[16a843b] | 1 | # Based on crunch1
|
---|
| 2 | # updates for run-scenario columns not seen back then
|
---|
| 3 | # result eyeballs okay
|
---|
| 4 |
|
---|
| 5 | import pandas as pd
|
---|
| 6 | import numpy as np
|
---|
| 7 | import sys
|
---|
| 8 | import os
|
---|
[6c58850] | 9 | from subprocess import Popen, PIPE
|
---|
[16a843b] | 10 |
|
---|
| 11 | def getSingleResults(infileLocal, *,
|
---|
| 12 | tgtMovement = 'all',
|
---|
| 13 | tgtPolarity = 'all',
|
---|
| 14 | tgtAccessor = 'all',
|
---|
| 15 | tgtInterleave = 0.0 ):
|
---|
| 16 |
|
---|
| 17 | infile = os.path.dirname(os.path.abspath(__file__)) + '/../benchmarks/list/' + infileLocal
|
---|
| 18 |
|
---|
[6c58850] | 19 | # grep to remove lines that end in comma; these were error runs
|
---|
| 20 | with Popen("grep '[^,]$' " + infile, shell=True, stdout=PIPE) as process:
|
---|
| 21 | timings = pd.read_csv(
|
---|
| 22 | process.stdout,
|
---|
| 23 | names=['RunMoment', 'RunIdx', 'Args', 'Program', 'expt_ops_completed', 'expt_elapsed_sec', 'mean_op_dur_ns'],
|
---|
| 24 | dtype={'RunMoment': str,
|
---|
| 25 | 'RunIdx': np.int64,
|
---|
| 26 | 'Args': str,
|
---|
| 27 | 'Program': str,
|
---|
| 28 | 'expt_ops_completed': np.int64,
|
---|
| 29 | 'expt_elapsed_sec': np.float64,
|
---|
| 30 | 'mean_op_dur_ns': np.float64},
|
---|
| 31 | parse_dates=['RunMoment']
|
---|
| 32 | )
|
---|
| 33 | # print(timings.head())
|
---|
[16a843b] | 34 |
|
---|
| 35 | ## parse executable name and args
|
---|
| 36 |
|
---|
| 37 | timings[['ExperimentDurSec',
|
---|
| 38 | 'CheckDonePeriod',
|
---|
| 39 | 'NumNodes',
|
---|
| 40 | 'ExperimentDurOpCount',
|
---|
| 41 | 'Seed',
|
---|
| 42 | 'InterleaveFrac']] = timings['Args'].str.strip().str.split(expand=True)
|
---|
| 43 | timings["NumNodes"] = pd.to_numeric(timings["NumNodes"])
|
---|
| 44 | timings["InterleaveFrac"] = pd.to_numeric(timings["InterleaveFrac"]).round(3)
|
---|
| 45 |
|
---|
| 46 | timings[['__ProgramPrefix',
|
---|
| 47 | 'fx',
|
---|
| 48 | 'op']] = timings['Program'].str.split('--', expand=True)
|
---|
| 49 |
|
---|
| 50 | timings[['movement',
|
---|
| 51 | 'polarity',
|
---|
| 52 | 'accessor']] = timings['op'].str.split('-', expand=True)
|
---|
| 53 |
|
---|
| 54 | ## calculate relative to baselines
|
---|
| 55 | baseline_fx = 'lq-tailq'
|
---|
| 56 | baseline_intrl = 0.0
|
---|
| 57 |
|
---|
| 58 | # chose calc "FineCrossRun" from labpc:crunch3
|
---|
| 59 | byPeer = timings.groupby(['NumNodes', 'op', 'InterleaveFrac'])
|
---|
| 60 | for [NumNodes, op, intrlFrac], peerGroup in byPeer:
|
---|
[29c6a7d] | 61 | grpfx = peerGroup.groupby(['fx'])
|
---|
| 62 | if baseline_fx in grpfx.groups:
|
---|
| 63 | baselineRows = grpfx.get_group(baseline_fx)
|
---|
| 64 | baselineDur = meanNoOutlr( baselineRows['mean_op_dur_ns'] )
|
---|
| 65 | else:
|
---|
