source: doc/theses/mike_brooks_MMath/array.tex @ 4b75ae9

Last change on this file since 4b75ae9 was 4558df2, checked in by Peter A. Buhr <pabuhr@…>, 3 months ago

update accordion program, small changes

  • Property mode set to 100644
File size: 53.3 KB
Line 
1\chapter{Array}
2\label{c:Array}
3
4
5\section{Introduction}
6
7Arrays in C are possible the single most misunderstood and incorrectly used features in the language, resulting in the largest proportion of runtime errors and security violations.
8This chapter describes the new \CFA language and library features that introduce a length-checked array-type to the \CFA standard library~\cite{Cforall}.
9
10Specifically, a new \CFA array is declared:
11\begin{cfa}
12@array( float, 99 )@ x;                                 $\C[2.75in]{// x contains 99 floats}$
13\end{cfa}
14using generic type @array@ with arguments @float@ and @99@.
15A function @f@ is declared with an @array@ parameter of length @42@.
16\begin{cfa}
17void f( @array( float, 42 )@ & p ) {}   $\C{// p accepts 42 floats}$
18f( x );                                                                 $\C{// statically rejected: types are different, 99 != 42}$
19
20test2.cfa:3:1 error: Invalid application of existing declaration(s) in expression.
21Applying untyped:  Name: f ... to:  Name: x
22\end{cfa}
23The call @f( x )@ is invalid because the @array@ lengths @99@ and @42@ do not match.
24
25Next, function @g@ introduces a @forall@ prefix on type parameter @T@ and arbitrary \emph{dimension parameter} @N@, the new feature that represents a count of elements managed by the type system.
26\begin{cfa}
27forall( T, @[N]@ )
28void g( array( T, @N@ ) & p, int i ) {
29        T elem = p[i];                                          $\C{// dynamically checked: requires 0 <= i < N}$
30}
31g( x, 0 );                                                              $\C{// T is float, N is 99, dynamic subscript check succeeds}$
32g( x, 1000 );                                                   $\C{// T is float, N is 99, dynamic subscript check fails}\CRT$
33
34Cforall Runtime error: subscript 1000 exceeds dimension range [0,99) $for$ array 0x555555558020.
35\end{cfa}
36The call @g( x, 0 )@ is valid because @g@ accepts any length of array, where the type system infers @float@ for @T@ and length @99@ for @N@.
37Inferring values for @T@ and @N@ is implicit without programmer involvement.
38Furthermore, the runtime subscript @x[0]@ (parameter @i@ is @0@) in @g@ is valid because @0@ is in the dimension range $[0,99)$ of argument @x@.
39The call @g( x, 1000 )@ is also valid;
40however, the runtime subscript @x[1000]@ is invalid (generates a subscript error) because @1000@ is outside the dimension range $[0,99)$ of argument @x@.
41
42The generic @array@ type is similar to the C array type, which \CFA inherits from C.
43Its runtime characteristics are often identical, and some features are available in both.
44For example, assume a caller can instantiates @N@ with 42 in the following (details to follow).
45\begin{cfa}
46forall( [N] )
47void declDemo() {
48        float x1[N];                                            $\C{// built-in type ("C array")}$
49        array(float, N) x2;                                     $\C{// type from library}$
50}
51\end{cfa}
52Both of the locally-declared array variables, @x1@ and @x2@, have 42 elements, each element being a @float@.
53The two variables have identical size and layout; they both encapsulate 42-float, stack \vs heap allocations with no additional ``bookkeeping'' allocations or headers.
54Providing this explicit generic approach requires a significant extension to the \CFA type system to support a full-feature, safe, efficient (space and time) array-type, which forms the foundation for more complex array forms in \CFA.
55
56Admittedly, the @array@ library type (type for @x2@) is syntactically different from its C counterpart.
57A future goal (TODO xref) is to provide a built-in array type with syntax approaching C's (type for @x1@);
58then, the library @array@ type can be removed giving \CFA a largely uniform array type.
59At present, the C syntax @array@ is only partially supported, so the generic @array@ is used exclusively in the discussion;
60feature support and C compatibility are revisited in Section ? TODO.
61
62Offering the @array@ type, as a distinct alternative to the C array, is consistent with \CFA's goal of backwards compatibility, \ie virtually all existing C (@gcc@) programs can be compiled by \CFA with only a small number of changes, similar to \CC (@g++@).
63However, a few compatibility-breaking changes to the behaviour of the C array are necessary, both as an implementation convenience and to fix C's lax treatment of arrays.
64Hence, the @array@ type is an opportunity to start from a clean slate and show a cohesive selection of features, making it unnecessary to deal with every inherited complexity introduced by the C array TODO xref.
65
66My contributions in this chapter are:
67\begin{enumerate}
68\item A type system enhancement that lets polymorphic functions and generic types be parameterized by a numeric value: @forall( [N] )@.
69\item Provide a length-checked array-type in the \CFA standard library, where the array's length is statically managed and dynamically valued.
70\item Provide argument/parameter passing safety for arrays and subscript safety.
71\item TODO: general parking...
72\item Identify the interesting specific abilities available by the new @array@ type.
73\item Where there is a gap concerning this feature's readiness for prime-time, identification of specific workable improvements that are likely to close the gap.
74\end{enumerate}
75
76
77\section{Definitions and design considerations}
78
79
80\subsection{Dependent typing}
81
82
83\section{Features added}
84
85This section presents motivating examples for the new array type, demonstrating the syntax and semantics of the generic @array@.
86As stated, the core capability of the new array is tracking all dimensions in the type system, where dynamic dimensions are represented using type variables.
87
88The definition of type variables preceding object declarations makes the array dimension lexically referenceable where it is needed.
89For example, a declaration can share one length, @N@, among a pair of parameters and the return.
90\lstinput{10-17}{hello-array.cfa}
91Here, the function @f@ does a pointwise comparison, checking if each pair of numbers is within half a percent of each other, returning the answers in a newly allocated @bool@ array.
92The dynamic allocation of the @ret@ array by @alloc@ uses the parameterized dimension information in its implicit @_Alignof@ and @sizeof@ determinations, and casting the return type.
93\begin{cfa}
94static inline forall( T & | sized(T) )
95T * alloc( size_t dim ) {
96        if ( _Alignof(T) <= libAlign() ) return (T *)aalloc( dim, sizeof(T) ); // calloc without zero fill
97        else return (T *)amemalign( _Alignof(T), dim, sizeof(T) ); // array memalign
98}
99\end{cfa}
100Here, the type system deduces from the left-hand side of the assignment the type @array(bool, N)@, and forwards it as the type variable @T@ for the generic @alloc@ function, making it available in its body.
101Hence, preexisting \CFA behaviour is leveraged here, both in the return-type polymorphism, and the @sized(T)@-aware standard-library @alloc@ routine.
102This example illustrates how the new @array@ type plugs into existing \CFA behaviour by implementing necessary @sized@ assertions needed by other types.
103(@sized@ implies a concrete \vs abstract type with a compile-time size.)
