source: doc/theses/jiada_liang_MMath/relatedwork.tex @ e78966e

Last change on this file since e78966e was 566cc33, checked in by Peter A. Buhr <pabuhr@…>, 6 months ago

move all lstnewenvironment macros to central location in uw-ethesis.tex

  • Property mode set to 100644
File size: 94.1 KB
Line 
1\chapter{Related Work}
2\label{s:RelatedWork}
3
4\begin{comment}
5An algebraic data type (ADT) can be viewed as a recursive sum of product types.
6A sum type lists values as members.
7A member in a sum type definition is known as a data constructor.
8For example, C supports sum types union and enumeration (enum).
9An enumeration in C can be viewed as the creation of a list of zero-arity data constructors.
10A union instance holds a value of one of its member types.
11Defining a union does not generate new constructors.
12The definition of member types and their constructors are from the outer lexical scope.
13
14In general, an \Newterm{algebraic data type} (ADT) is a composite type, \ie, a type formed by combining other types.
15Three common classes of algebraic types are \Newterm{array type}, \ie homogeneous types, \Newterm{product type}, \ie heterogeneous tuples and records (structures), and \Newterm{sum type}, \ie tagged product-types (unions).
16Enumerated types are a special case of product/sum types with non-mutable fields, \ie initialized (constructed) once at the type's declaration, possible restricted to compile-time initialization.
17Values of algebraic types are access by subscripting, field qualification, or type (pattern) matching.
18\end{comment}
19
20Enumeration types exist in many popular programming languages, both past and present, \eg Pascal~\cite{Pascal}, Ada~\cite{Ada}, \Csharp~\cite{Csharp}, OCaml~\cite{OCaml} \CC, Go~\cite{Go}, Java~\cite{Java}, Modula-3~\cite{Modula-3}, Rust~\cite{Rust}, Swift~\cite{Swift}, Python~\cite{Python}.
21Among theses languages, there are a large set of overlapping features, but each language has its own unique extensions and restrictions.
22
23\section{Pascal}
24\label{s:Pascal}
25
26Classic Pascal has the \lstinline[language=pascal]{const} declaration binding a name to a constant literal/expression.
27\begin{pascal}
28const one = 0 + 1;   Vowels = set of (A,E,I,O,U);   NULL = NIL;
29                 PI = 3.14159;   Plus = '+';   Fred = 'Fred';
30\end{pascal}
31This mechanism is not an enumeration because there is no specific type (pseudo enumeration).
32Hence, there is no notion of a (possibly ordered) set, modulo the \lstinline[language=pascal]{set of} type.
33The type of each constant name (enumerator) is inferred from the constant-expression type.
34
35Free Pascal~\cite[\S~3.1.1]{FreePascal} is a modern, object-oriented version of classic Pascal, with a C-style enumeration type.
36Enumerators must be assigned in ascending numerical order with a constant expression and the range can be non-consecutive.
37\begin{pascal}
38Type EnumType = ( one, two, three, forty @= 40@, fortyone );
39\end{pascal}
40Pseudo-functions @Pred@ and @Succ@ can only be used if the range is consecutive.
41The underlying type is an implementation-defined integral-type large enough to hold all enumerated values; it does not have to be the smallest possible type.
42The integral size can be explicitly specified using compiler directive @$PACKENUM@~$N$, where $N$ is the number of bytes, \eg:
43\begin{pascal}
44Type @{$\color{red}\$$PACKENUM 1}@ SmallEnum = ( one, two, three );
45            @{$\color{red}\$$PACKENUM 4}@ LargeEnum = ( BigOne, BigTwo, BigThree );
46Var S : SmallEnum; { 1 byte }
47          L : LargeEnum; { 4 bytes}
48\end{pascal}
49
50
51\section{Ada}
52
53An Ada enumeration type is a set of ordered unscoped identifiers (enumerators) bound to \emph{unique} \Newterm{literals}.\footnote{%
54Ada is \emph{case-insensitive} so identifiers may appear in multiple forms and still be the same, \eg \lstinline{Mon}, \lstinline{moN}, and \lstinline{MON} (a questionable design decision).}
55\begin{ada}
56type Week is ( Mon, Tue, Wed, Thu, Fri, Sat, Sun ); -- literals (enumerators)
57\end{ada}
58Object initialization and assignment are restricted to the enumerators of this type.
59While Ada enumerators are unscoped, like C, Ada enumerators are overloadable.
60\begin{ada}
61type RGB is ( @Red@, @Green@, Blue );
62type Traffic_Light is ( @Red@, Yellow, @Green@ );
63\end{ada}
64Like \CFA, Ada uses an advanced type-resolution algorithm, including the left-hand side of assignment, to disambiguate among overloaded identifiers.
65\VRef[Figure]{f:AdaEnumeration} shows how ambiguity is handled using a cast, \ie \lstinline[language=ada]{RGB'(Red)}.
66
67\begin{figure}
68\begin{ada}
69with Ada.Text_IO; use Ada.Text_IO;
70procedure test is
71        type RGB is ( @Red@, Green, Blue );
72        type Traffic_Light is ( @Red@, Yellow, Green );         -- overload
73        procedure @Red@( Colour : RGB ) is begin            -- overload
74                Put_Line( "Colour is " & RGB'Image( Colour ) );
75        end Red;
76        procedure @Red@( TL : Traffic_Light ) is begin       -- overload
77                Put_Line( "Light is " & Traffic_Light'Image( TL ) );
78        end Red;
79begin
80        @Red@( Blue );                           -- RGB
81        @Red@( Yellow );                                -- Traffic_Light
82        @Red@( @RGB'(Red)@ );           -- ambiguous without cast
83end test;
84\end{ada}
85\caption{Ada Enumeration Overload Resolution}
86\label{f:AdaEnumeration}
87\end{figure}
88
89Enumerators without initialization are auto-initialized from left to right, starting at zero, incrementing by 1.
90Enumerators with initialization must set \emph{all} enumerators in \emph{ascending} order, \ie there is no auto-initialization.
91\begin{ada}
92type Week is ( Mon, Tue, Wed, Thu, Fri, Sat, Sun );
93for Week use ( Mon => 0, Tue => 1, Wed => 2, Thu => @10@, Fri => 11, Sat => 14, Sun => 15 );
94\end{ada}
95The enumeration operators are the equality and relational operators, @=@, @/=@, @<@, @<=@, @=@, @/=@, @>=@, @>@, where the ordering relationship is given implicitly by the sequence of acsending enumerators.
96
97Ada provides an alias mechanism, \lstinline[language=ada]{renames}, for aliasing types, which is useful to shorten package identifiers.
98\begin{ada}
99OtherRed : RGB renames Red;
100\end{ada}
101which suggests a possible \CFA extension to @typedef@.
102\begin{cfa}
103typedef RGB.Red OtherRed;
104\end{cfa}
105
106There are three pairs of inverse enumeration pseudo-functions (attributes): @'Pos@ and @'Val@, @'Enum_Rep@ and @'Enum_Val@, and @'Image@ and @'Value@,
107\begin{cquote}
108\setlength{\tabcolsep}{15pt}
109\begin{tabular}{@{}ll@{}}
110\begin{ada}
111RGB'Pos( Red ) = 0;
112RGB'Enum_Rep( Red ) = 10;
113RGB'Image( Red ) = "RED";
114\end{ada}
115&
116\begin{ada}
117RGB'Val( 0 ) = Red
118RGB'Enum_Val( 10 ) =  Red
119RGB'Value( "Red" ) =  Red
120\end{ada}
121\end{tabular}
122\end{cquote}
123These attributes are important for IO.
