[7972603] | 1 | #include <stdio.h>
|
---|
| 2 | #include <assert.h>
|
---|
| 3 | #include <stdlib.h>
|
---|
| 4 |
|
---|
| 5 | #define SHOW(x, fmt) printf( #x ": " fmt "\n", x )
|
---|
| 6 |
|
---|
| 7 | #ifdef ERRS
|
---|
| 8 | #define ERR(...) __VA_ARGS__
|
---|
| 9 | #else
|
---|
| 10 | #define ERR(...)
|
---|
| 11 | #endif
|
---|
| 12 |
|
---|
| 13 | // int main( int argc, const char *argv[] ) {
|
---|
| 14 | // assert(argc == 2);
|
---|
| 15 | // const int n = atoi(argv[1]);
|
---|
| 16 | // assert(0 < n && n < 1000);
|
---|
| 17 |
|
---|
| 18 | // float a1[42];
|
---|
| 19 | // float a2[n];
|
---|
| 20 | // SHOW(sizeof(a1), "%zd");
|
---|
| 21 | // SHOW(sizeof(a2), "%zd");
|
---|
| 22 |
|
---|
| 23 | // }
|
---|
| 24 |
|
---|
| 25 |
|
---|
| 26 | // SHOW(sizeof( a ), "%zd");
|
---|
| 27 | // SHOW(sizeof(&a ), "%zd");
|
---|
| 28 | // SHOW(sizeof( a[0]), "%zd");
|
---|
| 29 | // SHOW(sizeof(&a[0]), "%zd");
|
---|
| 30 |
|
---|
| 31 |
|
---|
| 32 |
|
---|
| 33 | int main() {
|
---|
| 34 |
|
---|
| 35 | /*
|
---|
| 36 | When a programmer works with an array, C semantics provide access to a type that is different in every way from ``pointer to its first element.''
|
---|
| 37 |
|
---|
| 38 | Its qualities become apparent by inspecting the declaration
|
---|
| 39 | */
|
---|
| 40 | float a[10];
|
---|
| 41 | /*
|
---|
| 42 |
|
---|
| 43 | The inspection begins by using @sizeof@ to provide definite program semantics for the intuition of an expression's type.
|
---|
| 44 |
|
---|
| 45 | Assuming a target platform keeps things concrete:
|
---|
| 46 | */
|
---|
| 47 | static_assert(sizeof(float)==4); // floats (array elements) are 4 bytes
|
---|
| 48 | static_assert(sizeof(void*)==8); // pointers are 8 bytes
|
---|
| 49 | /*
|
---|
| 50 |
|
---|
| 51 | Consider the sizes of expressions derived from @a@, modified by adding ``pointer to'' and ``first element'' (and including unnecessary parentheses to avoid confusion about precedence).
|
---|
| 52 | */
|
---|
| 53 | static_assert(sizeof( a ) == 40); // array
|
---|
| 54 | static_assert(sizeof(& a ) == 8 ); // pointer to array
|
---|
| 55 | static_assert(sizeof( a[0] ) == 4 ); // first element
|
---|
| 56 | static_assert(sizeof(&(a[0])) == 8 ); // pointer to first element
|
---|
| 57 | /*
|
---|
| 58 | That @a@ takes up 40 bytes is common reasoning for C programmers.
|
---|
| 59 | Set aside for a moment the claim that this first assertion is giving information about a type.
|
---|
| 60 | For now, note that an array and a pointer to its first element are, sometimes, different things.
|
---|
| 61 |
|
---|
| 62 | The idea that there is such a thing as a pointer to an array may be surprising.
|
---|
| 63 | It is not the same thing as a pointer to the first element:
|
---|
| 64 | */
|
---|
| 65 | typeof(& a ) x; // x is pointer to array
|
---|
| 66 | typeof(&(a[0])) y; // y is pointer to first element
|
---|
| 67 | ERR(
|
---|
| 68 | x = y; // ill-typed
|
---|
| 69 | y = x; // ill-typed
|
---|
| 70 | )
|
---|
| 71 | /*
|
---|
| 72 | The first gets
|
---|
| 73 | warning: warning: assignment to `float (*)[10]' from incompatible pointer type `float *'
|
---|
| 74 | and the second gets the opposite.
|
---|
| 75 | */
|
---|
| 76 |
|
---|
| 77 | /*
|
---|
| 78 | We now refute a concern that @sizeof(a)@ is reporting on special knowledge from @a@ being an local variable,
|
---|
| 79 | say that it is informing about an allocation, rather than simply a type.
|
---|
| 80 |
|
---|
| 81 | First, recognizing that @sizeof@ has two forms, one operating on an expression, the other on a type, we observe that the original answers are unaffected by using the type-parameterized form:
|
---|
| 82 | */
|
---|
| 83 | static_assert(sizeof(typeof( a )) == 40);
|
---|
| 84 | static_assert(sizeof(typeof(& a )) == 8 );
|
---|
| 85 | static_assert(sizeof(typeof( a[0] )) == 4 );
|
---|
| 86 | static_assert(sizeof(typeof(&(a[0]))) == 8 );
|
---|
| 87 |
|
---|
| 88 | /*
|
---|
| 89 | Finally, the same sizing is reported when there is no allocation at all, and we launch the analysis instead from the pointer-to-array type.