104As a result, there is significant programming safety by making the size accessible and implicit, compared with C's @calloc@ and non-array supporting @memalign@, which take an explicit length parameter not managed by the type system.
105
106\begin{figure}
107\lstinput{30-43}{hello-array.cfa}
108\lstinput{45-48}{hello-array.cfa}
109\caption{\lstinline{f} Harness}
110\label{f:fHarness}
111\end{figure}
112
113\VRef[Figure]{f:fHarness} shows a harness that uses function @f@ to illustrate how dynamic values are fed into the @array@ type.
114Here, the dimension of arrays @x@, @y@, and @result@ is specified from a command-line value, @dim@, and these arrays are allocated on the stack.
115Then the @x@ array is initialized with decreasing values, and the @y@ array with amounts offset by constant @0.005@, giving relative differences within tolerance initially and diverging for later values.
116The program main is run (see figure bottom) with inputs @5@ and @7@ for sequence lengths.
117The loops follow the familiar pattern of using the variable @dim@ to iterate through the arrays.
118Most importantly, the type system implicitly captures @dim@ at the call of @f@ and makes it available throughout @f@ as @N@.
119The example shows @dim@ adapting into a type-system managed length at the declarations of @x@, @y@, and @result@, @N@ adapting in the same way at @f@'s loop bound, and a pass-thru use of @dim@ at @f@'s declaration of @ret@.
120Except for the lifetime-management issue of @result@, \ie explicit @free@, this program has eliminated both the syntactic and semantic problems associated with C arrays and their usage.
121These benefits cannot be underestimated.
122
123In general, the @forall( ..., [N] )@ participates in the user-relevant declaration of the name @N@, which becomes usable in parameter/return declarations and within a function.
124The syntactic form is chosen to parallel other @forall@ forms:
125\begin{cfa}
126forall( @[N]@ ) ...     $\C[1.5in]{// array kind}$
127forall( T & ) ...       $\C{// reference kind (dtype)}$
128forall( T ) ...         $\C{// value kind (otype)}\CRT$
129\end{cfa}
130% The notation @array(thing, N)@ is a single-dimensional case, giving a generic type instance.
131In summary:
132\begin{itemize}
133\item
134@[N]@ within a forall declares the type variable @N@ to be a managed length.
135\item
136The type of @N@ within code is @size_t@.
137\item
138The value of @N@ within code is the acquired length derived from the usage site, \ie generic declaration or function call.
139\item
140@array( thing, N0, N1, ... )@ is a multi-dimensional type wrapping $\prod_i N_i$ adjacent occurrences of @thing@ objects.
141\end{itemize}
142
143\VRef[Figure]{f:TemplateVsGenericType} shows @N@ is not the same as a @size_t@ declaration in a \CC \lstinline[language=C++]{template}.
144\begin{enumerate}[leftmargin=*]
145\item
146The \CC template @N@ is a compile-time value, while the \CFA @N@ is a runtime value.
147\item
148The \CC template @N@ must be passed explicitly at the call, unless @N@ has a default value, even when \CC can deduct the type of @T@.
149The \CFA @N@ is part of the array type and passed implicitly at the call.
150\item
151\CC cannot have an array of references, but can have an array of pointers.
152\CC has a (mistaken) belief that references are not objects, but pointers are objects.
153In the \CC example, the arrays fall back on C arrays, which have a duality with references with respect to automatic dereferencing.
154The \CFA array is a contiguous object with an address, which can be stored as a reference or pointer.
155\item
156C/\CC arrays cannot be copied, while \CFA arrays can be copied, making them a first-class object (although array copy is often avoided for efficiency).
157\end{enumerate}
158
159\begin{figure}
160\begin{tabular}{@{}l@{\hspace{20pt}}l@{}}
161\begin{c++}
162
163@template< typename T, size_t N >@
164void copy( T ret[@N@], T x[@N@] ) {
165        for ( int i = 0; i < N; i += 1 ) ret[i] = x[i];
166}
167int main() {
168        int ret[10], x[10];
169        for ( int i = 0; i < 10; i += 1 ) x[i] = i;
170        @copy<int, 10 >( ret, x );@
171        for ( int i = 0; i < 10; i += 1 )
172                cout << ret[i] << ' ';
173        cout << endl;
174}
175\end{c++}
176&
177\begin{cfa}
178int main() {
179        @forall( T, [N] )@   // nested function
180        void copy( array( T, @N@ ) & ret, array( T, @N@ ) & x ) {
181                for ( i; 10 ) ret[i] = x[i];
182        }
183
184        array( int, 10 ) ret, x;
185        for ( i; 10 ) x[i] = i;
186        @copy( ret,  x );@
187        for ( i; 10 )
188                sout | ret[i] | nonl;
189        sout | nl;
190}
191\end{cfa}
192\end{tabular}
193\caption{\CC \lstinline[language=C++]{template} \vs \CFA generic type }
194\label{f:TemplateVsGenericType}
195\end{figure}
196
197Continuing the discussion of \VRef[Figure]{f:fHarness}, the example has @f@ expecting two arrays of the same length.
198As stated previous, a compile-time error occurs when attempting to call @f@ with arrays of differing lengths.
199% removing leading whitespace
200\lstinput[tabsize=1]{52-53}{hello-array.cfa}
201\lstinput[tabsize=1,aboveskip=0pt]{62-64}{hello-array.cfa}
202C allows casting to assert knowledge not shared with the type system.
203\lstinput{70-74}{hello-array.cfa}
204
205Orthogonally, the new @array@ type works with \CFA's generic types, providing argument safety and the associated implicit communication of array length.
206Specifically, \CFA allows aggregate types to be generalized with multiple type parameters, including parameterized element types and lengths.
207Doing so gives a refinement of C's ``flexible array member'' pattern, allowing nesting structures with array members anywhere within the structures.
208\lstinput{10-15}{hello-accordion.cfa}
209This structure's layout has the starting offset of @studentIds@ varying in generic parameter @C@, and the offset of @preferences@ varying in both generic parameters.
210For a function that operates on a @School@ structure, the type system handles this memory layout transparently.
211\lstinput{40-45}{hello-accordion.cfa}
212\VRef[Figure]{f:checkHarness} shows the @School@ harness and results with different array sizes, where multidimensional arrays are discussed next.
213
214\begin{figure}
215% super hack to get this to line up
216\begin{tabular}{@{}ll@{\hspace{25pt}}l@{}}
217\begin{tabular}{@{}p{3.25in}@{}}
218\lstinput{60-66}{hello-accordion.cfa}
219\vspace*{-3pt}
220\lstinput{73-80}{hello-accordion.cfa}
221\end{tabular}
222&
223\raisebox{0.32\totalheight}{%
224\lstinput{85-93}{hello-accordion.cfa}
225}%
226&
227\lstinput{95-109}{hello-accordion.cfa}
228\end{tabular}
229\caption{\lstinline{school} Harness and Output}
230\label{f:checkHarness}
231\end{figure}
232
233
234\section{Multidimensional Arrays}
235\label{toc:mdimpl}
236
237% TODO: introduce multidimensional array feature and approaches
238
239When working with arrays, \eg linear algebra, array dimensions are referred to as ``rows'' and ``columns'' for a matrix, adding ``planes'' for a cube.