124An enumeration type @T@ also has the following attributes: @T'First@, @T'Last@, @T'Range@, @T'Pred@, @T'Succ@, @T'Min@, and @T'Max@, producing an intuitive result based on the attribute name.
125
126Ada allows the enumerator label to be a character constant.
127\begin{ada}
128type Operator is ( '+', '-', '*', '/' );
129\end{ada}
130which is syntactic sugar for the label and not character literals from the predefined type @Character@.
131The purpose is strictly readability using character literals rather than identifiers.
132\begin{ada}
133Op : Operator := '+';
134if Op = '+' or else Op = '-' then ... ;
135elsif Op = '*' or else Op = '/' then ... ; end if;
136\end{ada}
137Interestingly, arrays of character enumerators can be treated as strings.
138\begin{ada}
139Ops : array( 0..3 ) of Operator;
140Ops := @"+-*/"@;            -- string assignment to array elements
141Ops := @"+-" & "*/"@;   -- string concatenation and assignment
142\end{ada}
143Ada's @Character@ type is defined as a character enumeration across all Latin-1 characters.
144
145Ada's boolean type is also a special enumeration, which can be used in conditions.
146\begin{ada}
147type Boolean is (False, True); -- False / True not keywords
148@Flag@ : Boolean;
149if @Flag@ then ...    -- conditional
150\end{ada}
151Since only types derived from @Boolean@ can be a conditional, @Boolean@ is essentially  a builtin type.
152
153Ada provides \emph{consecutive} subtyping of an enumeration using \lstinline[language=ada]{range}.
154\begin{ada}
155type Week is ( Mon, Tue, Wed, Thu, Fri, Sat, Sun );
156subtype Weekday is Week @range Mon .. Fri@;
157subtype Weekend is Week @range Sat .. Sun@;
158Day : Week;
159\end{ada}
160Hence, the ordering of the enumerators is crucial to provide the necessary ranges.
161
162An enumeration type can be used in the Ada \lstinline[language=ada]{case} (all enumerators must appear or a default) or iterating constructs.
163\begin{cquote}
164\setlength{\tabcolsep}{15pt}
165\begin{tabular}{@{}ll@{}}
166\begin{ada}
167case Day is
168        when @Mon .. Fri@ => ... ;
169        when @Sat .. Sun@ => ... ;
170end case;
171\end{ada}
172&
173\begin{ada}
174case Day is
175        when @Weekday@ => ... ;  -- subtype ranges
176        when @Weekend@ => ... ;
177end case;
178\end{ada}
179\end{tabular}
180\end{cquote}
181
182\begin{cquote}
183\setlength{\tabcolsep}{12pt}
184\begin{tabular}{@{}lll@{}}
185\begin{ada}
186for Day in @Mon .. Sun@ loop
187        ...
188end loop;
189\end{ada}
190&
191\begin{ada}
192for Day in @Weekday@ loop
193        ...
194end loop;
195\end{ada}
196&
197\begin{ada}
198for Day in @Weekend@ loop
199        ...
200end loop;
201\end{ada}
202\end{tabular}
203\end{cquote}
204
205An enumeration type can be used as an array dimension and subscript.
206\begin{ada}
207Lunch : array( @Week@ ) of Time;
208for Day in Week loop
209        Lunch( @Day@ ) := ... ;       -- set lunch time
210end loop;
211\end{ada}
212
213
214\section{\CC}
215\label{s:C++RelatedWork}
216
217\CC has the equivalent of Pascal typed @const@ declarations \see{\VRef{s:Pascal}}, with static and dynamic initialization.
218\begin{c++}
219const auto one = 0 + 1;                                 $\C{// static initialization}$
220const auto NULL = nullptr;
221const auto PI = 3.14159;
222const auto Plus = '+';
223const auto Fred = "Fred";
224const auto Mon = 0, Tue = Mon + 1, Wed = Tue + 1, Thu = Wed + 1, Fri = Thu + 1,
225                                Sat = Fri + 1, Sun = Sat + 1;
226int sa[Sun];
227const auto r = random();                                $\C{// dynamic initialization}$
228int da[r];                                                              $\C{// VLA}$
229\end{c++}
230Statically initialized identifiers may appear in any constant-expression context, \eg @case@.
231Dynamically intialized identifiers may appear as array dimensions in @g++@, which allows variable-sized arrays.
232Interestingly, global \CC @const@ declarations are implicitly marked @static@ (@r@ rather than @R@).
233\begin{c++}
234$\$$ nm test.o
2350000000000000018 @r@ Mon
236\end{c++}
237
238\CC enumeration is largely backwards compatible with C, so it inherited C's enumerations.
239However, the following non-backwards compatible changes are made.
240
241\begin{cquote}
2427.2 Change: \CC objects of enumeration type can only be assigned values of the same enumeration type.
243In C, objects of enumeration type can be assigned values of any integral type. \\
244Example:
245\begin{c++}
246enum color { red, blue, green };
247color c = 1;                                                    $\C{// valid C, invalid C++}$
248\end{c++}
249\textbf{Rationale}: The type-safe nature of \CC. \\
250\textbf{Effect on original feature}: Deletion of semantically well-defined feature. \\
251\textbf{Difficulty of converting}: Syntactic transformation. (The type error produced by the assignment can be automatically corrected by applying an explicit cast.) \\
252\textbf{How widely used}: Common.
253\end{cquote}
254
255\begin{cquote}
2567.2 Change: In \CC, the type of an enumerator is its enumeration.
257In C, the type of an enumerator is @int@. \\
258Example:
259\begin{c++}
260enum e { A };
261sizeof(A) == sizeof(int)                                $\C{// in C}$
262sizeof(A) == sizeof(e)                                  $\C{// in C++}$
263/* and sizeof(int) is not necessary equal to sizeof(e) */
264\end{c++}
265\textbf{Rationale}: In \CC, an enumeration is a distinct type. \\
266\textbf{Effect on original feature}: Change to semantics of well-defined feature. \\
267\textbf{Difficulty of converting}: Semantic transformation. \\
268\textbf{How widely used}: Seldom. The only time this affects existing C code is when the size of an enumerator is taken.
269Taking the size of an enumerator is not a common C coding practice.
270\end{cquote}
271
272Hence, the values in a \CC enumeration can only be its enumerators (without a cast).
273While the storage size of an enumerator is up to the compiler, there is still an implicit cast to @int@.
274\begin{c++}
275enum E { A, B, C };
276E e = A;
277int i = A;    i = e;                                    $\C{// implicit casts to int}$
278\end{c++}
279\CC{11} added a scoped enumeration, \lstinline[language=c++]{enum class} (or \lstinline[language=c++]{enum struct}), where the enumerators are accessed using type qualification.
280\begin{c++}
281enum class E { A, B, C };
282E e = @E::@A;                                                   $\C{// qualified enumerator}$
283e = B;                                                                  $\C{// error: B not in scope}$
284\end{c++}
285\CC{20} supports explicit unscoping with a \lstinline[language=c++]{using enum} declaration.
286\begin{c++}
287enum class E { A, B, C };
288@using enum E;@
289E e = A;    e = B;                                              $\C{// direct access}$
290\end{c++}
291\CC{11} added the ability to explicitly declare the underlying \emph{integral} type for \lstinline[language=c++]{enum class}.
