[38e20a80] | 1 | \chapter{Enumeration Traits} |
---|
| 2 | \label{c:trait} |
---|
[956299b] | 3 | |
---|
[8cb2ff6] | 4 | \CC introduced the @std::is_enum@ trait in \CC{11} and concept feature in \CC{20}. |
---|
| 5 | With this combination, it is possible to write a polymorphic function over an enumerated type. |
---|
| 6 | \begin{c++} |
---|
[21f4dff] | 7 | #include <type_traits> |
---|
[8cb2ff6] | 8 | template<typename T> @concept Enumerable@ = std::is_enum<T>::value; |
---|
| 9 | template<@Enumerable@ E> E f( E e ) { $\C{// constrainted type}$ |
---|
| 10 | E w = e; $\C{// alloction and copy}$ |
---|
| 11 | cout << e << ' ' << w << endl; $\C{// value}$ |
---|
| 12 | return w; $\C{// copy}$ |
---|
| 13 | } |
---|
| 14 | int main() { |
---|
| 15 | enum E { A = 42, B, C } e = C; |
---|
| 16 | e = f( e ); |
---|
| 17 | } |
---|
| 18 | 44 44 |
---|
| 19 | \end{c++} |
---|
| 20 | The @std::is_enum@ and other \CC @traits@ are a compile-time interfaces to query type information. |
---|
| 21 | While named the same as @trait@ in other programming languages, it is orthogonal to the \CFA trait, with the latter being defined as a collection of assertion to be satisfied by a polymorphic type. |
---|
[21f4dff] | 22 | |
---|
[8cb2ff6] | 23 | The following sections cover the underlying implementation features I created to generalize and restrict enumerations in the \CFA type-system using the @trait@ mechanism. |
---|
[21f4dff] | 24 | |
---|
[d1276f8] | 25 | |
---|
[8cb2ff6] | 26 | \section{Traits \lstinline{CfaEnum} and \lstinline{TypedEnum}} |
---|
| 27 | |
---|
| 28 | Traits @CfaEnum@ and @TypedEnum@ define the enumeration attributes: @label@, @posn@, @value@, and @Countof@. |
---|
| 29 | These traits support polymorphic functions for \CFA enumeration, \eg: |
---|
[21f4dff] | 30 | \begin{cfa} |
---|
[8cb2ff6] | 31 | forall( E ) | @CfaEnum( E )@ ) |
---|
| 32 | void f( E e ) { |
---|
| 33 | // access enumeration properties for e |
---|
| 34 | } |
---|
[21f4dff] | 35 | \end{cfa} |
---|
| 36 | |
---|
[8cb2ff6] | 37 | Trait @CfaEnum@ defines attribute functions @label@ and @posn@ for all \CFA enumerations, and internally \CFA enumerations fulfills this assertion. |
---|
[d1276f8] | 38 | \begin{cfa} |
---|
| 39 | forall( E ) trait CfaEnum { |
---|
| 40 | const char * @label@( E e ); |
---|
| 41 | unsigned int @posn@( E e ); |
---|
| 42 | }; |
---|
| 43 | \end{cfa} |
---|
[8cb2ff6] | 44 | This trait covers opaque enumerations that do not have an explicit @value@. |
---|
[d1276f8] | 45 | |
---|
[8cb2ff6] | 46 | The trait @TypedEnum@ extends @CfaEnum@ with the @value@ assertion for typed enumerations. |
---|
[d1276f8] | 47 | \begin{cfa} |
---|
| 48 | forall( E, V | CfaEnum( E ) ) trait TypedEnum { |
---|
| 49 | V @value@( E e ); |
---|
| 50 | }; |
---|
| 51 | \end{cfa} |
---|
[8cb2ff6] | 52 | Here, the associate type-parameter @V@ is the base type of the typed enumeration, and hence, the return type of @value@. |
---|
| 53 | These two traits provide a way to define functions over all \CFA enumerations. |
---|
[d1276f8] | 54 | |
---|
[8cb2ff6] | 55 | For example, \VRef[Figure]{f:GeneralizedEnumerationFormatter} shows a generalized enumeration formatter for any enumeration type. |
---|
| 56 | The formatter prints an enumerator name and its value in the form @"label( value )"@. |
---|
| 57 | The trait for @format_enum@ requires a function named @str@ for printing the value (payload) of the enumerator. |
---|
| 58 | Hence, enumeration defines how its value appear and @format_enum@ displays this value within the label name. |