| 66 | baselineDur = 1.0
|
---|
[16a843b] | 67 | timings.loc[peerGroup.index, 'BaselineFxOpDurNs'] = baselineDur
|
---|
| 68 | timings['OpDurRelFx'] = timings['mean_op_dur_ns'] / timings['BaselineFxOpDurNs']
|
---|
| 69 |
|
---|
| 70 | # relative to same fx, no interleave
|
---|
| 71 | byPeer = timings.groupby(['NumNodes', 'op', 'fx'])
|
---|
| 72 | for [NumNodes, op, fx], peerGroup in byPeer:
|
---|
| 73 | baselineRows = peerGroup.groupby(['InterleaveFrac']).get_group(baseline_intrl)
|
---|
| 74 | baselineDur = meanNoOutlr( baselineRows['mean_op_dur_ns'] )
|
---|
| 75 | timings.loc[peerGroup.index, 'BaselineIntrlOpDurNs'] = baselineDur
|
---|
| 76 | timings['OpDurRelIntrl'] = timings['mean_op_dur_ns'] / timings['BaselineIntrlOpDurNs']
|
---|
| 77 |
|
---|
| 78 | movements = timings['movement'].unique()
|
---|
| 79 | polarities = timings['polarity'].unique()
|
---|
| 80 | accessors = timings['accessor'].unique()
|
---|
| 81 | interleaves = timings['InterleaveFrac'].unique()
|
---|
| 82 |
|
---|
| 83 | if movements.size > 1:
|
---|
| 84 | movements = np.append(movements, 'all')
|
---|
| 85 | if polarities.size > 1:
|
---|
| 86 | polarities = np.append(polarities, 'all')
|
---|
| 87 | if accessors.size > 1:
|
---|
| 88 | accessors = np.append(accessors, 'all')
|
---|
| 89 |
|
---|
| 90 | if (tgtMovement != 'all'):
|
---|
| 91 | grp = timings.groupby('movement')
|
---|
| 92 | timings = grp.get_group(tgtMovement)
|
---|
| 93 | if (tgtPolarity != 'all'):
|
---|
| 94 | grp = timings.groupby('polarity')
|
---|
| 95 | timings = grp.get_group(tgtPolarity)
|
---|
| 96 | if (tgtAccessor != 'all'):
|
---|
| 97 | grp = timings.groupby('accessor')
|
---|
| 98 | timings = grp.get_group(tgtAccessor)
|
---|
| 99 | if (tgtInterleave != 'all'):
|
---|
| 100 | timings = timings[ timings['InterleaveFrac'] == float(tgtInterleave) ]
|
---|
| 101 |
|
---|
| 102 | return timings
|
---|
| 103 |
|
---|
| 104 | def getSummaryMeta(metaFileCore):
|
---|
| 105 | metafile = os.path.dirname(os.path.abspath(__file__)) + "/" + metaFileCore + '-meta.dat'
|
---|
| 106 | metadata = pd.read_csv(
|
---|
| 107 | metafile,
|
---|
| 108 | names=['OpIx', 'Op'],
|
---|
| 109 | delimiter='\t'
|
---|
| 110 | )
|
---|
| 111 | metadata[['movement',
|
---|
| 112 | 'polarity',
|
---|
| 113 | 'accessor']] = metadata['Op'].str.split('\\\\n', expand=True)
|
---|
| 114 | metadata.replace('*', 'all', inplace=True)
|
---|
| 115 | return metadata
|
---|
| 116 |
|
---|
| 117 | def printManySummary(*,
|
---|
| 118 | infileLocal,
|
---|
| 119 | metafileCore,
|
---|
| 120 | fxs,
|
---|
| 121 | sizeQual = (lambda x: x < 150), # x < 8
|
---|
| 122 | tgtInterleave = 0.0,
|
---|
| 123 | measure = 'OpDurRelFx') :
|
---|
| 124 |
|
---|
| 125 | metadata = getSummaryMeta(metafileCore)
|
---|
| 126 |
|
---|