292\begin{c++}
293enum class RGB @: long@ { Red, Green, Blue };
294enum class rgb @: char@ { Red = 'r', Green = 'g', Blue = 'b' };
295enum class srgb @: signed char@ { Red = -1, Green = 0, Blue = 1 };
296\end{c++}
297There is no implicit conversion from the \lstinline[language=c++]{enum class} type to its declared type.
298\begin{c++}
299rgb crgb = rgb::Red;
300char ch = rgb::Red;   ch = crgb;                $\C{// error}$
301\end{c++}
302Finally, enumerations can be used in the @switch@ statement but there is no mechanism to iterate through an enumeration.
303An enumeration type cannot declare an array dimension but can be used as a subscript.
304There is no mechanism to subtype or inherit from enumerations.
305
306
307\section{C\raisebox{-0.7ex}{\LARGE$^\sharp$}\xspace} % latex bug: cannot use \relsize{2} so use \LARGE
308\label{s:Csharp}
309
310% https://www.tutorialsteacher.com/codeeditor?cid=cs-mk8Ojx
311
312\Csharp is a dynamically-typed programming-language with a scoped, integral enumeration-type similar to the C/\CC enumeration.
313\begin{csharp}
314enum Weekday : byte { Mon, Tue, Wed, Thu@ = 10@, Fri, Sat, Sun@,@ };
315\end{csharp}
316The default underlying type is @int@, with auto-incrementing, implicit/explicit initialization, terminator comma, and optional integral typing (default @int@).
317A method cannot be defined in an enumeration type.
318As well, there is an explicit bidirectional conversion between an enumeration and its integral type, and an implicit conversion to the enumerator label in display contexts.
319\begin{csharp}
320int day = (int)Weekday.Fri;             $\C{// day == 10}$
321Weekday weekday = (Weekdays)42;         $\C{// weekday == 42, logically invalid}$
322Console.WriteLine( Weekday.Fri ); $\C{// print Fri}$
323string mon = Weekday.Mon.ToString(); $\C{// mon == "Mon"}$
324\end{csharp}
325
326The @Enum.GetValues@ pseudo-method retrieves an array of the enumeration constants for looping over an enumeration type or variable (expensive operation).
327\begin{csharp}
328foreach ( Weekday constant in @Enum.GetValues@( typeof(Weekday) ) ) {
329        Console.WriteLine( constant + " " + (int)constant ); // label, position
330}
331\end{csharp}
332
333The @Flags@ attribute creates a bit-flags enumeration, allowing bitwise operators @&@, @|@, @~@ (complement), @^@ (xor).
334\begin{csharp}
335@[Flags]@ public enum Weekday {
336        None = 0x0, Mon = 0x1, Tue = 0x2, Wed = 0x4,
337        Thu = 0x8, Fri = 0x10, Sat = 0x20, Sun = 0x40,
338        Weekend = @Sat | Sun@,
339        Weekdays = @Mon | Tue | Wed | Thu | Fri@
340}
341Weekday meetings = @Weekday.Mon | Weekday.Wed@; // 0x5
342\end{csharp}
343
344\VRef[Figure]{CsharpFreeVersusClass} shows an enumeration with free routines for manipulation, and embedding the enumeration and operations into an enumeration class.
345The key observation is that an enumeration class is just a structuring mechanism without any additional semantics.
346
347% https://learn.microsoft.com/en-us/dotnet/api/system.enum?view=net-8.0
348
349\begin{figure}
350\centering
351\begin{tabular}{@{}l|l@{}}
352\multicolumn{1}{@{}c|}{non-object oriented} & \multicolumn{1}{c@{}}{object oriented} \\
353\hline
354\begin{csharp}
355public class Program {
356
357        enum Weekday {
358                Mon, Tue, Wed, Thu, Fri, Sat, Sun };
359
360        static bool isWeekday( Weekday wd ) {
361                return wd <= Weekday.Fri;
362        }
363        static bool isWeekend( Weekday wd ) {
364                return Weekday.Sat <= wd;
365        }
366
367
368        public static void Main() {
369                Weekday day = Weekday.Sat;
370
371                Console.WriteLine( isWeekday( day ) );
372                Console.WriteLine( isWeekend( day ) );
373        }
374}
375\end{csharp}
376&
377\begin{csharp}
378public class Program {
379        public @class@ WeekDay : Enumeration {
380                public enum Day {
381                                Mon, Tue, Wed, Thu, Fri, Sat, Sun };
382                public enum Day2 : Day {
383                                XXX, YYY };
384                Day day;
385                public bool isWeekday() {
386                        return day <= Day.Fri;
387                }
388                public bool isWeekend() {
389                        return day > Day.Fri;
390                }
391                public WeekDay( Day d ) { day = d; }
392        }
393        public static void Main() {
394                WeekDay cday = new
395                                WeekDay( WeekDay.Day.Sat );
396                Console.WriteLine( cday.isWeekday() );
397                Console.WriteLine( cday.isWeekend() );
398        }
399}
400\end{csharp}
401\end{tabular}
402\caption{\Csharp: Free Routine Versus Class Enumeration}
403\label{CsharpFreeVersusClass}
404\end{figure}
405
406
407\section{Golang}
408
409Golang provides pseudo-enumeration similar to classic Pascal \lstinline[language=pascal]{const}, binding a name to a constant literal/expression.
410\begin{Go}
411const ( R = 0; G; B )                                   $\C{// implicit: 0 0 0}$
412const ( Fred = "Fred"; Mary = "Mary"; Jane = "Jane" ) $\C{// explicit: Fred Mary Jane}$
413const ( S = 0; T; USA = "USA"; U; V = 3.1; W ) $\C{// type change, implicit/explicit: 0 0 USA USA 3.1 3.1}$
414\end{Go}
415Constant identifiers are unscoped and must be unique (no overloading).
416The first enumerator \emph{must} be explicitly initialized;
417subsequent enumerators can be implicitly or explicitly initialized.
418Implicit initialization is the previous (predecessor) enumerator value.
419
420Auto-incrementing is supported by the keyword \lstinline[language=Go]{iota}, available only in the \lstinline[language=Go]{const} declaration.
421The \lstinline[language=Go]{iota} is a \emph{per \lstinline[language=golang]{const} declaration} integer counter, starting at zero and implicitly incremented by one for each \lstinline[language=golang]{const} identifier (enumerator).
422\begin{Go}
423const ( R = @iota@; G; B )                              $\C{// implicit: 0 1 2}$
424const ( C = @iota + B + 1@; G; Y )              $\C{// implicit: 3 4 5}$
425\end{Go}
426An underscore \lstinline[language=golang]{const} identifier advances \lstinline[language=Go]{iota}.
427\begin{Go}
428const ( O1 = iota + 1; @_@; O3; @_@; O5 ) // 1, 3, 5 
429\end{Go}
430Auto-incrementing stops after an explicit initialization.
431\begin{Go}
432const ( Mon = iota; Tue; Wed; // 0, 1, 2
433        @Thu = 10@; Fri; Sat; Sun ) // 10, 10, 10, 10
434\end{Go}
435Auto-incrementing can be restarted with an expression containing \emph{one} \lstinline[language=Go]{iota}.
436\begin{Go}
437const ( V1 = iota; V2; @V3 = 7;@ V4 = @iota@; V5 ) // 0 1 7 3 4
438const ( Mon = iota; Tue; Wed; // 0, 1, 2
439        @Thu = 10;@ Fri = @iota - Wed + Thu - 1@; Sat; Sun ) // 10, 11, 12, 13
440\end{Go}
441Note, \lstinline[language=Go]{iota} is advanced for an explicitly initialized enumerator, like the underscore @_@ identifier.