---|
[38e20a80] | 59 | |
---|
[8cb2ff6] | 60 | \begin{figure} |
---|
| 61 | \begin{cfa} |
---|
| 62 | forall( @E, V | TypedEnum( E, V )@ | { string str( V ); } ) $\C{// format any enumeration}$ |
---|
| 63 | string format_enum( E e ) { |
---|
| 64 | return label( e ) + '(' + str( value( e ) ) + ')'; $\C{// "label( value )"}$ |
---|
[d1276f8] | 65 | } |
---|
[8cb2ff6] | 66 | enum(size_t) RGB { Red = 0xFF0000, Green = 0x00FF00, Blue = 0x0000FF }; |
---|
| 67 | // string library has conversion function str from size_t to string |
---|
| 68 | |
---|
| 69 | struct color_code { int R, G, B; }; |
---|
[38e20a80] | 70 | enum(color_code) Rainbow { |
---|
[8cb2ff6] | 71 | Red = {255, 0, 0}, Orange = {255, 127, 0}, Yellow = {255, 255, 0}, Green = {0, 255, 0}, // ... |
---|
[38e20a80] | 72 | }; |
---|
[8cb2ff6] | 73 | string str( color_code cc ) with( cc ) { $\C{// format payload, "ddd,ddd,ddd"}$ |
---|
| 74 | return str( R ) + ',' + str( G ) + ',' + str( B ); $\C{// "R,G,B"}$ |
---|
| 75 | } |
---|
| 76 | int main() { |
---|
| 77 | sout | format_enum( RGB.Green ); $\C{// "Green(65280)"}$ |
---|
| 78 | sout | format_enum( Rainbow.Green ); $\C{// "Green(0,255,0)"}$ |
---|
| 79 | } |
---|
[d1276f8] | 80 | \end{cfa} |
---|
[8cb2ff6] | 81 | \caption{Generalized Enumeration Formatter} |
---|
| 82 | \label{f:GeneralizedEnumerationFormatter} |
---|
| 83 | \end{figure} |
---|
[d1276f8] | 84 | |
---|
[8cb2ff6] | 85 | Other types may work with traits @CfaEnum@ and @TypedEnum@, by supplying appropriate @label@, @posn@, and @value@ functions. |
---|
| 86 | For example, \VRef[Figure]{f:GeneralizedEnumerationFormatter} extends a (possibly predefined) C enumeration to work with all the \CFA extensions. |
---|
[38e20a80] | 87 | |
---|
[8cb2ff6] | 88 | \begin{figure} |
---|
[d1276f8] | 89 | \begin{cfa} |
---|
[8cb2ff6] | 90 | enum Fruit { Apple, Banana, Cherry }; $\C{// C enum}$ |
---|
| 91 | const char * @label@( Fruit f ) { |
---|
| 92 | static const char * labels[] = { "Apple", "Banana", "Cherry" }; |
---|
| 93 | return labels[f]; |
---|
[d1276f8] | 94 | } |
---|
[8cb2ff6] | 95 | int @posn@( Fruit f ) { return f; } |
---|
| 96 | int @value@( Fruit f ) { |
---|
| 97 | static const char values[] = { 'a', 'b', 'c' }; |
---|
| 98 | return values[f]; |
---|
[38e20a80] | 99 | } |
---|
[8cb2ff6] | 100 | sout | format_enum( Cherry ); $\C{// "Cherry(c)"}$ |
---|
[d1276f8] | 101 | \end{cfa} |
---|
[8cb2ff6] | 102 | \caption{Generalized Enumeration Formatter} |
---|
| 103 | \label{f:GeneralizedEnumerationFormatter} |
---|
| 104 | \end{figure} |
---|
[d1276f8] | 105 | |
---|
[6740533e] | 106 | |
---|
[8cb2ff6] | 107 | \section{Discussion: Genericity} |
---|
| 108 | |
---|
| 109 | At the start of this chapter, the \CC concept is introduced to constraint template types, \eg: |
---|
| 110 | \begin{c++} |
---|
| 111 | concept Enumerable = std::is_enum<T>::value; |
---|
| 112 | \end{c++} |
---|
| 113 | Here, @concept@ is referring directly to types with kind @enum@; |
---|
| 114 | other @concept@s can refer to all types with kind @int@ with @long@ or @long long@ qualifiers, \etc. |
---|
| 115 | Hence, the @concept@ is a first level of restriction allowing only the specified kinds of types and rejecting others. |
---|
| 116 | The template expansion is the second level of restriction verifying if the type passing the @concept@ test provides the necessary functionality. |
---|
| 117 | Hence, a @concept@ is querying precise aspects of the programming language set of types. |
---|
| 118 | |
---|