240(There is little terminology for higher dimensional arrays.)
241For example, an acrostic poem\footnote{A type of poetry where the first, last or other letters in a line spell out a particular word or phrase in a vertical column.}
242can be treated as a grid of characters, where the rows are the text and the columns are the embedded keyword(s).
243Within a poem, there is the concept of a \newterm{slice}, \eg a row is a slice for the poem text, a column is a slice for a keyword.
244In general, the dimensioning and subscripting for multidimensional arrays has two syntactic forms: @m[r,c]@ or @m[r][c]@.
245
246Commonly, an array, matrix, or cube, is visualized (especially in mathematics) as a contiguous row, rectangle, or block.
247This conceptualization is reenforced by subscript ordering, \eg $m_{r,c}$ for a matrix and $c_{p,r,c}$ for a cube.
248Few programming languages differ from the mathematical subscript ordering.
249However, computer memory is flat, and hence, array forms are structured in memory as appropriate for the runtime system.
250The closest representation to the conceptual visualization is for an array object to be contiguous, and the language structures this memory using pointer arithmetic to access the values using various subscripts.
251This approach still has degrees of layout freedom, such as row or column major order, \ie juxtaposed rows or columns in memory, even when the subscript order remains fixed.
252For example, programming languages like MATLAB, Fortran, Julia and R store matrices in column-major order since they are commonly used for processing column-vectors in tabular data sets but retain row-major subscripting.
253In general, storage layout is hidden by subscripting, and only appears when passing arrays among different programming languages or accessing specific hardware.
254
255\VRef[Figure]{f:FixedVariable} shows two C90 approaches for manipulating a contiguous matrix.
256Note, C90 does not support VLAs.
257The fixed-dimension approach (left) uses the type system;
258however, it requires all dimensions except the first to be specified at compile time, \eg @m[][6]@, allowing all subscripting stride calculations to be generated with constants.
259Hence, every matrix passed to @fp1@ must have exactly 6 columns but the row size can vary.
260The variable-dimension approach (right) ignores (violates) the type system, \ie argument and parameters types do not match, and subscripting is performed manually using pointer arithmetic in the macro @sub@.
261
262\begin{figure}
263\begin{tabular}{@{}l@{\hspace{40pt}}l@{}}
264\multicolumn{1}{c}{\textbf{Fixed Dimension}} & \multicolumn{1}{c}{\textbf{Variable Dimension}} \\
265\begin{cfa}
266
267void fp1( int rows, int m[][@6@] ) {
268        ...  printf( "%d ", @m[r][c]@ );  ...
269}
270int fm1[4][@6@], fm2[6][@6@]; // no VLA
271// initialize matrixes
272fp1( 4, fm1 ); // implicit 6 columns
273fp1( 6, fm2 );
274\end{cfa}
275&
276\begin{cfa}
277#define sub( m, r, c ) *(m + r * sizeof( m[0] ) + c)
278void fp2( int rows, int cols, int *m ) {
279        ...  printf( "%d ", @sub( m, r, c )@ );  ...
280}
281int vm1[@4@][@4@], vm2[@6@][@8@]; // no VLA
282// initialize matrixes
283fp2( 4, 4, vm1 );
284fp2( 6, 8, vm2 );
285\end{cfa}
286\end{tabular}
287\caption{C90 Fixed \vs Variable Contiguous Matrix Styles}
288\label{f:FixedVariable}
289\end{figure}
290
291Many languages allow multidimensional arrays-of-arrays, \eg in Pascal or \CC.
292\begin{cquote}
293\begin{tabular}{@{}ll@{}}
294\begin{pascal}
295var m : array[0..4, 0..4] of Integer;  (* matrix *)
296type AT = array[0..4] of Integer;  (* array type *)
297type MT = array[0..4] of AT;  (* array of array type *)
298var aa : MT;  (* array of array variable *)
299m@[1][2]@ := 1;   aa@[1][2]@ := 1 (* same subscripting *)
300\end{pascal}
301&
302\begin{c++}
303int m[5][5];
304
305typedef vector< vector<int> > MT;
306MT vm( 5, vector<int>( 5 ) );
307m@[1][2]@ = 1;  aa@[1][2]@ = 1;
308\end{c++}
309\end{tabular}
310\end{cquote}
311The language decides if the matrix and array-of-array are laid out the same or differently.
312For example, an array-of-array may be an array of row pointers to arrays of columns, so the rows may not be contiguous in memory nor even the same length (triangular matrix).
313Regardless, there is usually a uniform subscripting syntax masking the memory layout, even though a language could differentiated between the two forms using subscript syntax, \eg @m[1,2]@ \vs @aa[1][2]@.
314Nevertheless, controlling memory layout can make a difference in what operations are allowed and in performance (caching/NUMA effects).
315
316C also provides non-contiguous arrays-of-arrays.
317\begin{cfa}
318int m[5][5];                                                    $\C{// contiguous}$
319int * aa[5];                                                    $\C{// non-contiguous}$
320\end{cfa}
321both with different memory layout using the same subscripting, and both with different degrees of issues.
322The focus of this work is on the contiguous multidimensional arrays in C.
323The reason is that programmers are often forced to use the more complex array-of-array form when a contiguous array would be simpler, faster, and safer.
324Nevertheless, the C array-of-array form is still important for special circumstances.
325
326\VRef[Figure]{f:ContiguousNon-contiguous} shows the extensions made in C99 for manipulating contiguous \vs non-contiguous arrays.\footnote{C90 also supported non-contiguous arrays.}
327First, VLAs are supported.
328Second, for contiguous arrays, C99 conjoins one or more of the parameters as a downstream dimension(s), \eg @cols@, implicitly using this parameter to compute the row stride of @m@.
329If the declaration of @fc@ is changed to:
330\begin{cfa}
331void fc( int rows, int cols, int m[@rows@][@cols@] ) ...
332\end{cfa}
333it is possible for C to perform bound checking across all subscripting, but it does not.
334While this contiguous-array capability is a step forward, it is still the programmer's responsibility to manually manage the number of dimensions and their sizes, both at the function definition and call sites.
335That is, the array does not automatically carry its structure and sizes for use in computing subscripts.
336While the non-contiguous style in @faa@ looks very similar to @fc@, the compiler only understands the unknown-sized array of row pointers, and it relies on the programmer to traverse the columns in a row correctly with a correctly bounded loop index.
337Specifically, there is no requirement that the rows are the same length, like a poem with different length lines.
338
339\begin{figure}
340\begin{tabular}{@{}ll@{}}
341\multicolumn{1}{c}{\textbf{Contiguous}} & \multicolumn{1}{c}{\textbf{ Non-contiguous}} \\
342\begin{cfa}
343void fc( int rows, @int cols@, int m[ /* rows */ ][@cols@] ) {
344        ...  printf( "%d ", @m[r][c]@ );  ...