442
443Basic switch and looping are possible.
444\begin{cquote}
445\setlength{\tabcolsep}{15pt}
446\begin{tabular}{@{}ll@{}}
447\begin{Go}
448day := Mon;
449switch day {
450  case Mon, Tue, Wed, Thu, Fri:
451        fmt.Println( "weekday" );
452  case Sat, Sun:
453        fmt.Println( "weekend" );
454}
455\end{Go}
456&
457\begin{Go}
458
459for i := Mon; i <= Sun; i += 1 {
460        fmt.Println( i )
461}
462
463
464
465\end{Go}
466\end{tabular}
467\end{cquote}
468However, the loop prints the values from 0 to 13 because there is no actual enumeration.
469
470
471\section{Java}
472
473Every enumeration in Java is an enumeration class.
474For a basic enumeration
475\begin{Java}
476enum Weekday { Mon, Tue, Wed, Thu, Fri, Sat, Sun };
477Weekday day = Weekday.Sat;
478\end{Java}
479the scoped enumerators are an ordered list of @final@ methods of type integer, ordered left to right starting at 0, increasing by 1.
480The value of an enumeration instance is restricted to the enumeration's enumerators.
481There is an implicit @int@ variable in the enumeration used to store the value of an enumeration instance.
482The position (ordinal) and label are accessible, where the value is the same as the position.
483\begin{Java}
484System.out.println( day.!ordinal()! + " " + day.!name()! ); // 5 Sat
485\end{Java}
486There is an inverse function @valueOf@ from string to enumerator.
487\begin{Java}
488day = Weekday.valueOf( "Wed" );
489\end{Java}
490There are no implicit conversions to/from an enumerator and its underlying type.
491Like \Csharp, \VRef[Figure]{f:JavaFreeVersusClass} shows the same example for an enumeration with free routines for manipulation, and embedding the enumeration and operations into an enumeration class.
492
493\begin{figure}
494\centering
495\begin{tabular}{@{}l|l@{}}
496\multicolumn{1}{@{}c|}{non-object oriented} & \multicolumn{1}{c@{}}{object oriented} \\
497\hline
498\begin{Java}
499enum Weekday !{!
500        Mon, Tue, Wed, Thu, Fri, Sat, Sun !}!;
501
502static boolean isWeekday( Weekday wd ) {
503        return wd.ordinal() <= Weekday.Fri.ordinal();
504}
505static boolean isWeekend( Weekday wd ) {
506        return Weekday.Fri.ordinal() < wd.ordinal();
507}
508
509public static void main( String[] args ) {
510        Weekday day = Weekday.Sat;
511        System.out.println( isWeekday( day ) );
512        System.out.println( isWeekend( day ) );
513}
514\end{Java}
515&
516\begin{Java}
517enum Weekday !{!
518        Mon, Tue, Wed, Thu, Fri, Sat, Sun;
519
520        public boolean isWeekday() {
521                return ordinal() <= Weekday.Fri.ordinal();
522        }
523        public boolean isWeekend() {
524                return Weekday.Fri.ordinal() < ordinal();
525        }
526!}!
527public static void main( String[] args ) {
528        WeekDay day = WeekDay.Sat;
529        System.out.println( day.isWeekday() );
530        System.out.println( day.isWeekend() );
531}
532\end{Java}
533\end{tabular}
534\caption{Java: Free Routine Versus Class Enumeration}
535\label{f:JavaFreeVersusClass}
536\end{figure}
537
538To explicitly assign enumerator values and/or use a non-@int@ enumeration type (any Java type may be used), the enumeration must specify an explicit type in the enumeration class and a constructor.
539\begin{Java}
540enum Weekday {
541        Mon!(1)!, Tue!(2)!, Wed!(3)!, Thu!(4)!, Fri!(5)!, Sat!(6)!, Sun!(7)!; // must appear first
542        private !long! day;                                     $\C{// underlying enumeration type}$
543        private Weekday( !long! d ) { day = d; } $\C{// used to initialize enumerators}$
544};
545Weekday day = Weekday.Sat;
546\end{Java}
547If an enumerator initialization is a runtime expression, the expression is executed once at the point the enumeration is declaraed.
548
549The position, value, and label are accessible.
550\begin{Java}
551System.out.println( !day.ordinal()! + " " + !day.day! + " " + !day.name()! )// 5 6 Sat
552\end{Java}
553The constructor is private so only initialization or assignment can be used to set an enumeration, which ensures only corresponding enumerator values are allowed.
554
555An enumeration can appear in a @switch@ statement, but no ranges.
556\begin{Java}
557switch ( day ) {
558  case Mon: case Tue: case Wed: case Thu: case Fri:
559        System.out.println( "weekday" );
560        break;
561  case Sat: case Sun:
562        System.out.println( "weekend" );
563        break;
564}
565\end{Java}
566Like \Csharp, looping over an enumeration is done using method @values@, which returns the array of enumerator values (expensive operation).
567\begin{Java}
568for ( Weekday iday : Weekday.values() ) {
569        System.out.print( iday.ordinal() + iday.day + " " +  iday.name() + ",  " );
570}
5710 1 Mon,  1 2 Tue,  2 3 Wed,  3 4 Thu,  4 5 Fri,  5 6 Sat,  6 7 Sun, 
572\end{Java}
573
574As well, Java provides an @EnumSet@ where the underlying type is an efficient set of bits, one per enumeration \see{\Csharp \lstinline{Flags}, \VRef{s:Csharp}}, providing (logical) operations on groups of enumerators.
575There is also a specialized version of @HashMap@ with enumerator keys, which has performance benefits.
576
577Enumeration inheritence is disallowed because an enumeration is @final@.
578
579
580
581\section{Modula-3}
582
583
584
585\section{Rust}
586% https://doc.rust-lang.org/reference/items/enumerations.html
587
588Rust provides a scoped enumeration based on variant types.
589% An enumeration, also referred to as an enum, is a simultaneous definition of a nominal enumerated type as well as a set of constructors, that can be used to create or pattern-match values of the corresponding enumerated type.
590An enumeration without constructors is called field-less.
591\begin{rust}
592enum Week { Mon, Tues, Wed, Thu, Fri, Sat, Sun@,@ }
593let mut week: Week = Week::Mon;
594week = Week::Fri;
595\end{rust}
596A field-less enumeration with only unit variants is called unit-only.
597\begin{rust}
598enum Week { Mon = 0, Tues = 1, Wed = 2, Thu = 3, Fri = 4, Sat = 5, Sun = 6 }
599\end{rust}
600Enum constructors can have either named or unnamed fields:
601\begin{rust}
602enum Animal {
603        Dog( String, f64 ),
604        Cat{ name: String, weight: f64 },
605}
606let mut a: Animal = Animal::Dog("Cocoa".to_string(), 37.2);
607a = Animal::Cat { name: "Spotty".to_string(), weight: 2.7 };
608\end{rust}
609Here, @Dog@ is an @enum@ variant, whereas @Cat@ is a struct-like variant.
610
611Each @enum@ type has an implicit integer tag (discriminant), with a unique value for each variant type.
612Like a C enumeration, the tag values for the variant types start at 0 with auto incrementing.
613The tag is re-purposed for enumeration by allowing it to be explicitly set, and auto incrmenting continues from that value.