| 119 | Alternatively, languages using traits, like \CFA, Scala, Go, and Rust, are defining a restriction based on a set of operations, variables, or structure fields that must exist to match with usages in a function or aggregate type. |
---|
| 120 | Hence, the \CFA enumeration traits never connected with the specific @enum@ kind. |
---|
| 121 | Instead, anything that can look like the @enum@ kind is considered an enumeration (duck typing). |
---|
[d7cb0f7] | 122 | However, Scala, Go, and Rust traits are nominative: a type explicitly declares a named traits to be of its type, while in \CFA, any type implementing all requirements declared in a trait implicitly satisfy its restrictions. |
---|
[8cb2ff6] | 123 | |
---|
| 124 | One of the key differences between concepts and traits, which is leveraged heavily by \CFA, is the ability to apply new \CFA features to C legacy code. |
---|
| 125 | For example, \VRef[Figure]{f:GeneralizedEnumerationFormatter} shows that pre-existing C enumerations can be upgraded to work and play with new \CFA enumeration facilities. |
---|
| 126 | Another example is adding constructors and destructors to pre-existing C types by simply declaring them for the old C type. |
---|
[5fdaeab1] | 127 | \CC fails at certain levels of legacy extension because many of the new \CC features must appear \emph{within} an aggregate definition due to the object-oriented nature of he type system, where it is impossible to change legacy library types. |
---|
[6740533e] | 128 | |
---|
| 129 | |
---|
| 130 | \section{Bounded and Serial} |
---|
[8cb2ff6] | 131 | |
---|
| 132 | A bounded trait defines a lower and upper bound for a type. |
---|
[d1276f8] | 133 | \begin{cfa} |
---|
| 134 | forall( E ) trait Bounded { |
---|
[38e20a80] | 135 | E lowerBound(); |
---|
| 136 | E lowerBound(); |
---|
[d1276f8] | 137 | }; |
---|
| 138 | \end{cfa} |
---|
[8cb2ff6] | 139 | Both functions are necessary for the implementation of \CFA enumeration, with @lowerBound@ returning the first enumerator and @upperBound@ returning the last enumerator. |
---|
[d1276f8] | 140 | \begin{cfa} |
---|
[8cb2ff6] | 141 | enum(int) Week { Mon, Tue, Wed, Thu, Fri, Sat, Sun }; |
---|
| 142 | enum(int) Fruit { Apple, Banana, Cherry }; |
---|
| 143 | Week first_day = lowerBound(); $\C{// Mon}$ |
---|
| 144 | Fruit last_fruit = upperBound(); $\C{// Cherry}$ |
---|
[d1276f8] | 145 | \end{cfa} |
---|
[8cb2ff6] | 146 | The @lowerBound@ and @upperBound@ are functions overloaded on return type only, meaning their type resolution depends solely on the call-site context, such as the parameter type for a function argument or the left hand size of an assignment expression. |
---|
| 147 | Calling either function without a context results in a type ambiguity, unless the type environment has only one type overloading the functions. |
---|
[d1276f8] | 148 | \begin{cfa} |
---|
[8cb2ff6] | 149 | sout | @lowerBound()@; $\C[2.5in]{// ambiguous as Week and Fruit implement Bounded}$ |
---|
| 150 | void foo( Fruit ); |
---|
| 151 | foo( lowerBound() ); $\C{// parameter provides type Fruit}$ |
---|
| 152 | Week day = upperBound(); $\C{// day provides type Week}\CRT$ |
---|
[d1276f8] | 153 | \end{cfa} |
---|
| 154 | |
---|
[8cb2ff6] | 155 | Trait @Serial@ is a subset of @Bounded@, with functions mapping enumerators to integers, and implementing a sequential order between enumerators. |
---|
[d1276f8] | 156 | \begin{cfa} |
---|
| 157 | forall( E | Bounded( E ) ) trait Serial { |
---|
[8cb2ff6] | 158 | int fromInstance( E e ); |
---|
[38e20a80] | 159 | E fromInt( unsigned int i ); |
---|
[d1276f8] | 160 | E pred( E e ); |