345}
346int m@[5][5]@;
347for ( int r = 0; r < 5; r += 1 ) {
348
349        for ( int c = 0; c < 5; c += 1 )
350                m[r][c] = r + c;
351}
352fc( 5, 5, m );
353\end{cfa}
354&
355\begin{cfa}
356void faa( int rows, int cols, int * m[ @/* cols */@ ] ) {
357        ...  printf( "%d ", @m[r][c]@ );  ...
358}
359int @* aa[5]@;  // row pointers
360for ( int r = 0; r < 5; r += 1 ) {
361        @aa[r] = malloc( 5 * sizeof(int) );@ // create rows
362        for ( int c = 0; c < 5; c += 1 )
363                aa[r][c] = r + c;
364}
365faa( 5, 5, aa );
366\end{cfa}
367\end{tabular}
368\caption{C99 Contiguous \vs Non-contiguous Matrix Styles}
369\label{f:ContiguousNon-contiguous}
370\end{figure}
371
372
373\subsection{Multidimensional array implementation}
374
375A multidimensional array implementation has three relevant levels of abstraction, from highest to lowest, where the array occupies \emph{contiguous memory}.
376\begin{enumerate}
377\item
378Flexible-stride memory:
379this model has complete independence between subscripting ordering and memory layout, offering the ability to slice by (provide an index for) any dimension, \eg slice a plane, row, or column, \eg @c[3][*][*]@, @c[3][4][*]@, @c[3][*][5]@.
380\item
381Fixed-stride memory:
382this model binds the first subscript and the first memory layout dimension, offering the ability to slice by (provide an index for) only the coarsest dimension, @m[row][*]@ or @c[plane][*][*]@, \eg slice only by row (2D) or plane (3D).
383After which, subscripting and memory layout are independent.
384\item
385Explicit-displacement memory:
386this model has no awareness of dimensions just the ability to access memory at a distance from a reference point (base-displacement addressing), \eg @x + 23@ or @x[23}@ $\Rightarrow$ 23rd element from the start of @x@.
387A programmer must manually build any notion of dimensions using other tools;
388hence, this style is not offering multidimensional arrays \see{\VRef[Figure]{f:FixedVariable} right example}.
389\end{enumerate}
390
391There is some debate as to whether the abstraction ordering goes $\{1, 2\} < 3$, rather than my numerically-ordering.
392That is, styles 1 and 2 are at the same abstraction level, with 3 offering a limited set of functionality.
393I chose to build the \CFA style-1 array upon a style-2 abstraction.
394(Justification of the decision follows, after the description of the design.)
395
396Style 3 is the inevitable target of any array implementation.
397The hardware offers this model to the C compiler, with bytes as the unit of displacement.
398C offers this model to its programmer as pointer arithmetic, with arbitrary sizes as the unit.
399Casting a multidimensional array as a single-dimensional array/pointer, then using @x[i]@ syntax to access its elements, is still a form of pointer arithmetic.
400
401Now stepping into the implementation of \CFA's new type-1 multidimensional arrays in terms of C's existing type-2 multidimensional arrays, it helps to clarify that even the interface is quite low-level.
402A C/\CFA array interface includes the resulting memory layout.
403The defining requirement of a type-2 system is the ability to slice a column from a column-finest matrix.
404The required memory shape of such a slice is fixed, before any discussion of implementation.
405The implementation presented here is how the \CFA array library wrangles the C type system, to make it do memory steps that are consistent with this layout.
406TODO: do I have/need a presentation of just this layout, just the semantics of -[all]?
407
408The new \CFA standard library @array@ datatype supports richer multidimensional features than C.
409The new array implementation follows C's contiguous approach, \ie @float [r][c]@, with one contiguous object subscripted by coarsely-strided dimensions directly wrapping finely-strided dimensions.
410Beyond what C's array type offers, the new array brings direct support for working with a noncontiguous array slice, allowing a program to work with dimension subscripts given in a non-physical order.
411
412The following examples use the matrix declaration @array( float, 5, 7 ) m@, loaded with values incremented by $0.1$, when stepping across the length-7 finely-strided column dimension, and stepping across the length-5 coarsely-strided row dimension.
413\par
414\mbox{\lstinput{121-126}{hello-md.cfa}}
415\par\noindent
416The memory layout is 35 contiguous elements with strictly increasing addresses.
417
418A trivial form of slicing extracts a contiguous inner array, within an array-of-arrays.
419As for the C array, a lesser-dimensional array reference can be bound to the result of subscripting a greater-dimensional array by a prefix of its dimensions, \eg @m[2]@, giving the third row.
420This action first subscripts away the most coarsely strided dimensions, leaving a result that expects to be subscripted by the more finely strided dimensions, \eg @m[2][3]@, giving the value @2.3@.
421The following is an example slicing a row.
422\lstinput{60-64}{hello-md.cfa}
423\lstinput[aboveskip=0pt]{140-140}{hello-md.cfa}
424
425However, function @print1d@ is asserting too much knowledge about its parameter @r@ for printing either a row slice or a column slice.
426Specifically, declaring the parameter @r@ with type @array@ means that @r@ is contiguous, which is unnecessarily restrictive.
427That is, @r@ need only be of a container type that offers a subscript operator (of type @ptrdiff_t@ $\rightarrow$ @float@) with managed length @N@.
428The new-array library provides the trait @ar@, so-defined.
429With it, the original declaration can be generalized with the same body.
430\lstinput{43-44}{hello-md.cfa}
431\lstinput[aboveskip=0pt]{145-145}{hello-md.cfa}
432The nontrivial slicing in this example now allows passing a \emph{noncontiguous} slice to @print1d@, where the new-array library provides a ``subscript by all'' operation for this purpose.
433In a multi-dimensional subscript operation, any dimension given as @all@ is a placeholder, \ie ``not yet subscripted by a value'', waiting for such a value, implementing the @ar@ trait.
434\lstinput{150-151}{hello-md.cfa}
435
436The example shows @x[2]@ and @x[[2, all]]@ both refer to the same, ``2.*'' slice.
437Indeed, the various @print1d@ calls under discussion access the entry with value @2.3@ as @x[2][3]@, @x[[2,all]][3]@, and @x[[all,3]][2]@.
438This design preserves (and extends) C array semantics by defining @x[[i,j]]@ to be @x[i][j]@ for numeric subscripts, but also for ``subscripting by all''.
439That is:
440\begin{cquote}
441\begin{tabular}{@{}cccccl@{}}
442@x[[2,all]][3]@ & $\equiv$      & @x[2][all][3]@  & $\equiv$    & @x[2][3]@  & (here, @all@ is redundant)  \\
443@x[[all,3]][2]@ & $\equiv$      & @x[all][3][2]@  & $\equiv$    & @x[2][3]@  & (here, @all@ is effective)
444\end{tabular}
445\end{cquote}
446
447Narrating progress through each of the @-[-][-][-]@\footnote{
448The first ``\lstinline{-}'' is a variable expression and the remaining ``\lstinline{-}'' are subscript expressions.}
449expressions gives, firstly, a definition of @-[all]@, and secondly, a generalization of C's @-[i]@.