614\begin{cquote}
615\sf\setlength{\tabcolsep}{3pt}
616\begin{tabular}{rcccccccr}
617@enum@ Week \{  & Mon,  & Tue,  & Wed = 2,      & Thu = 10,     & Fri,  & Sat = 5,      & Sun   & \};   \\
618\rm tags                & 0             & 1             & 2                     & 10            & 11    & 5                     & 6             &               \\
619\end{tabular}
620\end{cquote}
621In general, the tag can only be read as an opaque reference for comparison.
622\begin{rust}
623if mem::discriminant(&week) == mem::discriminant(&Week::Mon) ...
624\end{rust}
625If the enumeration is unit-only, or field-less with no explicit discriminants and where only unit variants are explicit, then the discriminant is accessible with a numeric cast.
626\begin{rust}
627if week as isize == Week::Mon as isize ...
628\end{rust}
629
630
631\section{Swift}
632
633% https://www.programiz.com/swift/online-compiler
634
635A Swift enumeration provides a heterogenous set of enumerators, like a tagged @union@, where the field name is the enumerator and its list of type parameters form its type.
636\begin{swift}
637enum Many {
638        case Mon, Tue, Wed, Thu, Fri, Sat, Sun // basic enumerator
639        case code( String ) // string enumerator
640        case tuple( Int, Int, Int ) // tuple enumerator
641};
642var day = Many.Sat; // qualification to resolve type
643print( day );
644day = .Wed // no qualification after type resolved
645print( day );
646day = .code( "ABC" );
647print( day );
648day = .tuple( 1, 2, 3 );
649print( day );
650
651Sat
652Wed
653code("ABC")
654tuple(1, 2, 3)
655\end{swift}
656
657
658An enumeration defines a common type for a group of related values and enables you to work with those values in a type-safe way within your code.
659
660If you are familiar with C, you will know that C enumerations assign related names to a set of integer values.
661Enumerations in Swift are much more flexible, and don't have to provide a value for each case of the enumeration.
662If a value (known as a raw value) is provided for each enumeration case, the value can be a string, a character, or a value of any integer or floating-point type.
663
664Alternatively, enumeration cases can specify associated values of any type to be stored along with each different case value, much as unions or variants do in other languages.
665You can define a common set of related cases as part of one enumeration, each of which has a different set of values of appropriate types associated with it.
666
667Enumerations in Swift are first-class types in their own right.
668They adopt many features traditionally supported only by classes, such as computed properties to provide additional information about the enumeration's current value, and instance methods to provide functionality related to the values the enumeration represents.
669Enumerations can also define initializers to provide an initial case value;
670can be extended to expand their functionality beyond their original implementation; and can conform to protocols to provide standard functionality.
671
672For more about these capabilities, see Properties, Methods, Initialization, Extensions, and Protocols.
673
674\paragraph{Enumeration Syntax}
675
676
677Note:
678Swift enumeration cases don't have an integer value set by default, unlike languages like C and Objective-C.
679In the CompassPoint example above, @north@, @south@, @east@ and @west@ don't implicitly equal 0, 1, 2 and 3.
680Instead, the different enumeration cases are values in their own right, with an explicitly defined type of CompassPoint.
681
682Multiple cases can appear on a single line, separated by commas:
683\begin{swift}
684enum Planet {
685        case mercury, venus, earth, mars, jupiter, saturn, uranus, neptune
686}
687\end{swift}
688Each enumeration definition defines a new type.
689Like other types in Swift, their names (such as @CompassPoint@ and @Planet@) start with a capital letter.
690Give enumeration types singular rather than plural names, so that they read as self-evident:
691\begin{swift}
692var directionToHead = CompassPoint.west
693\end{swift}
694The type of @directionToHead@ is inferred when it's initialized with one of the possible values of @CompassPoint@.
695Once @directionToHead@ is declared as a @CompassPoint@, you can set it to a different @CompassPoint@ value using a shorter dot syntax:
696\begin{swift}
697directionToHead = .east
698\end{swift}
699The type of @directionToHead@ is already known, and so you can drop the type when setting its value.
700This makes for highly readable code when working with explicitly typed enumeration values.
701
702\paragraph{Matching Enumeration Values with a Switch Statement}
703
704You can match individual enumeration values with a switch statement:
705\begin{swift}
706directionToHead = .south
707switch directionToHead {
708case .north:
709        print("Lots of planets have a north")
710case .south:
711        print("Watch out for penguins")
712case .east:
713        print("Where the sun rises")
714case .west:
715        print("Where the skies are blue")
716}
717// Prints "Watch out for penguins"
718\end{swift}
719You can read this code as:
720\begin{quote}
721"Consider the value of directionToHead.
722In the case where it equals @.north@, print "Lots of planets have a north".
723In the case where it equals @.south@, print "Watch out for penguins"."
724
725...and so on.
726\end{quote}
727As described in Control Flow, a switch statement must be exhaustive when considering an enumeration's cases.
728If the case for @.west@ is omitted, this code doesn't compile, because it doesn't consider the complete list of @CompassPoint@ cases.
729Requiring exhaustiveness ensures that enumeration cases aren't accidentally omitted.
730
731When it isn't appropriate to provide a case for every enumeration case, you can provide a default case to cover any cases that aren't addressed explicitly:
732\begin{swift}
733let somePlanet = Planet.earth
734switch somePlanet {
735case .earth:
736        print("Mostly harmless")
737default:
738        print("Not a safe place for humans")
739}
740// Prints "Mostly harmless"
741\end{swift}
742
743\paragraph{Iterating over Enumeration Cases}
744
745For some enumerations, it's useful to have a collection of all of that enumeration's cases.
746You enable this by writing @CaseIterable@ after the enumeration's name.
747Swift exposes a collection of all the cases as an allCases property of the enumeration type.
748Here's an example:
749\begin{swift}
750enum Beverage: CaseIterable {
751        case coffee, tea, juice
752}
753let numberOfChoices = Beverage.allCases.count
754print("\(numberOfChoices) beverages available")
755// Prints "3 beverages available"
756\end{swift}
757In the example above, you write @Beverage.allCases@ to access a collection that contains all of the cases of the @Beverage@ enumeration.
758You can use @allCases@ like any other collection -- the collection's elements are instances of the enumeration type, so in this case they're Beverage values.
759The example above counts how many cases there are, and the example below uses a for-in loop to iterate over all the cases.
760\begin{swift}
761for beverage in Beverage.allCases {
762        print(beverage)
763}
764// coffee
765// tea
766// juice
767\end{swift}
768The syntax used in the examples above marks the enumeration as conforming to the @CaseIterable@ protocol.
769For information about protocols, see Protocols.
770
771\paragraph{Associated Values}
772The examples in the previous section show how the cases of an enumeration are a defined (and typed) value in their own right.
773You can set a constant or variable to Planet.earth, and check for this value later.
774However, it's sometimes useful to be able to store values of other types alongside these case values.
775This additional information is called an associated value, and it varies each time you use that case as a value in your code.
776
777You can define Swift enumerations to store associated values of any given type, and the value types can be different for each case of the enumeration if needed.
778Enumerations similar to these are known as discriminated unions, tagged unions, or variants in other programming languages.
779
780For example, suppose an inventory tracking system needs to track products by two different types of barcode.
781Some products are labeled with 1D barcodes in UPC format, which uses the numbers 0 to 9.
782Each barcode has a number system digit, followed by five manufacturer code digits and five product code digits.