---|
[8cb2ff6] | 161 | E succ( E e ); |
---|
| 162 | unsigned Countof( E ); |
---|
[d1276f8] | 163 | }; |
---|
| 164 | \end{cfa} |
---|
[8cb2ff6] | 165 | Function @fromInstance@ projects a @Bounded@ member to a number and @fromInt@ is the inverse. |
---|
| 166 | Function @pred@ takes an enumerator and returns the previous enumerator, if there is one, in sequential order, and @succ@ returns the next enumerator. |
---|
[38e20a80] | 167 | \begin{cfa} |
---|
[8cb2ff6] | 168 | sout | fromInstance( Wed ) | fromInt( 2 ) | succ( Wed ) | pred( Wed ); |
---|
| 169 | 2 Wed Thu Tue |
---|
[38e20a80] | 170 | \end{cfa} |
---|
[8cb2ff6] | 171 | Bound checking is provided for @fromInt@, @pred@, and @succ@, and the program is terminated if the lower or upper bound is exceeded, \eg: |
---|
| 172 | \begin{cfa} |
---|
| 173 | fromInt( 100 ); |
---|
| 174 | Cforall Runtime error: call to fromInt has index 100 outside of enumeration range 0-6. |
---|
| 175 | \end{cfa} |
---|
| 176 | Function @fromInstance@ or a position cast using @(int)@ is always safe, \ie within the enumeration range. |
---|
| 177 | |
---|
| 178 | Function @Countof@ is the generic counterpart to the builtin pseudo-function @countof@. |
---|
| 179 | @countof@ only works on enumeration types and instances, so it is locked into the language type system; |
---|
| 180 | as such, @countof( enum-type)@ becomes a compile-time constant. |
---|
| 181 | @Countof@ works on an any type that matches the @Serial@ trait. |
---|
| 182 | Hence, @Countof@ does not use its argument; |
---|
| 183 | only the parameter type is needed to compute the range size. |
---|
| 184 | \begin{cfa} |
---|
| 185 | int Countof( E ) { |
---|
| 186 | E upper = upperBound(); |
---|
| 187 | E lower = lowerBound(); |
---|
| 188 | return fromInstance( upper ) + fromInstance( lower ) + 1; |
---|
| 189 | } |
---|
| 190 | \end{cfa} |
---|
| 191 | |
---|
| 192 | @countof@ also works for any type @E@ that defines @Countof@ and @lowerBound@, becoming a call to @Countof( E )@. |
---|
| 193 | The resolution step on expression @countof( E )@ are: |
---|
[38e20a80] | 194 | \begin{enumerate} |
---|
[8cb2ff6] | 195 | \item Look for an enumeration named @E@, such as @enum E {... }@. |
---|
| 196 | If such an enumeration @E@ exists, replace @countof( E )@ with the number of enumerators. |
---|
| 197 | \item Look for a non-enumeration type named @E@ that defines @Countof@ and @lowerBound@, including @E@ being a polymorphic type, such as @forall( E )@. |
---|
| 198 | If type @E@ exists, replaces it with @Countof(lowerBound())@, where @lowerBound@ is defined for type @E@. |
---|
| 199 | \item Look for an enumerator @A@ defined in enumeration @E@. |
---|
| 200 | If such an enumerator @A@ exists, replace @countof( A )@ with the number of enumerators in @E@. |
---|
| 201 | \item Look for a name @A@ in the lexical context with type @E@. |
---|
| 202 | If such name @A@ exists, replace @countof( A )@ with function call @Countof( E )@. |
---|
| 203 | \item If 1-4 fail, report a type error on expression @countof( E )@. |
---|
[38e20a80] | 204 | \end{enumerate} |
---|
| 205 | |
---|
[8cb2ff6] | 206 | |
---|
| 207 | \section{Enumerating} |
---|
| 208 | |
---|
| 209 | The fundamental aspect of an enumeration type is the ability to enumerate over its enumerators. |
---|
| 210 | \CFA supports \newterm{for} loops, \newterm{while} loop, and \newterm{range} loop. This section covers @for@ loops and @range@ loops for enumeration, but the concept transition to @while@ loop. |
---|
| 211 | |
---|
[96de72b] | 212 | |
