \begin{cfacode}
|
---|
237 | forall(dtype T | sized(T)) T * malloc();
|
---|
238 |
|
---|
239 | forall(dtype T, ttype Params | sized(T) | { void ?{}(T *, Params); })
|
---|
240 | T * new(Params p) {
|
---|
241 | return malloc(){ p }; // construct result of malloc
|
---|
242 | }
|
---|
243 | \end{cfacode}
|
---|
244 | generates the following
|
---|
245 | \begin{cfacode}
|
---|
246 | void *malloc(long unsigned int _sizeof_T, long unsigned int _alignof_T);
|
---|
247 |
|
---|
248 | void *new(
|
---|
249 | void (*_adapter_)(void (*)(), void *, void *),
|
---|
250 | long unsigned int _sizeof_T,
|
---|
251 | long unsigned int _alignof_T,
|
---|
252 | long unsigned int _sizeof_Params,
|
---|
253 | long unsigned int _alignof_Params,
|
---|
254 | void (* _ctor_T)(void *, void *),
|
---|
255 | void *p
|
---|
256 | ){
|
---|
257 | void *_retval_new;
|
---|
258 | void *_tmp_cp_ret0;
|
---|
259 | void *_tmp_ctor_expr0;
|
---|
260 | _retval_new=
|
---|
261 | (_adapter_(_ctor_T,
|
---|
262 | (_tmp_ctor_expr0=(_tmp_cp_ret0=malloc(_sizeof_2tT, _alignof_2tT),
|
---|
263 | _tmp_cp_ret0)),
|
---|
264 | p),
|
---|
265 | _tmp_ctor_expr0); // ?{}
|
---|
266 | *(void **)&_tmp_cp_ret0; // ^?{}
|
---|
267 | return _retval_new;
|
---|
268 | }
|
---|
269 | \end{cfacode}
|
---|
270 | The constructor for @T@ is called indirectly through the adapter function on the result of @malloc@ and the parameter pack.
|
---|
271 | The variable that is allocated and constructed is then returned from @new@.
|
---|
272 |
|
---|
273 | A call to @new@
|
---|
274 | \begin{cfacode}
|
---|
275 | struct S { int x, y; };
|
---|
276 | void ?{}(S *, int, int);
|
---|
277 |
|
---|
278 | S * s = new(3, 4);
|
---|
279 | \end{cfacode}
|
---|
280 | Generates the following
|
---|
281 | \begin{cfacode}
|
---|
282 | struct _tuple2_ { // _tuple2_(T0, T1)
|
---|
283 | void *field_0;
|
---|
284 | void *field_1;
|
---|
285 | };
|
---|
286 | struct _conc__tuple2_0 { // _tuple2_(int, int)
|
---|
287 | int field_0;
|
---|
288 | int field_1;
|
---|
289 | };
|
---|
290 | struct _conc__tuple2_0 _tmp_cp1; // tuple argument to new
|
---|
291 | struct S *_tmp_cp_ret1; // return value from new
|
---|
292 | void _thunk0( // ?{}(S *, [int, int])
|
---|
293 | struct S *_p0,
|
---|
294 | struct _conc__tuple2_0 _p1
|
---|
295 | ){
|
---|
296 | _ctor_S(_p0, _p1.field_0, _p1.field_1); // restructure tuple parameter
|
---|
297 | }
|
---|
298 | void _adapter(void (*_adaptee)(), void *_p0, void *_p1){
|
---|
299 | // apply adaptee to arguments after casting to actual types
|
---|
300 | ((void (*)(struct S *, struct _conc__tuple2_0))_adaptee)(
|
---|
301 | _p0,
|
---|
302 | *(struct _conc__tuple2_0 *)_p1
|
---|
303 | );
|
---|
304 | }
|
---|
305 | struct S *s = (struct S *)(_tmp_cp_ret1=
|
---|
306 | new(
|
---|
307 | _adapter,
|
---|
308 | sizeof(struct S),
|
---|
309 | __alignof__(struct S),
|
---|
310 | sizeof(struct _conc__tuple2_0),
|
---|
311 | __alignof__(struct _conc__tuple2_0),
|
---|
312 | (void (*)(void *, void *))&_thunk0,
|
---|
313 | (({ // copy construct tuple argument to new
|
---|
314 | int *__multassign_L0 = (int *)&_tmp_cp1.field_0;
|
---|
315 | int *__multassign_L1 = (int *)&_tmp_cp1.field_1;
|
---|
316 | int __multassign_R0 = 3;
|
---|
317 | int __multassign_R1 = 4;
|
---|
318 | ((*__multassign_L0=__multassign_R0 /* ?{} */) ,
|
---|
319 | (*__multassign_L1=__multassign_R1 /* ?{} */));
|
---|
320 | }), &_tmp_cp1)
|
---|
321 | ), _tmp_cp_ret1);
|
---|
322 | *(struct S **)&_tmp_cp_ret1; // ^?{} // destroy return value from new
|
---|
323 | ({ // destroy argument temporary
|
---|
324 | int *__massassign_L0 = (int *)&_tmp_cp1.field_0;
|
---|
325 | int *__massassign_L1 = (int *)&_tmp_cp1.field_1;
|
---|
326 | ((*__massassign_L0 /* ^?{} */) , (*__massassign_L1 /* ^?{} */));
|
---|
327 | });
|
---|
328 | \end{cfacode}
|
---|
329 | Of note, @_thunk0@ is generated to translate calls to @?{}(S *, [int, int])@ into calls to @?{}(S *, int, int)@.