783These are followed by a check digit to verify that the code has been scanned correctly:
784
785Other products are labeled with 2D barcodes in QR code format, which can use any ISO 8859-1 character and can encode a string up to 2,953 characters long:
786
787It's convenient for an inventory tracking system to store UPC barcodes as a tuple of four integers, and QR code barcodes as a string of any length.
788
789In Swift, an enumeration to define product barcodes of either type might look like this:
790\begin{swift}
791enum Barcode {
792        case upc(Int, Int, Int, Int)
793        case qrCode(String)
794}
795\end{swift}
796This can be read as:
797\begin{quote}
798"Define an enumeration type called Barcode, which can take either a value of upc with an associated value of type @(Int, Int, Int, Int)@, or a value of @qrCode@ with an associated value of type @String@."
799\end{quote}
800This definition doesn't provide any actual @Int@ or @String@ values -- it just defines the type of associated values that Barcode constants and variables can store when they're equal to @Barcode.upc@ or @Barcode.qrCode@.
801
802You can then create new barcodes using either type:
803\begin{swift}
804var productBarcode = Barcode.upc(8, 85909, 51226, 3)
805\end{swift}
806This example creates a new variable called @productBarcode@ and assigns it a value of @Barcode.upc@ with an associated tuple value of @(8, 85909, 51226, 3)@.
807
808You can assign the same product a different type of barcode:
809\begin{swift}
810productBarcode = .qrCode("ABCDEFGHIJKLMNOP")
811\end{swift}
812At this point, the original @Barcode.upc@ and its integer values are replaced by the new @Barcode.qrCode@ and its string value.
813Constants and variables of type Barcode can store either a @.upc@ or a @.qrCode@ (together with their associated values), but they can store only one of them at any given time.
814
815You can check the different barcode types using a switch statement, similar to the example in Matching Enumeration Values with a Switch Statement.
816This time, however, the associated values are extracted as part of the switch statement.
817You extract each associated value as a constant (with the let prefix) or a variable (with the var prefix) for use within the switch case's body:
818\begin{swift}
819switch productBarcode {
820case .upc(let numberSystem, let manufacturer, let product, let check):
821        print("UPC: \(numberSystem), \(manufacturer), \(product), \(check).")
822case .qrCode(let productCode):
823        print("QR code: \(productCode).")
824}
825// Prints "QR code: ABCDEFGHIJKLMNOP."
826\end{swift}
827If all of the associated values for an enumeration case are extracted as constants, or if all are extracted as variables, you can place a single let or var annotation before the case name, for brevity:
828\begin{swift}
829switch productBarcode {
830case let .upc(numberSystem, manufacturer, product, check):
831        print("UPC : \(numberSystem), \(manufacturer), \(product), \(check).")
832case let .qrCode(productCode):
833        print("QR code: \(productCode).")
834}
835// Prints "QR code: ABCDEFGHIJKLMNOP."
836\end{swift}
837
838\paragraph{Raw Values}
839
840The barcode example in Associated Values shows how cases of an enumeration can declare that they store associated values of different types.
841As an alternative to associated values, enumeration cases can come prepopulated with default values (called raw values), which are all of the same type.
842
843Here's an example that stores raw ASCII values alongside named enumeration cases:
844\begin{swift}
845enum ASCIIControlCharacter: Character {
846        case tab = "\t"
847        case lineFeed = "\n"
848        case carriageReturn = "\r"
849}
850\end{swift}
851Here, the raw values for an enumeration called ASCIIControlCharacter are defined to be of type Character, and are set to some of the more common ASCII control characters.
852Character values are described in Strings and Characters.
853
854Raw values can be strings, characters, or any of the integer or floating-point number types.
855Each raw value must be unique within its enumeration declaration.
856
857Note
858
859Raw values are not the same as associated values.
860Raw values are set to prepopulated values when you first define the enumeration in your code, like the three ASCII codes above.
861The raw value for a particular enumeration case is always the same.
862Associated values are set when you create a new constant or variable based on one of the enumeration's cases, and can be different each time you do so.
863Implicitly Assigned Raw Values
864
865When you're working with enumerations that store integer or string raw values, you don't have to explicitly assign a raw value for each case.
866When you don't, Swift automatically assigns the values for you.
867
868For example, when integers are used for raw values, the implicit value for each case is one more than the previous case.
869If the first case doesn't have a value set, its value is 0.
870
871The enumeration below is a refinement of the earlier Planet enumeration, with integer raw values to represent each planet's order from the sun:
872
873\begin{swift}
874enum Planet: Int {
875        case mercury = 1, venus, earth, mars, jupiter, saturn, uranus, neptune
876}
877\end{swift}
878In the example above, Planet.mercury has an explicit raw value of 1, Planet.venus has an implicit raw value of 2, and so on.
879
880When strings are used for raw values, the implicit value for each case is the text of that case's name.
881
882The enumeration below is a refinement of the earlier CompassPoint enumeration, with string raw values to represent each direction's name:
883\begin{swift}
884enum CompassPoint: String {
885        case north, south, east, west
886}
887\end{swift}
888In the example above, CompassPoint.south has an implicit raw value of "south", and so on.
889
890You access the raw value of an enumeration case with its rawValue property:
891\begin{swift}
892let earthsOrder = Planet.earth.rawValue
893// earthsOrder is 3
894
895let sunsetDirection = CompassPoint.west.rawValue
896// sunsetDirection is "west"
897\end{swift}
898
899\paragraph{Initializing from a Raw Value}
900
901If you define an enumeration with a raw-value type, the enumeration automatically receives an initializer that takes a value of the raw value's type (as a parameter called rawValue) and returns either an enumeration case or nil.
902You can use this initializer to try to create a new instance of the enumeration.
903
904This example identifies Uranus from its raw value of 7:
905\begin{swift}
906let possiblePlanet = Planet(rawValue: 7)
907// possiblePlanet is of type Planet? and equals Planet.uranus
908\end{swift}
909Not all possible Int values will find a matching planet, however.
910Because of this, the raw value initializer always returns an optional enumeration case.
911In the example above, possiblePlanet is of type Planet?, or "optional Planet."
912Note
913
914The raw value initializer is a failable initializer, because not every raw value will return an enumeration case.
915For more information, see Failable Initializers.
916
917If you try to find a planet with a position of 11, the optional Planet value returned by the raw value initializer will be nil:
918\begin{swift}
919let positionToFind = 11
920if let somePlanet = Planet(rawValue: positionToFind) {
921        switch somePlanet {
922        case .earth:
923                print("Mostly harmless")
924        default:
925                print("Not a safe place for humans")
926        }
927} else {
928        print("There isn't a planet at position \(positionToFind)")
929}
930// Prints "There isn't a planet at position 11"
931\end{swift}
932This example uses optional binding to try to access a planet with a raw value of 11.
933The statement if let somePlanet = Planet(rawValue: 11) creates an optional Planet, and sets somePlanet to the value of that optional Planet if it can be retrieved.
934In this case, it isn't possible to retrieve a planet with a position of 11, and so the else branch is executed instead.
935
936\paragraph{Recursive Enumerations}
937
938A recursive enumeration is an enumeration that has another instance of the enumeration as the associated value for one or more of the enumeration cases.
939You indicate that an enumeration case is recursive by writing indirect before it, which tells the compiler to insert the necessary layer of indirection.