450Where @all@ is redundant:
451\begin{cquote}
452\begin{tabular}{@{}ll@{}}
453@x@  & 2-dimensional, want subscripts for coarse then fine \\
454@x[2]@  & 1-dimensional, want subscript for fine; lock coarse == 2 \\
455@x[2][all]@  & 1-dimensional, want subscript for fine \\
456@x[2][all][3]@  & 0-dimensional; lock fine == 3
457\end{tabular}
458\end{cquote}
459Where @all@ is effective:
460\begin{cquote}
461\begin{tabular}{@{}ll@{}}
462@x@  & 2-dimensional, want subscripts for coarse then fine \\
463@x[all]@  & 2-dimensional, want subscripts for fine then coarse \\
464@x[all][3]@  & 1-dimensional, want subscript for coarse; lock fine == 3 \\
465@x[all][3][2]@  & 0-dimensional; lock coarse == 2
466\end{tabular}
467\end{cquote}
468The semantics of @-[all]@ is to dequeue from the front of the ``want subscripts'' list and re-enqueue at its back.
469For example, in a two dimensional matrix, this semantics conceptually transposes the matrix by reversing the subscripts.
470The semantics of @-[i]@ is to dequeue from the front of the ``want subscripts'' list and lock its value to be @i@.
471
472Contiguous arrays, and slices of them, are all represented by the same underlying parameterized type, which includes stride information in its metatdata.
473\PAB{Do not understand this sentence: The \lstinline{-[all]} operation is a conversion from a reference to one instantiation to a reference to another instantiation.}
474The running example's @all@-effective step, stated more concretely, is:
475\begin{cquote}
476\begin{tabular}{@{}ll@{}}
477@x@       & : 5 of ( 7 of @float@ each spaced 1 @float@ apart ) each spaced 7 @floats@ apart \\
478@x[all]@  & : 7 of ( 5 of @float@ each spaced 7 @float@s apart ) each spaced 1 @float@ apart
479\end{tabular}
480\end{cquote}
481
482\begin{figure}
483\includegraphics{measuring-like-layout}
484\caption{Visualization of subscripting by value and by \lstinline[language=CFA]{all}, for \lstinline{x} of type \lstinline{array( float, 5, 7 )} understood as 5 rows by 7 columns.
485The horizontal layout represents contiguous memory addresses while the vertical layout is conceptual.
486The vertical shaded band highlights the location of the targeted element, 2.3.
487Any such vertical slice contains various interpretations of a single address.}
488\label{fig:subscr-all}
489\end{figure}
490
491Figure~\ref{fig:subscr-all} shows one element (in the shaded band) accessed two different ways: as @x[2][3]@ and as @x[all][3][2]@.
492In both cases, value 2 selects from the coarser dimension (rows of @x@),
493while the value 3 selects from the finer dimension (columns of @x@).
494The figure illustrates the value of each subexpression, comparing how numeric subscripting proceeds from @x@, \vs from @x[all]@.
495Proceeding from @x@ gives the numeric indices as coarse then fine, while proceeding from @x[all]@ gives them fine then coarse.
496These two starting expressions, which are the example's only multidimensional subexpressions
497(those that received zero numeric indices so far), are illustrated with vertical steps where a \emph{first} numeric index would select.
498
499The figure's presentation offers an intuition answering to: What is an atomic element of @x[all]@?
500From there, @x[all]@ itself is simply a two-dimensional array, in the strict C sense, of these building blocks.
501An atom (like the bottommost value, @x[all][3][2]@), is the contained value (in the square box)
502and a lie about its size (the left diagonal above it, growing upward).
503An array of these atoms (like the intermediate @x[all][3]@) is just a contiguous arrangement of them, done according to their size;
504call such an array a column.
505A column is almost ready to be arranged into a matrix;
506it is the \emph{contained value} of the next-level building block, but another lie about size is required.
507At first, an atom needs to be arranged as if it were bigger, but now a column needs to be arranged as if it is smaller (the left diagonal above it, shrinking upward).
508These lying columns, arranged contiguously according to their size (as announced) form the matrix @x[all]@.
509Because @x[all]@ takes indices, first for the fine stride, then for the coarse stride, it achieves the requirement of representing the transpose of @x@.
510Yet every time the programmer presents an index, a C-array subscript is achieving the offset calculation.
511
512In the @x[all]@ case, after the finely strided subscript is done (column 3 is selected),
513the locations referenced by the coarse subscript options (rows 0..4) are offset by 3 floats,
514compared with where analogous rows appear when the row-level option is presented for @x@.
515
516For example, in \lstinline{x[all]}, the shaded band touches atoms 2.0, 2.1, 2.2, 2.3, 1.4, 1.5 and 1.6 (left diagonal).
517But only the atom 2.3 is storing its value there.
518The rest are lying about (conflicting) claims on this location, but never exercising these alleged claims.
519
520Lying is implemented as casting.
521The arrangement just described is implemented in the structure @arpk@.
522This structure uses one type in its internal field declaration and offers a different type as the return of its subscript operator.
523The field within is a plain-C array of the fictional type, which is 7 floats long for @x[all][3][2]@ and 1 float long for @x[all][3]@.
524The subscript operator presents what is really inside, by casting to the type below the left diagonal of the lie.
525
526%  Does x[all] have to lie too?  The picture currently glosses over how it it advertises a size of 7 floats.  I'm leaving that as an edge case benignly misrepresented in the picture.  Edge cases only have to be handled right in the code.
527
528Casting, overlapping, and lying are unsafe.
529The mission is to implement a style-1 feature in the type system for safe use by a programmer.
530The offered style-1 system is allowed to be internally unsafe,
531just as C's implementation of a style-2 system (upon a style-3 system) is unsafe within, even when the programmer is using it without casts or pointer arithmetic.
532Having a style-1 system relieves the programmer from resorting to unsafe pointer arithmetic when working with noncontiguous slices.
533
534% PAB: repeat from previous paragraph.
535% The choice to implement this style-1 system upon C's style-2 arrays, rather than its style-3 pointer arithmetic, reduces the attack surface of unsafe code.
536% My casting is unsafe, but I do not do any pointer arithmetic.
537% When a programmer works in the common-case style-2 subset (in the no-@[all]@ top of Figure~\ref{fig:subscr-all}), my casts are identities, and the C compiler is doing its usual displacement calculations.
538% If I had implemented my system upon style-3 pointer arithmetic, then this common case would be circumventing C's battle-hardened displacement calculations in favour of my own.
539
540% \noindent END: Paste looking for a home
541
542The new-array library defines types and operations that ensure proper elements are accessed soundly in spite of the overlapping.