---|
| 213 | \subsection{For Loop} |
---|
[38e20a80] | 214 | |
---|
[8cb2ff6] | 215 | A for-loop consists of loop control and body. |
---|
| 216 | The loop control is often a 3-tuple: initializers, stopping condition, and advancement. |
---|
| 217 | It is a common practice to declare one or more loop-index variables in initializers, checked these variables for stopping iteration, and updated the variables in advancement. |
---|
| 218 | Such a variable is called an \newterm{index} and is available for reading and writing within the loop body. |
---|
| 219 | (Some languages make the index read-only in the loop body.) |
---|
| 220 | This style of iteration can be written for an enumeration using functions from the @Bounded@ and @Serial@ traits: |
---|
[96de72b] | 221 | \begin{cfa} |
---|
[8cb2ff6] | 222 | enum() E { A, B, C, D }; |
---|
| 223 | for ( unsigned int i = 0; i < countof(E); i += 1 ) $\C{// (1)}$ |
---|
| 224 | sout | label( fromInt( i ) ) | nonl; |
---|
| 225 | sout | nl; |
---|
| 226 | for ( E e = lowerBound(); ; e = succ(e) ) { $\C{// (2)}$ |
---|
| 227 | sout | label(e) | nonl; |
---|
| 228 | if (e == upperBound()) break; |
---|
[38e20a80] | 229 | } |
---|
[8cb2ff6] | 230 | sout | nl; |
---|
| 231 | A B C D |
---|
| 232 | A B C D |
---|
[38e20a80] | 233 | \end{cfa} |
---|
[d1276f8] | 234 | |
---|
[8cb2ff6] | 235 | A caveat in writing loop control using @pred@ and @succ@ is unintentionally exceeding the range. |
---|
[96de72b] | 236 | \begin{cfa} |
---|
[8cb2ff6] | 237 | for ( E e = upperBound(); e >= lowerBound(); e = pred( e ) ) {} |
---|
| 238 | for ( E e = lowerBound(); e <= upperBound(); e = succ( e ) ) {} |
---|
[96de72b] | 239 | \end{cfa} |
---|
[8cb2ff6] | 240 | Both of these loops look correct but fail because these is an additional bound check within the advancement \emph{before} the conditional test to stop the loop, resulting in a failure at the endpoints of the iteration. |
---|
| 241 | These loops must be restructured by moving the loop test to the end of the loop (@do-while@), as in loop (2) above, which is safe because an enumeration always at least one enumerator. |
---|
[96de72b] | 242 | |
---|
| 243 | |
---|
| 244 | \subsection{Range Loop} |
---|
[8cb2ff6] | 245 | |
---|
| 246 | Instead of writing the traditional 3-tuple loop control, \CFA supports a \newterm{range loop}. |
---|
| 247 | \begin{cfa} |
---|
| 248 | for ( @E e; A ~= D@ ) { sout | label( e ) | nonl; } sout | nl; |
---|
| 249 | for ( @e; A ~= D@ ) { sout | label( e ) | nonl; } sout | nl; |
---|
| 250 | for ( @E e; A -~= D@ ) { sout | label( e ) | nonl; } sout | nl; |
---|
| 251 | for ( @e; A -~= D ~ 2@ ) { sout | label( e ) | nonl; } sout | nl; |
---|
[96de72b] | 252 | \end{cfa} |
---|
[8cb2ff6] | 253 | Every range loop above has an index declaration and a @range@ bounded by \newterm{left bound} @A@ and \newterm{right bound} @D@. |
---|
| 254 | If the index declaration-type is omitted, the index type is the type of the lower bound (@typeof( A )@). |
---|
| 255 | If a range is joined by @~=@ (range up equal) operator, the index variable is initialized by the left bound and advanced by 1 until it is greater than the right bound. |
---|
| 256 | If a range is joined by @-~=@ (range down equal) operator, the index variable is initialized by the right bound and advanced by -1 until it is less than the left bound. |
---|
| 257 | (Note, functions @pred@ and @succ@ are not used for advancement, so the advancement problem does not occur.) |
---|
| 258 | A range can be suffixed by a positive \newterm{step}, \eg @~ 2@, so advancement is incremented/decremented by step. |