940
941For example, here is an enumeration that stores simple arithmetic expressions:
942\begin{swift}
943enum ArithmeticExpression {
944        case number(Int)
945        indirect case addition(ArithmeticExpression, ArithmeticExpression)
946        indirect case multiplication(ArithmeticExpression, ArithmeticExpression)
947}
948\end{swift}
949You can also write indirect before the beginning of the enumeration to enable indirection for all of the enumeration's cases that have an associated value:
950\begin{swift}
951indirect enum ArithmeticExpression {
952        case number(Int)
953        case addition(ArithmeticExpression, ArithmeticExpression)
954        case multiplication(ArithmeticExpression, ArithmeticExpression)
955}
956\end{swift}
957This enumeration can store three kinds of arithmetic expressions: a plain number, the addition of two expressions, and the multiplication of two expressions.
958The addition and multiplication cases have associated values that are also arithmetic expressions -- these associated values make it possible to nest expressions.
959For example, the expression (5 + 4) * 2 has a number on the right-hand side of the multiplication and another expression on the left-hand side of the multiplication.
960Because the data is nested, the enumeration used to store the data also needs to support nesting -- this means the enumeration needs to be recursive.
961The code below shows the ArithmeticExpression recursive enumeration being created for (5 + 4) * 2:
962\begin{swift}
963let five = ArithmeticExpression.number(5)
964let four = ArithmeticExpression.number(4)
965let sum = ArithmeticExpression.addition(five, four)
966let product = ArithmeticExpression.multiplication(sum, ArithmeticExpression.number(2))
967\end{swift}
968A recursive function is a straightforward way to work with data that has a recursive structure.
969For example, here's a function that evaluates an arithmetic expression:
970\begin{swift}
971func evaluate(_ expression: ArithmeticExpression) -> Int {
972        switch expression {
973        case let .number(value):
974                return value
975        case let .addition(left, right):
976                return evaluate(left) + evaluate(right)
977        case let .multiplication(left, right):
978                return evaluate(left) * evaluate(right)
979        }
980}
981
982print(evaluate(product))
983// Prints "18"
984\end{swift}
985This function evaluates a plain number by simply returning the associated value.
986It evaluates an addition or multiplication by evaluating the expression on the left-hand side, evaluating the expression on the right-hand side, and then adding them or multiplying them.
987
988
989\section{Python 3.13}
990% https://docs.python.org/3/howto/enum.html
991
992Python is a dynamically-typed reflexive programming language with multiple versions, and hence, it is possible to extend existing or build new language features within the language.
993As a result, discussing Python enumerations is a moving target, because if a features does not exist, if can often be created with varying levels of complexity.
994Nevertheless, an attempt has been made to discuss core enumeration features that come with Python 3.13.
995
996A Python enumeration type is a set of ordered scoped identifiers (enumerators) bound to \emph{unique} values.
997An enumeration is not a basic type;
998it is a @class@ inheriting from the @Enum@ class, where the enumerators must be explicitly initialized, \eg:
999\begin{python}
1000class Week(@Enum@): Mon = 1; Tue = 2; Wed = 3; Thu = 4; Fri = 5; Sat = 6; Sun = 7
1001\end{python}
1002and/or explicitly auto initialized, \eg:
1003\begin{python}
1004class Week(Enum): Mon = 1; Tue = 2; Wed = 3; Thu = 10; Fri = @auto()@; Sat = 4; Sun = @auto()@
1005\end{python}
1006where @auto@ increments by 1 from the previous enumerator value.
1007Object initialization and assignment are restricted to the enumerators of this type.
1008An enumerator initialized with same value is an alias and invisible at the enumeration level, \ie the alias it substituted for its aliasee.
1009\begin{python}
1010class Week(Enum): Mon = 1; Tue = 2; Wed = 3; Thu = 10; Fri = @10@; Sat = @10@; Sun = @10@
1011\end{python}
1012Here, the enumeration has only 4 enumerators and 3 aliases.
1013An alias is only visible by dropping down to the @class@ level and asking for class members.
1014@Enum@ only supports equality comparison between enumerator values;
1015the extended class @OrderedEnum@ adds relational operators @<@, @<=@, @>@, and @>=@.
1016
1017There are bidirectional enumeration pseudo-functions for label and value, but there is no concept of access using ordering (position).
1018\begin{cquote}
1019\setlength{\tabcolsep}{15pt}
1020\begin{tabular}{@{}ll@{}}
1021\begin{python}
1022Week.Thu.value == 10;
1023Week.Thu.name == 'Thu';
1024\end{python}
1025&
1026\begin{python}
1027Week( 10 ) == Thu
1028Week['Thu'].value = 10
1029\end{python}
1030\end{tabular}
1031\end{cquote}
1032
1033As an enumeration is a \lstinline[language=python]{class}, its own methods.
1034\begin{python}
1035class Week(Enum):
1036        Mon = 1; Tue = 2; Wed = 3; Thu = 4; Fri = 5; Sat = 6; Sun = 7
1037        $\\@$classmethod
1038        def today(cls, date):
1039                return cls(date.isoweekday())
1040print( "today:", Week.today(date.today()))
1041today: Week.Mon
1042\end{python}
1043The method @today@ retrieves the day of the week and uses it as an index to print out the corresponding label of @Week@.
1044
1045@Flag@ allows combining several members into a single variable:
1046\begin{python}
1047print( repr(WeekF.Sat | WeekF.Sun) )
1048<WeekF.Sun|Sat: 96>
1049\end{python}
1050You can even iterate over a @Flag@ variable:
1051\begin{python}
1052for day in weekend:
1053        print(day)
1054WeekF.Sat
1055WeekF.Sun
1056\end{python}
1057Okay, let's get some chores set up:
1058\begin{python}
1059>>> chores_for_ethan = {
1060...    'feed the cat': Week.MONDAY | Week.WEDNESDAY | Week.FRIDAY,
1061...    'do the dishes': Week.TUESDAY | Week.THURSDAY,
1062...    'answer SO questions': Week.SATURDAY,
1063...    }
1064\end{python}
1065And a function to display the chores for a given day:
1066\begin{python}
1067>>> def show_chores(chores, day):
1068...    for chore, days in chores.items():
1069...        if day in days:
1070...            print(chore)
1071>>> show_chores(chores_for_ethan, Week.SATURDAY)
1072answer SO questions
1073\end{python}
1074Auto incrmenet for @Flag@ is by powers of 2.
1075\begin{python}
1076class WeekF(Flag): Mon = auto(); Tue = auto(); Wed = auto(); Thu = auto(); Fri = auto()\
1077                                                        Sat = auto(); Sun = auto(); Weekend = Sat | Sun
1078for d in WeekF:
1079        print( f"{d.name}: {d.value}", end=" ")
1080Mon: 1 Tue: 2 Wed: 4 Thu: 8 Fri: 16 Sat: 32 Sun: 64 WeekA.Weekend
1081\end{python}
1082
1083\subsection{Programmatic access to enumeration members and their attributes}
1084
1085Sometimes it's useful to access members in enumerations programmatically (i.e. situations where @Color.RED@ won't do because the exact color is not known at program-writing time).
1086@Enum@ allows such access:
1087\begin{python}
1088print(RGB(1), RGB(3), )
1089RGB.RED RGB.GREEN
1090\end{python}
1091If you want to access enum members by name, use item access:
1092\begin{python}
1093print( RGBa['RED'], RGBa['GREEN'] )
1094RGB.RED RGB.GREEN
1095\end{python}
1096If you have an enum member and need its name or value:
1097\begin{python}
1098member = RGBa.RED
1099print( f"{member.name} {member.value}" )
1100RED 1
1101\end{python}
1102
1103
1104\subsection{Ensuring unique enumeration values}
1105
1106By default, enumerations allow multiple names as aliases for the same value.