543The @arpk@ structure and its @-[i]@ operator are defined as:
544\begin{cfa}
545forall(
546        [N],                                    $\C{// length of current dimension}$
547        S & | sized(S),                 $\C{// masquerading-as}$
548        Timmed &,                               $\C{// immediate element, often another array}$
549        Tbase &                                 $\C{// base element, e.g. float, never array}$
550) { // distribute forall to each element
551        struct arpk {
552                S strides[N];           $\C{// so that sizeof(this) is N of S}$
553        };
554        // expose Timmed, stride by S
555        static inline Timmed & ?[?]( arpk( N, S, Timmed, Tbase ) & a, long int i ) {
556                subcheck( a, i, 0, N );
557                return (Timmed &)a.strides[i];
558        }
559}
560\end{cfa}
561The private @arpk@ structure (array with explicit packing) is generic over four types: dimension length, masquerading-as, ...
562This structure's public interface is hidden behind the @array(...)@ macro and the subscript operator.
563Construction by @array@ initializes the masquerading-as type information to be equal to the contained-element information.
564Subscripting by @all@ rearranges the order of masquerading-as types to achieve, in general, nontrivial striding.
565Subscripting by a number consumes the masquerading-as size of the contained element type, does normal array stepping according to that size, and returns there element found there, in unmasked form.
566
567An instantiation of the @arpk@ generic is given by the @array(E_base, N0, N1, ...)@ expansion, which is @arpk( N0, Rec, Rec, E_base )@, where @Rec@ is @array(E_base, N1, ...)@.
568In the base case, @array(E_base)@ is just @E_base@.
569Because this construction uses the same value for the generic parameters @S@ and @E_im@, the resulting layout has trivial strides.
570
571Subscripting by @all@, to operate on nontrivial strides, is a dequeue-enqueue operation on the @E_im@ chain, which carries @S@ instantiations, intact, to new positions.
572Expressed as an operation on types, this rotation is:
573\begin{eqnarray*}
574suball( arpk(N, S, E_i, E_b) ) & = & enq( N, S, E_i, E_b ) \\
575enq( N, S, E_b, E_b ) & = & arpk( N, S, E_b, E_b ) \\
576enq( N, S, arpk(N', S', E_i', E_b), E_b ) & = & arpk( N', S', enq(N, S, E_i', E_b), E_b )
577\end{eqnarray*}
578
579
580\section{Bound checks, added and removed}
581
582\CFA array subscripting is protected with runtime bound checks.
583Having dependent typing causes the optimizer to remove more of these bound checks than it would without them.
584This section provides a demonstration of the effect.
585
586The experiment compares the \CFA array system with the padded-room system [TODO:xref] most typically exemplified by Java arrays, but also reflected in the \CC pattern where restricted vector usage models a checked array.
587The essential feature of this padded-room system is the one-to-one correspondence between array instances and the symbolic bounds on which dynamic checks are based.
588The experiment compares with the \CC version to keep access to generated assembly code simple.
589
590As a control case, a simple loop (with no reused dimension sizes) is seen to get the same optimization treatment in both the \CFA and \CC versions.
591When the programmer treats the array's bound correctly (making the subscript ``obviously fine''), no dynamic bound check is observed in the program's optimized assembly code.
592But when the bounds are adjusted, such that the subscript is possibly invalid, the bound check appears in the optimized assembly, ready to catch an occurrence the mistake.
593
594TODO: paste source and assembly codes
595
596Incorporating reuse among dimension sizes is seen to give \CFA an advantage at being optimized.
597The case is naive matrix multiplication over a row-major encoding.
598
599TODO: paste source codes
600
601
602
603
604
605\section{Comparison with other arrays}
606
607
608\subsection{Rust}
609
610\CFA's array is the first lightweight application of dependently-typed bound tracking to an extension of C.
611Other extensions of C that apply dependently-typed bound tracking are heavyweight, in that the bound tracking is part of a linearly-typed ownership-system, which further helps guarantee statically the validity of every pointer deference.
612These systems, therefore, ask the programmer to convince the type checker that every pointer dereference is valid.
613\CFA imposes the lighter-weight obligation, with the more limited guarantee, that initially-declared bounds are respected thereafter.
614
615\CFA's array is also the first extension of C to use its tracked bounds to generate the pointer arithmetic implied by advanced allocation patterns.
616Other bound-tracked extensions of C either forbid certain C patterns entirely, or address the problem of \emph{verifying} that the user's provided pointer arithmetic is self-consistent.
617The \CFA array, applied to accordion structures [TOD: cross-reference] \emph{implies} the necessary pointer arithmetic, generated automatically, and not appearing at all in a user's program.
618
619
620\subsection{Java}
621
622Java arrays are arrays-of-arrays because all objects are references \see{\VRef{toc:mdimpl}}.
623For each array, Java implicitly storages the array dimension in a descriptor, supporting array length, subscript checking, and allowing dynamically-sized array-parameter declarations.
624\begin{cquote}
625\begin{tabular}{rl}
626C      &  @void f( size_t n, size_t m, float x[n][m] );@ \\
627Java   &  @void f( float x[][] );@
628\end{tabular}
629\end{cquote}
630However, in the C prototype, the parameters @n@ and @m@  are documentation only as the intended size of the first and second dimension of @x@.
631\VRef[Figure]{f:JavaVsCTriangularMatrix} compares a triangular matrix (array-of-arrays) in dynamically safe Java to unsafe C.
632Each dynamically sized row in Java stores its dimension, while C requires the programmer to manage these sizes explicitly (@rlnth@).
633All subscripting is Java has bounds checking, while C has none.
634Both Java and C require explicit null checking, otherwise there is a runtime failure.
635
636\begin{figure}
637\setlength{\tabcolsep}{15pt}
638\begin{tabular}{ll@{}}
639\begin{java}
640int m[][] = {  // triangular matrix
641        new int [4],
642        new int [3],
643        new int [2],
644        new int [1],
645        null
646};
647
648for ( int r = 0; r < m.length; r += 1 ) {
649        if ( m[r] == null ) continue;
650        for ( int c = 0; c < m[r].length; c += 1 ) {
651                m[r][c] = c + r; // subscript checking
652        }
653
654}
655
656for ( int r = 0; r < m.length; r += 1 ) {
657        if ( m[r] == null ) {
658                System.out.println( "null row" );
659                continue;
660        }
661        for ( int c = 0; c < m[r].length; c += 1 ) {
662                System.out.print( m[r][c] + " " );
663        }
664        System.out.println();
665
666}
667\end{java}
668&
669\begin{cfa}
670int * m[5] = {  // triangular matrix
671        calloc( 4, sizeof(int) ),
672        calloc( 3, sizeof(int) ),
673        calloc( 2, sizeof(int) ),
674        calloc( 1, sizeof(int) ),
675        NULL
676};
677int rlnth = 4;
678for ( int r = 0; r < 5; r += 1 ) {
679        if ( m[r] == NULL ) continue;
680        for ( int c = 0; c < rlnth; c += 1 ) {
681                m[r][c] = c + r; // no subscript checking
682        }
683        rlnth -= 1;
684}
685rlnth = 4;
686for ( int r = 0; r < 5; r += 1 ) {
687        if ( m[r] == NULL ) {
688                printf( "null row\n" );
689                continue;
690        }
691        for ( int c = 0; c < rlnth; c += 1 ) {
692                printf( "%d ", m[r][c] );
693        }
694        printf( "\n" );
695        rlnth -= 1;
696}
697\end{cfa}
698\end{tabular}
699\caption{Java (left) \vs C (right) Triangular Matrix}
700\label{f:JavaVsCTriangularMatrix}
701\end{figure}
702
703The downside of the arrays-of-arrays approach is performance due to pointer chasing versus pointer arithmetic for a contiguous arrays.