|
---|
| 90 | */
|
---|
| 91 | void f( float (*pa)[10] ) {
|
---|
| 92 | static_assert(sizeof( *pa ) == 40); // array
|
---|
| 93 | static_assert(sizeof( pa ) == 8 ); // pointer to array
|
---|
| 94 | static_assert(sizeof( (*pa)[0] ) == 4 ); // first element
|
---|
| 95 | static_assert(sizeof(&((*pa)[0])) == 8 ); // pointer to first element
|
---|
| 96 | }
|
---|
| 97 | f( & a );
|
---|
| 98 |
|
---|
| 99 | /*
|
---|
| 100 | So, in spite of considerable programmer success enabled by an understanding that
|
---|
| 101 | an array just a pointer to its first element (revisited TODO pointer decay),
|
---|
| 102 | this understanding is simplistic.
|
---|
| 103 | */
|
---|
| 104 |
|
---|
| 105 | /*
|
---|
| 106 | A shortened form for declaring local variables exists, provided that length information is given in the initializer:
|
---|
| 107 | */
|
---|
| 108 | float fs[] = {3.14, 1.707};
|
---|
| 109 | char cs[] = "hello";
|
---|
| 110 |
|
---|
| 111 | static_assert( sizeof(fs) == 2 * sizeof(float) );
|
---|
| 112 | static_assert( sizeof(cs) == 6 * sizeof(char) ); // 5 letters + 1 null terminator
|
---|
| 113 |
|
---|
| 114 | /*
|
---|
| 115 | In these declarations, the resulting types are both arrays, but their lengths are inferred.
|
---|
| 116 | */
|
---|
| 117 |
|
---|
| 118 | }
|
---|
| 119 |
|
---|
| 120 |
|
---|
| 121 | void syntaxReferenceCheck(void) {
|
---|
| 122 | // $\rightarrow$ & (base element)
|
---|
| 123 | // & @float@
|
---|
| 124 | // & @float x;@
|
---|
| 125 | // & @[ float ]@
|
---|
| 126 | // & @[ float ]@
|
---|
| 127 | float x0;
|
---|
| 128 |
|
---|
| 129 | // $\rightarrow$ & pointer
|
---|
| 130 | // & @float *@
|
---|
| 131 | // & @float * x;@
|
---|
| 132 | // & @[ * float ]@
|
---|
| 133 | // & @[ * float ]@
|
---|
| 134 | float * x1;
|
---|
| 135 |
|
---|
| 136 | // $\rightarrow$ & array
|
---|
| 137 | // & @float[10]@
|
---|
| 138 | // & @float x[10];@
|
---|
| 139 | // & @[ [10] float ]@
|
---|
| 140 | // & @[ array(float, 10) ]@
|
---|
| 141 | float x2[10];
|
---|
| 142 |
|
---|
| 143 | typeof(float[10]) x2b;
|
---|
| 144 |
|
---|
| 145 | // & array of pointers
|
---|
| 146 | // & @(float*)[10]@
|
---|
| 147 | // & @float *x[10];@
|
---|
| 148 | // & @[ [10] * float ]@
|
---|
| 149 | // & @[ array(*float, 10) ]@
|
---|
| 150 | float *x3[10];
|
---|
| 151 | // (float *)x3a[10]; NO
|
---|
| 152 |
|
---|
| 153 | // $\rightarrow$ & pointer to array
|
---|
| 154 | // & @float(*)[10]@
|
---|
| 155 | // & @float (*x)[10];@
|
---|
| 156 | // & @[ * [10] float ]@
|
---|
| 157 | // & @[ * array(float, 10) ]@
|
---|
| 158 | float (*x4)[10];
|
---|
| 159 |
|
---|
| 160 | // & pointer to array
|
---|
| 161 | // & @(float*)(*)[10]@
|
---|
| 162 | // & @float *(*x)[10];@
|
---|
| 163 | // & @[ * [10] * float ]@
|
---|
| 164 | // & @[ * array(*float, 10) ]@
|
---|
| 165 | float *(*x5)[10];
|
---|
| 166 | x5 = (float*(*)[10]) x4;
|
---|
| 167 | // x5 = (float(*)[10]) x4; // wrong target type; meta test suggesting above cast uses correct type
|
---|
| 168 |
|
---|
| 169 | // [here]
|
---|
| 170 | // const
|
---|
| 171 |
|
---|
| 172 | // [later]
|
---|
| 173 | // static
|
---|
| 174 | // star as dimension
|
---|
| 175 | // under pointer decay: int p1[const 3] being int const *p1
|
---|
| 176 |
|
---|
| 177 | const float * y1;
|
---|
| 178 | float const * y2;
|
---|
| 179 | float * const y3;
|
---|
| 180 |
|
---|
| 181 | y1 = 0;
|
---|
| 182 | y2 = 0;
|
---|
| 183 | // y3 = 0; // bad
|
---|
| 184 |
|
---|
| 185 | // *y1 = 3.14; // bad
|
---|
| 186 | // *y2 = 3.14; // bad
|
---|
| 187 | *y3 = 3.14;
|
---|
| 188 |
|
---|
| 189 | const float z1 = 1.414;
|
---|
| 190 | float const z2 = 1.414;
|
---|
| 191 |
|
---|
| 192 | // z1 = 3.14; // bad
|
---|
| 193 | // z2 = 3.14; // bad
|
---|
| 194 |
|
---|
| 195 |
|
---|
| 196 | }
|
---|
| 197 |
|
---|
| 198 | #define T float
|
---|
| 199 | void stx2() { const T x[10];
|
---|
| 200 | // x[5] = 3.14; // bad
|
---|
| 201 | }
|
---|
| 202 | void stx3() { T const x[10];
|
---|
| 203 | // x[5] = 3.14; // bad
|
---|
| 204 | }
|
---|