| 127 | print("# op_num\tfx_num\tfx\tmean\tstdev\tmin\tmax\tcount\tpl95\tpl68\tp50\tph68\tph95")
|
---|
| 128 |
|
---|
| 129 | for op in metadata.itertuples():
|
---|
| 130 | timings = getSingleResults(infileLocal,
|
---|
| 131 | tgtMovement = op.movement,
|
---|
| 132 | tgtPolarity = op.polarity,
|
---|
| 133 | tgtAccessor = op.accessor,
|
---|
| 134 | tgtInterleave = tgtInterleave )
|
---|
| 135 |
|
---|
| 136 | timings = timings[ timings['fx'].isin(fxs) ]
|
---|
| 137 | timings = timings[ timings['NumNodes'].apply(sizeQual) ]
|
---|
| 138 |
|
---|
| 139 | fxnums = timings['fx'].apply(
|
---|
| 140 | lambda fx: fxs.index(fx) + 1
|
---|
| 141 | )
|
---|
| 142 | timings.insert(loc=0, column='fx_num', value=fxnums)
|
---|
| 143 | timings.insert(loc=0, column='op_num', value=op.OpIx)
|
---|
| 144 |
|
---|
| 145 | grouped = timings.groupby(['op_num', 'fx_num', 'fx'])
|
---|
| 146 |
|
---|
| 147 | aggregated = grouped[measure].agg(
|
---|
| 148 | ["mean", "std", "min", "max", "count",
|
---|
| 149 | lambda x: x.quantile(0.025),
|
---|
| 150 | lambda x: x.quantile(0.16),
|
---|
| 151 | lambda x: x.quantile(0.5),
|
---|
| 152 | lambda x: x.quantile(0.84),
|
---|
| 153 | lambda x: x.quantile(0.975)]
|
---|
| 154 | )
|
---|
| 155 |
|
---|
| 156 | text = aggregated.to_csv(header=False, index=True, sep='\t')
|
---|
| 157 | print(text, end='')
|
---|
| 158 |
|
---|
| 159 | def printSingleDetail(infileLocal, *,
|
---|
| 160 | tgtMovement = 'all',
|
---|
| 161 | tgtPolarity = 'all',
|
---|
| 162 | tgtAccessor = 'all',
|
---|
| 163 | tgtInterleave = 0.0,
|
---|
| 164 | measure = 'mean_op_dur_ns' ):
|
---|
| 165 |
|
---|
| 166 | timings = getSingleResults(infileLocal,
|
---|
| 167 | tgtMovement = tgtMovement,
|
---|
| 168 | tgtPolarity = tgtPolarity,
|
---|
| 169 | tgtAccessor = tgtAccessor,
|
---|
| 170 | tgtInterleave = tgtInterleave)
|
---|
| 171 | groupedFx = timings.groupby('fx')
|
---|
| 172 |
|
---|
| 173 | for fx, fgroup in groupedFx:
|
---|
| 174 | # print(fgroup.head())
|
---|
| 175 | groupedRun = fgroup.groupby(['NumNodes']) # , 'fx', 'op'
|
---|
| 176 | aggregated = groupedRun[measure].agg(
|
---|
| 177 | ["mean", "std", "min", "max", "count", "sum"]
|
---|
| 178 | )
|
---|
| 179 | aggregated['mean_no_outlr'] = (
|
---|
| 180 | ( aggregated['sum'] - aggregated['min'] - aggregated['max'] )
|
---|
| 181 | /
|
---|
| 182 | ( aggregated['count'] - 2 )
|
---|
| 183 | )
|
---|
| 184 |
|
---|
| 185 | #print(aggregated.head())
|
---|
| 186 |
|
---|
| 187 | print('"{header}"'.format(header=fx))
|
---|
| 188 | text = aggregated.to_csv(header=False, index=True, sep='\t')
|
---|
| 189 | print(text)
|
---|
| 190 | print()
|
---|
| 191 | print()
|
---|
| 192 |
|
---|
| 193 | def meanNoOutlr(range):
|
---|
| 194 | return ( range.sum() - range.min() - range.max() ) / ( range.count() - 2 )
|
---|