---|
| 259 | |
---|
| 260 | Finally, a shorthand for enumerating over the entire set of enumerators (the most common case) is using the enumeration type for the range. |
---|
| 261 | \begin{cfa} |
---|
| 262 | for ( e; @E@ ) sout | label( e ) | nonl; sout | nl; $\C{// A B C D}$ |
---|
| 263 | for ( e; @-~= E@ ) sout | label( e ) | nonl; sout | nl; $\C{// D C B A}$ |
---|
[96de72b] | 264 | \end{cfa} |
---|
[8cb2ff6] | 265 | For a \CFA enumeration, the loop enumerates over all enumerators of the enumeration. |
---|
| 266 | For a type matching the @Serial@ trait: the index variable is initialized to @lowerBound@ and loop control checks the index's value for greater than the @upperBound@. |
---|
| 267 | If the range type is not a \CFA enumeration or does not match trait @Serial@, it is compile-time error. |
---|
| 268 | |
---|
[96de72b] | 269 | |
---|
| 270 | \section{Overload Operators} |
---|
[8cb2ff6] | 271 | |
---|
| 272 | \CFA overloads the comparison operators for \CFA enumeration satisfying traits @Serial@ and @CfaEnum@. |
---|
| 273 | These definitions require the operand types be the same and the appropriate comparison is made using the the positions of the operands. |
---|
[d1276f8] | 274 | \begin{cfa} |
---|
[8cb2ff6] | 275 | forall( E | CfaEnum( E ) | Serial( E ) ) @{@ $\C{// distribution block}$ |
---|
[d1276f8] | 276 | // comparison |
---|
| 277 | int ?==?( E l, E r ); $\C{// true if l and r are same enumerators}$ |
---|
| 278 | int ?!=?( E l, E r ); $\C{// true if l and r are different enumerators}$ |
---|
| 279 | int ?<?( E l, E r ); $\C{// true if l is an enumerator before r}$ |
---|
| 280 | int ?<=?( E l, E r ); $\C{// true if l before or the same as r}$ |
---|
| 281 | int ?>?( E l, E r ); $\C{// true if l is an enumerator after r}$ |
---|
[96de72b] | 282 | int ?>=?( E l, E r ); $\C{// true if l after or the same as r}$ |
---|
[8cb2ff6] | 283 | @}@ |
---|
[d1276f8] | 284 | \end{cfa} |
---|
[8cb2ff6] | 285 | (Note, all the function prototypes are wrapped in a distribution block, where all qualifiers preceding the block are distributed to each declaration with the block, which eliminated tedious repeated qualification. |
---|
| 286 | Distribution blocks can be nested.) |
---|
[d1276f8] | 287 | |
---|
[8cb2ff6] | 288 | \CFA implements a few arithmetic operators for @CfaEnum@. |
---|
| 289 | Unlike advancement functions in @Serial@, these operators perform direct arithmetic, so there is no implicit bound checks. |
---|
[96de72b] | 290 | \begin{cfa} |
---|
[8cb2ff6] | 291 | forall( E | CfaEnum( E ) | Serial( E ) ) { $\C{// distribution block}$ |
---|
[96de72b] | 292 | // comparison |
---|
| 293 | E ++?( E & l ); |
---|
| 294 | E --?( E & l ); |
---|
| 295 | E ?+=? ( E & l, one_t ); |
---|
| 296 | E ?-=? ( E & l, one_t ); |
---|
| 297 | E ?+=? ( E & l, int i ); |
---|
| 298 | E ?-=? ( E & l, int i ); |
---|
| 299 | E ?++( E & l ); |
---|
| 300 | E ?--( E & l ); |
---|
| 301 | } |
---|
| 302 | \end{cfa} |
---|
[d1276f8] | 303 | |
---|
[8cb2ff6] | 304 | Lastly, \CFA does not define @zero_t@ for \CFA enumeration. |
---|
| 305 | Users can define the boolean @false@ for \CFA enumerations on their own, \eg: |
---|
[d1276f8] | 306 | \begin{cfa} |
---|
[8cb2ff6] | 307 | forall( E | CfaEnum( E ) ) |
---|
| 308 | int ?!=?( E lhs, zero_t ) { |
---|
| 309 | return posn( lhs ) != 0; |
---|
[d1276f8] | 310 | } |
---|
| 311 | \end{cfa} |
---|
[8cb2ff6] | 312 | which effectively turns the first enumeration to a logical @false@ and @true@ for the others. |
---|