|
---|
330 | The call to @new@ constructs a tuple argument using the supplied arguments.
|
---|
331 |
|
---|
332 | The @print@ function
|
---|
333 | \begin{cfacode}
|
---|
334 | forall(otype T, ttype Params |
|
---|
335 | { void print(T); void print(Params); })
|
---|
336 | void print(T arg, Params rest) {
|
---|
337 | print(arg);
|
---|
338 | print(rest);
|
---|
339 | }
|
---|
340 | \end{cfacode}
|
---|
341 | generates the following
|
---|
342 | \begin{cfacode}
|
---|
343 | void print_variadic(
|
---|
344 | void (*_adapterF_7tParams__P)(void (*)(), void *),
|
---|
345 | void (*_adapterF_2tT__P)(void (*)(), void *),
|
---|
346 | void (*_adapterF_P2tT2tT__MP)(void (*)(), void *, void *),
|
---|
347 | void (*_adapterF2tT_P2tT2tT_P_MP)(void (*)(), void *, void *, void *),
|
---|
348 | long unsigned int _sizeof_T,
|
---|
349 | long unsigned int _alignof_T,
|
---|
350 | long unsigned int _sizeof_Params,
|
---|
351 | long unsigned int _alignof_Params,
|
---|
352 | void *(*_assign_TT)(void *, void *),
|
---|
353 | void (*_ctor_T)(void *),
|
---|
354 | void (*_ctor_TT)(void *, void *),
|
---|
355 | void (*_dtor_T)(void *),
|
---|
356 | void (*print_T)(void *),
|
---|
357 | void (*print_Params)(void *),
|
---|
358 | void *arg,
|
---|
359 | void *rest
|
---|
360 | ){
|
---|
361 | void *_tmp_cp0 = __builtin_alloca(_sizeof_T);
|
---|
362 | _adapterF_2tT__P( // print(arg)
|
---|
363 | ((void (*)())print_T),
|
---|
364 | (_adapterF_P2tT2tT__MP( // copy construct argument
|
---|
365 | ((void (*)())_ctor_TT),
|
---|
366 | _tmp_cp0,
|
---|
367 | arg
|
---|
368 | ), _tmp_cp0)
|
---|
369 | );
|
---|
370 | _dtor_T(_tmp_cp0); // destroy argument temporary
|
---|
371 | _adapterF_7tParams__P( // print(rest)
|
---|
372 | ((void (*)())print_Params),
|
---|
373 | rest
|
---|
374 | );
|
---|
375 | }
|
---|
376 | \end{cfacode}
|
---|
377 | The @print_T@ routine is called indirectly through an adapter function with a copy constructed argument, followed by an indirect call to @print_Params@.