704Furthermore, there is the cost of managing the implicit array descriptor.
705It is unlikely that a JIT can dynamically rewrite an arrays-of-arrays form into a contiguous form.
706
707
708\subsection{\CC}
709
710Because C arrays are difficult and dangerous, the mantra for \CC programmers is to use @std::vector@ in place of the C array.
711While the vector size can grow and shrink dynamically, \vs a fixed-size dynamic size with VLAs, the cost of this extra feature is mitigated by preallocating the maximum size (like the VLA) at the declaration (one dynamic call) to avoid using @push_back@.
712\begin{c++}
713vector< vector< int > > m( 5, vector<int>(8) ); // initialize size of 5 x 8 with 6 dynamic allocations
714\end{c++}
715Multidimensional arrays are arrays-of-arrays with associated costs.
716Each @vector@ array has an array descriptor contain the dimension, which allows bound checked using @x.at(i)@ in place of @x[i]@.
717Used with these restrictions, out-of-bound accesses are caught, and in-bound accesses never exercise the vector's ability to grow, preventing costly reallocate and copy, and never invalidate references to contained values.
718This scheme matches Java's safety and expressiveness exactly, but with the inherent costs.
719
720
721\subsection{Levels of dependently typed arrays}
722
723The \CFA array and the field of ``array language'' comparators all leverage dependent types to improve on the expressiveness over C and Java, accommodating examples such as:
724\begin{itemize}
725\item a \emph{zip}-style operation that consumes two arrays of equal length
726\item a \emph{map}-style operation whose produced length matches the consumed length
727\item a formulation of matrix multiplication, where the two operands must agree on a middle dimension, and where the result dimensions match the operands' outer dimensions
728\end{itemize}
729Across this field, this expressiveness is not just an available place to document such assumption, but these requirements are strongly guaranteed by default, with varying levels of statically/dynamically checked and ability to opt out.
730Along the way, the \CFA array also closes the safety gap (with respect to bounds) that Java has over C.
731
732Dependent type systems, considered for the purpose of bound-tracking, can be full-strength or restricted.
733In a full-strength dependent type system, a type can encode an arbitrarily complex predicate, with bound-tracking being an easy example.
734The tradeoff of this expressiveness is complexity in the checker, even typically, a potential for its nontermination.
735In a restricted dependent type system (purposed for bound tracking), the goal is to check helpful properties, while keeping the checker well-behaved; the other restricted checkers surveyed here, including \CFA's, always terminate.
736[TODO: clarify how even Idris type checking terminates]
737
738Idris is a current, general-purpose dependently typed programming language.
739Length checking is a common benchmark for full dependent type systems.
740Here, the capability being considered is to track lengths that adjust during the execution of a program, such as when an \emph{add} operation produces a collection one element longer than the one on which it started.
741[TODO: finish explaining what Data.Vect is and then the essence of the comparison]
742
743POINTS:
744here is how our basic checks look (on a system that does not have to compromise);
745it can also do these other cool checks, but watch how I can mess with its conservativeness and termination
746
747Two current, state-of-the-art array languages, Dex\cite{arr:dex:long} and Futhark\cite{arr:futhark:tytheory}, offer novel contributions concerning similar, restricted dependent types for tracking array length.
748Unlike \CFA, both are garbage-collected functional languages.
749Because they are garbage-collected, referential integrity is built-in, meaning that the heavyweight analysis, that \CFA aims to avoid, is unnecessary.
750So, like \CFA, the checking in question is a lightweight bounds-only analysis.
751Like \CFA, their checks that are conservatively limited by forbidding arithmetic in the depended-upon expression.
752
753
754
755The Futhark work discusses the working language's connection to a lambda calculus, with typing rules and a safety theorem proven in reference to an operational semantics.
756There is a particular emphasis on an existential type, enabling callee-determined return shapes.
757
758
759Dex uses a novel conception of size, embedding its quantitative information completely into an ordinary type.
760
761Futhark and full-strength dependently typed languages treat array sizes are ordinary values.
762Futhark restricts these expressions syntactically to variables and constants, while a full-strength dependent system does not.
763
764\CFA's hybrid presentation, @forall( [N] )@, has @N@ belonging to the type system, yet has no instances.
765Belonging to the type system means it is inferred at a call site and communicated implicitly, like in Dex and unlike in Futhark.
766Having no instances means there is no type for a variable @i@ that constrains @i@ to be in the range for @N@, unlike Dex, [TODO: verify], but like Futhark.
767
768\subsection{Static safety in C extensions}
769
770
771\section{Future work}
772
773\subsection{Declaration syntax}
774
775\subsection{Range slicing}
776
777\subsection{With a module system}
778
779\subsection{With described enumerations}
780
781A project in \CFA's current portfolio will improve enumerations.
782In the incumbent state, \CFA has C's enumerations, unmodified.
783I will not discuss the core of this project, which has a tall mission already, to improve type safety, maintain appropriate C compatibility and offer more flexibility about storage use.
784It also has a candidate stretch goal, to adapt \CFA's @forall@ generic system to communicate generalized enumerations:
785\begin{cfa}
786forall( T | is_enum(T) )
787void show_in_context( T val ) {
788        for( T i ) {
789                string decorator = "";
790                if ( i == val-1 ) decorator = "< ready";
791                if ( i == val   ) decorator = "< go"   ;
792                sout | i | decorator;
793        }
794}
795enum weekday { mon, tue, wed = 500, thu, fri };
796show_in_context( wed );
797\end{cfa}
798with output
799\begin{cfa}
800mon
801tue < ready
802wed < go
803thu
804fri
805\end{cfa}
806The details in this presentation aren't meant to be taken too precisely as suggestions for how it should look in \CFA.
807But the example shows these abilities:
808\begin{itemize}
809\item a built-in way (the @is_enum@ trait) for a generic routine to require enumeration-like information about its instantiating type
810\item an implicit implementation of the trait whenever a user-written enum occurs (@weekday@'s declaration implies @is_enum@)
811\item a total order over the enumeration constants, with predecessor/successor (@val-1@) available, and valid across gaps in values (@tue == 1 && wed == 500 && tue == wed - 1@)
812\item a provision for looping (the @for@ form used) over the values of the type.
813\end{itemize}
814
815If \CFA gets such a system for describing the list of values in a type, then \CFA arrays are poised to move from the Futhark level of expressiveness, up to the Dex level.
816
817[TODO: introduce Ada in the comparators]
818
819In Ada and Dex, an array is conceived as a function whose domain must satisfy only certain structural assumptions, while in C, \CC, Java, Futhark and \CFA today, the domain is a prefix of the natural numbers.
820The generality has obvious aesthetic benefits for programmers working on scheduling resources to weekdays, and for programmers who prefer to count from an initial number of their own choosing.
821
822This change of perspective also lets us remove ubiquitous dynamic bound checks.
823[TODO: xref] discusses how automatically inserted bound checks can often be optimized away.
824But this approach is unsatisfying to a programmer who believes she has written code in which dynamic checks are unnecessary, but now seeks confirmation.
825To remove the ubiquitous dynamic checking is to say that an ordinary subscript operation is only valid when it can be statically verified to be in-bound (and so the ordinary subscript is not dynamically checked), and an explicit dynamic check is available when the static criterion is impractical to meet.
826
827[TODO, fix confusion:  Idris has this arrangement of checks, but still the natural numbers as the domain.]
828
829The structural assumptions required for the domain of an array in Dex are given by the trait (there, ``interface'') @Ix@, which says that the parameter @n@ is a type (which could take an argument like @weekday@) that provides two-way conversion with the integers and a report on the number of values.
830Dex's @Ix@ is analogous the @is_enum@ proposed for \CFA above.
831\begin{cfa}
832interface Ix n
833get_size n : Unit -> Int
834ordinal : n -> Int
835unsafe_from_ordinal n : Int -> n
836\end{cfa}
837
838Dex uses this foundation of a trait (as an array type's domain) to achieve polymorphism over shapes.
839This flavour of polymorphism lets a function be generic over how many (and the order of) dimensions a caller uses when interacting with arrays communicated with this function.
840Dex's example is a routine that calculates pointwise differences between two samples.
841Done with shape polymorphism, one function body is equally applicable to a pair of single-dimensional audio clips (giving a single-dimensional result) and a pair of two-dimensional photographs (giving a two-dimensional result).
842In both cases, but with respectively dimensioned interpretations of ``size,'' this function requires the argument sizes to match, and it produces a result of the that size.
843
844The polymorphism plays out with the pointwise-difference routine advertising a single-dimensional interface whose domain type is generic.
845In the audio instantiation, the duration-of-clip type argument is used for the domain.
846In the photograph instantiation, it's the tuple-type of $ \langle \mathrm{img\_wd}, \mathrm{img\_ht} \rangle $.
847This use of a tuple-as-index is made possible by the built-in rule for implementing @Ix@ on a pair, given @Ix@ implementations for its elements
848\begin{cfa}
849instance {a b} [Ix a, Ix b] Ix (a & b)
850get_size = \(). size a * size b
851ordinal = \(i, j). (ordinal i * size b) + ordinal j
852unsafe_from_ordinal = \o.
853bs = size b
854(unsafe_from_ordinal a (idiv o bs), unsafe_from_ordinal b (rem o bs))
855\end{cfa}
856and by a user-provided adapter expression at the call site that shows how to indexing with a tuple is backed by indexing each dimension at a time
857\begin{cfa}
858img_trans :: (img_wd,img_ht)=>Real
859img_trans.(i,j) = img.i.j
860result = pairwise img_trans
861\end{cfa}
862[TODO: cite as simplification of example from https://openreview.net/pdf?id=rJxd7vsWPS section 4]
863
864In the case of adapting this pattern to \CFA, my current work provides an adapter from ``successively subscripted'' to ``subscripted by tuple,'' so it is likely that generalizing my adapter beyond ``subscripted by @ptrdiff_t@'' is sufficient to make a user-provided adapter unnecessary.
865
866\subsection{Retire pointer arithmetic}
867
868
869\section{\CFA}
870
871XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX \\
872moved from background chapter \\
873XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX \\
874
875Traditionally, fixing C meant leaving the C-ism alone, while providing a better alternative beside it.
876(For later:  That's what I offer with array.hfa, but in the future-work vision for arrays, the fix includes helping programmers stop accidentally using a broken C-ism.)
877
878\subsection{\CFA features interacting with arrays}
879
880Prior work on \CFA included making C arrays, as used in C code from the wild,
881work, if this code is fed into @cfacc@.
882The quality of this this treatment was fine, with no more or fewer bugs than is typical.
883
884More mixed results arose with feeding these ``C'' arrays into preexisting \CFA features.
885
886A notable success was with the \CFA @alloc@ function,
887which type information associated with a polymorphic return type
888replaces @malloc@'s use of programmer-supplied size information.
889\begin{cfa}
890// C, library
891void * malloc( size_t );
892// C, user
893struct tm * el1 = malloc( sizeof(struct tm) );
894struct tm * ar1 = malloc( 10 * sizeof(struct tm) );
895
896// CFA, library
897forall( T * ) T * alloc();
898// CFA, user
899tm * el2 = alloc();
900tm (*ar2)[10] = alloc();
901\end{cfa}
902The alloc polymorphic return compiles into a hidden parameter, which receives a compiler-generated argument.
903This compiler's argument generation uses type information from the left-hand side of the initialization to obtain the intended type.
904Using a compiler-produced value eliminates an opportunity for user error.
905
906TODO: fix in following: even the alloc call gives bad code gen: verify it was always this way; walk back the wording about things just working here; assignment (rebind) seems to offer workaround, as in bkgd-cfa-arrayinteract.cfa
907
908Bringing in another \CFA feature, reference types, both resolves a sore spot of the last example, and gives a first example of an array-interaction bug.
909In the last example, the choice of ``pointer to array'' @ar2@ breaks a parallel with @ar1@.
910They are not subscripted in the same way.
911\begin{cfa}
912ar1[5];
913(*ar2)[5];
914\end{cfa}
915Using ``reference to array'' works at resolving this issue.  TODO: discuss connection with Doug-Lea \CC proposal.
916\begin{cfa}
917tm (&ar3)[10] = *alloc();
918ar3[5];
919\end{cfa}
920The implicit size communication to @alloc@ still works in the same ways as for @ar2@.
921
922Using proper array types (@ar2@ and @ar3@) addresses a concern about using raw element pointers (@ar1@), albeit a theoretical one.
923TODO xref C standard does not claim that @ar1@ may be subscripted,
924because no stage of interpreting the construction of @ar1@ has it be that ``there is an \emph{array object} here.''
925But both @*ar2@ and the referent of @ar3@ are the results of \emph{typed} @alloc@ calls,
926where the type requested is an array, making the result, much more obviously, an array object.
927
928The ``reference to array'' type has its sore spots too.
929TODO see also @dimexpr-match-c/REFPARAM_CALL@ (under @TRY_BUG_1@)
930
931TODO: I fixed a bug associated with using an array as a T.  I think.  Did I really?  What was the bug?
Note: See TracBrowser for help on using the repository browser.