|
---|
378 |
|
---|
379 | A call to print
|
---|
380 | \begin{cfacode}
|
---|
381 | void print(const char * x) { printf("%s", x); }
|
---|
382 | void print(int x) { printf("%d", x); }
|
---|
383 |
|
---|
384 | print("x = ", 123, ".\n");
|
---|
385 | \end{cfacode}
|
---|
386 | generates the following
|
---|
387 | \begin{cfacode}
|
---|
388 | void print_string(const char *x){
|
---|
389 | int _tmp_cp_ret0;
|
---|
390 | (_tmp_cp_ret0=printf("%s", x)) , _tmp_cp_ret0;
|
---|
391 | *(int *)&_tmp_cp_ret0; // ^?{}
|
---|
392 | }
|
---|
393 | void print_int(int x){
|
---|
394 | int _tmp_cp_ret1;
|
---|
395 | (_tmp_cp_ret1=printf("%d", x)) , _tmp_cp_ret1;
|
---|
396 | *(int *)&_tmp_cp_ret1; // ^?{}
|
---|
397 | }
|
---|
398 |
|
---|
399 | struct _tuple2_ { // _tuple2_(T0, T1)
|
---|
400 | void *field_0;
|
---|
401 | void *field_1;
|
---|
402 | };
|
---|
403 | struct _conc__tuple2_0 { // _tuple2_(int, const char *)
|
---|
404 | int field_0;
|
---|
405 | const char *field_1;
|
---|
406 | };
|
---|
407 | struct _conc__tuple2_0 _tmp_cp6; // _tuple2_(int, const char *)
|
---|
408 | const char *_thunk0(const char **_p0, const char *_p1){
|
---|
409 | // const char * ?=?(const char **, const char *)
|
---|
410 | return *_p0=_p1;
|
---|
411 | }
|
---|
412 | void _thunk1(const char **_p0){ // void ?{}(const char **)
|
---|
413 | *_p0; // ?{}
|
---|
414 | }
|
---|
415 | void _thunk2(const char **_p0, const char *_p1){
|
---|
416 | // void ?{}(const char **, const char *)
|
---|
417 | *_p0=_p1; // ?{}
|
---|
418 | }
|
---|
419 | void _thunk3(const char **_p0){ // void ^?{}(const char **)
|
---|
420 | *_p0; // ^?{}
|
---|
421 | }
|
---|
422 | void _thunk4(struct _conc__tuple2_0 _p0){
|
---|
423 | // void print([int, const char *])
|
---|
424 | struct _tuple1_ { // _tuple1_(T0)
|
---|
425 | void *field_0;
|
---|
426 | };
|
---|
427 | struct _conc__tuple1_1 { // _tuple1_(const char *)
|
---|
428 | const char *field_0;
|
---|
429 | };
|
---|
430 | void _thunk5(struct _conc__tuple1_1 _pp0){ // void print([const char *])
|
---|
431 | print_string(_pp0.field_0); // print(rest.0)
|
---|
432 | }
|
---|
433 | void _adapter_i_pii_(
|
---|
434 | void (*_adaptee)(),
|
---|
435 | void *_ret,
|
---|
436 | void *_p0,
|
---|
437 | void *_p1
|
---|
438 | ){
|
---|
439 | *(int *)_ret=((int (*)(int *, int))_adaptee)(_p0, *(int *)_p1);
|
---|
440 | }
|
---|
441 | void _adapter_pii_(void (*_adaptee)(), void *_p0, void *_p1){
|
---|
442 | ((void (*)(int *, int ))_adaptee)(_p0, *(int *)_p1);
|
---|
443 | }
|
---|
444 | void _adapter_i_(void (*_adaptee)(), void *_p0){
|
---|
445 | ((void (*)(int))_adaptee)(*(int *)_p0);
|
---|
446 | }
|
---|
447 | void _adapter_tuple1_5_(void (*_adaptee)(), void *_p0){
|
---|
448 | ((void (*)(struct _conc__tuple1_1 ))_adaptee)(
|
---|
449 | *(struct _conc__tuple1_1 *)_p0
|
---|
450 | );
|
---|
451 | }
|
---|
452 | print_variadic(
|
---|
453 | _adapter_tuple1_5,
|
---|
454 | _adapter_i_,
|
---|
455 | _adapter_pii_,
|
---|
456 | _adapter_i_pii_,
|
---|
457 | sizeof(int),
|
---|
458 | __alignof__(int),
|
---|
459 | sizeof(struct _conc__tuple1_1),
|
---|
460 | __alignof__(struct _conc__tuple1_1),
|
---|
461 | (void *(*)(void *, void *))_assign_i, // int ?=?(int *, int)
|
---|
462 | (void (*)(void *))_ctor_i, // void ?{}(int *)
|
---|
463 | (void (*)(void *, void *))_ctor_ii, // void ?{}(int *, int)
|
---|
464 | (void (*)(void *))_dtor_ii, // void ^?{}(int *)
|
---|
465 | (void (*)(void *))print_int, // void print(int)
|
---|
466 | (void (*)(void *))&_thunk5, // void print([const char *])
|
---|
467 | &_p0.field_0, // rest.0
|
---|
468 | &(struct _conc__tuple1_1 ){ _p0.field_1 }// [rest.1]
|
---|
469 | );
|
---|
470 | }
|
---|
471 | struct _tuple1_ { // _tuple1_(T0)
|
---|
472 | void *field_0;
|
---|
473 | };
|
---|
474 | struct _conc__tuple1_6 { // _tuple_1(const char *)
|
---|
475 | const char *field_0;
|
---|
476 | };
|
---|
477 | const char *_temp0;
|
---|
478 | _temp0="x = ";
|
---|
479 | void _adapter_pstring_pstring_string(
|
---|
480 | void (*_adaptee)(),
|
---|
481 | void *_ret,
|
---|
482 | void *_p0,
|
---|
483 | void *_p1
|
---|
484 | ){
|
---|
485 | *(const char **)_ret=
|
---|
486 | ((const char *(*)(const char **, const char *))_adaptee)(
|
---|
487 | _p0,
|
---|
488 | *(const char **)_p1
|
---|
489 | );
|
---|
490 | }
|
---|
491 | void _adapter_pstring_string(void (*_adaptee)(), void *_p0, void *_p1){
|
---|
492 | ((void (*)(const char **, const char *))_adaptee)(
|
---|
493 | _p0,
|
---|
494 | *(const char **)_p1
|
---|
495 | );
|
---|
496 | }
|
---|
497 | void _adapter_string_(void (*_adaptee)(), void *_p0){
|
---|
498 | ((void (*)(const char *))_adaptee)(*(const char **)_p0);
|
---|
499 | }
|
---|
500 | void _adapter_tuple2_0_(void (*_adaptee)(), void *_p0){
|
---|
501 | ((void (*)(struct _conc__tuple2_0 ))_adaptee)(
|
---|
502 | *(struct _conc__tuple2_0 *)_p0
|
---|
503 | );
|
---|
504 | }
|
---|
505 | print_variadic(
|
---|
506 | _adapter_tuple2_0_,
|
---|
507 | _adapter_string_,
|
---|
508 | _adapter_pstring_string_,
|
---|
509 | _adapter_pstring_pstring_string_,
|
---|
510 | sizeof(const char *),
|
---|
511 | __alignof__(const char *),
|
---|
512 | sizeof(struct _conc__tuple2_0 ),
|
---|
513 | __alignof__(struct _conc__tuple2_0 ),
|
---|
514 | &_thunk0, // const char * ?=?(const char **, const char *)
|
---|
515 | &_thunk1, // void ?{}(const char **)
|
---|
516 | &_thunk2, // void ?{}(const char **, const char *)
|
---|
517 | &_thunk3, // void ^?{}(const char **)
|
---|
518 | print_string, // void print(const char *)
|
---|
519 | &_thunk4, // void print([int, const char *])
|
---|
520 | &_temp0, // "x = "
|
---|
521 | (({ // copy construct tuple argument to print
|
---|
522 | int *__multassign_L0 = (int *)&_tmp_cp6.field_0;
|
---|
523 | const char **__multassign_L1 = (const char **)&_tmp_cp6.field_1;
|
---|
524 | int __multassign_R0 = 123;
|
---|
525 | const char *__multassign_R1 = ".\n";
|
---|
526 | ((*__multassign_L0=__multassign_R0 /* ?{} */),
|
---|
527 | (*__multassign_L1=__multassign_R1 /* ?{} */));
|
---|
528 | }), &_tmp_cp6) // [123, ".\n"]
|
---|
529 | );
|
---|
530 | ({ // destroy argument temporary
|
---|
531 | int *__massassign_L0 = (int *)&_tmp_cp6.field_0;
|
---|
532 | const char **__massassign_L1 = (const char **)&_tmp_cp6.field_1;
|
---|
533 | ((*__massassign_L0 /* ^?{} */) , (*__massassign_L1 /* ^?{} */));
|
---|
534 | });
|
---|
535 | \end{cfacode}
|
---|
536 | The type @_tuple2_@ is generated to allow passing the @rest@ argument to @print_variadic@.
|
---|
537 | Thunks 0 through 3 provide wrappers for the @otype@ parameters for @const char *@, while @_thunk4@ translates a call to @print([int, const char *])@ into a call to @print_variadic(int, [const char *])@.
|
---|
538 | This all builds to a call to @print_variadic@, with the appropriate copy construction of the tuple argument.
|
---|