1107When this behavior isn't desired, you can use the @unique()@ decorator:
1108\begin{python}
1109from enum import Enum, unique
1110$@$unique
1111class DupVal(Enum): ONE = 1; TWO = 2; THREE = 3; FOUR = 3
1112ValueError: duplicate values found in <enum 'Mistake'>: FOUR -> THREE
1113\end{python}
1114
1115\subsection{Using automatic values}
1116
1117If the exact value is unimportant you can use @auto@:
1118\begin{python}
1119from enum import Enum, auto
1120class RGBa(Enum): RED = auto(); BLUE = auto(); GREEN = auto()
1121\end{python}
1122(Like Golang @iota@.)
1123The values are chosen by @_generate_next_value_()@, which can be overridden:
1124\begin{python}
1125>>> class AutoName(Enum):
1126...     $@$staticmethod
1127...     def _generate_next_value_(name, start, count, last_values):
1128...         return name
1129...
1130>>> class Ordinal(AutoName):
1131...     NORTH = auto()
1132...     SOUTH = auto()
1133...     EAST = auto()
1134...     WEST = auto()
1135...
1136>>> [member.value for member in Ordinal]
1137['NORTH', 'SOUTH', 'EAST', 'WEST']
1138\end{python}
1139Note The @_generate_next_value_()@ method must be defined before any members.
1140
1141\subsection{Iteration}
1142
1143Iterating over the members of an enum does not provide the aliases:
1144\begin{python}
1145>>> list(Shape)
1146[<Shape.SQUARE: 2>, <Shape.DIAMOND: 1>, <Shape.CIRCLE: 3>]
1147>>> list(Week)
1148[<Week.MONDAY: 1>, <Week.TUESDAY: 2>, <Week.WEDNESDAY: 4>, <Week.THURSDAY: 8>,
1149<Week.FRIDAY: 16>, <Week.SATURDAY: 32>, <Week.SUNDAY: 64>]
1150\end{python}
1151Note that the aliases @Shape.ALIAS_FOR_SQUARE@ and @Week.WEEKEND@ aren't shown.
1152
1153The special attribute @__members__@ is a read-only ordered mapping of names to members.
1154It includes all names defined in the enumeration, including the aliases:
1155\begin{python}
1156>>> for name, member in Shape.__members__.items():
1157...     name, member
1158...
1159('SQUARE', <Shape.SQUARE: 2>)
1160('DIAMOND', <Shape.DIAMOND: 1>)
1161('CIRCLE', <Shape.CIRCLE: 3>)
1162('ALIAS_FOR_SQUARE', <Shape.SQUARE: 2>)
1163\end{python}
1164The @__members__@ attribute can be used for detailed programmatic access to the enumeration members.
1165For example, finding all the aliases:
1166\begin{python}
1167>>> [name for name, member in Shape.__members__.items() if member.name != name]
1168['ALIAS_FOR_SQUARE']
1169\end{python}
1170Note: Aliases for flags include values with multiple flags set, such as 3, and no flags set, i.e. 0.
1171
1172\subsection{Comparisons}
1173
1174Enumeration members are compared by identity:
1175\begin{python}
1176>>> Color.RED is Color.RED
1177True
1178>>> Color.RED is Color.BLUE
1179False
1180>>> Color.RED is not Color.BLUE
1181True
1182\end{python}
1183Ordered comparisons between enumeration values are not supported.
1184Enum members are not integers (but see @IntEnum@ below):
1185\begin{python}
1186>>> Color.RED < Color.BLUE
1187Traceback (most recent call last):
1188  File "<stdin>", line 1, in <module>
1189TypeError: '<' not supported between instances of 'Color' and 'Color'
1190\end{python}
1191Equality comparisons are defined though:
1192\begin{python}
1193>>> Color.BLUE == Color.RED
1194False
1195>>> Color.BLUE != Color.RED
1196True
1197>>> Color.BLUE == Color.BLUE
1198True
1199\end{python}
1200Comparisons against non-enumeration values will always compare not equal (again, @IntEnum@ was explicitly designed to behave differently, see below):
1201\begin{python}
1202>>> Color.BLUE == 2
1203False
1204\end{python}
1205
1206Warning: It is possible to reload modules -- if a reloaded module contains enums, they will be recreated, and the new members may not compare identical/equal to the original members.
1207
1208\subsection{Allowed members and attributes of enumerations}
1209
1210Most of the examples above use integers for enumeration values.
1211Using integers is short and handy (and provided by default by the Functional API), but not strictly enforced.
1212In the vast majority of use-cases, one doesn't care what the actual value of an enumeration is.
1213But if the value is important, enumerations can have arbitrary values.
1214
1215Enumerations are Python classes, and can have methods and special methods as usual. If we have this enumeration:
1216\begin{python}
1217>>> class Mood(Enum):
1218...     FUNKY = 1
1219...     HAPPY = 3
1220...
1221...     def describe(self):
1222...         # self is the member here
1223...         return self.name, self.value
1224...
1225...     def __str__(self):
1226...         return 'my custom str! {0}'.format(self.value)
1227...
1228...     $@$classmethod
1229...
1230...     def favorite_mood(cls):
1231...         # cls here is the enumeration
1232...         return cls.HAPPY
1233...
1234\end{python}
1235Then:
1236\begin{python}
1237>>> Mood.favorite_mood()
1238<Mood.HAPPY: 3>
1239>>> Mood.HAPPY.describe()
1240('HAPPY', 3)
1241>>> str(Mood.FUNKY)
1242'my custom str! 1'
1243\end{python}
1244The rules for what is allowed are as follows: names that start and end with a single underscore are reserved by enum and cannot be used;
1245all other attributes defined within an enumeration will become members of this enumeration, with the exception of special methods (@__str__()@, @__add__()@, etc.), descriptors (methods are also descriptors), and variable names listed in @_ignore_@.
1246
1247Note: if your enumeration defines @__new__()@ and/or @__init__()@, any value(s) given to the enum member will be passed into those methods.
1248See Planet for an example.
1249
1250Note: The @__new__()@ method, if defined, is used during creation of the Enum members;
1251it is then replaced by Enum's @__new__()@ which is used after class creation for lookup of existing members.
1252See When to use @__new__()@ vs. @__init__()@ for more details.
1253
1254\subsection{Restricted Enum subclassing}
1255
1256A new @Enum@ class must have one base enum class, up to one concrete data type, and as many object-based mixin classes as needed.
1257The order of these base classes is:
1258\begin{python}
1259class EnumName([mix-in, ...,] [data-type,] base-enum):
1260        pass
1261\end{python}
1262Also, subclassing an enumeration is allowed only if the enumeration does not define any members.
1263So this is forbidden:
1264\begin{python}
1265>>> class MoreColor(Color):
1266...     PINK = 17
1267...
1268Traceback (most recent call last):
1269...
1270TypeError: <enum 'MoreColor'> cannot extend <enum 'Color'>
1271\end{python}
1272But this is allowed:
1273\begin{python}
1274>>> class Foo(Enum):
1275...     def some_behavior(self):
1276...         pass
1277...
1278>>> class Bar(Foo):
1279...     HAPPY = 1
1280...     SAD = 2
1281...
1282\end{python}
1283Allowing subclassing of enums that define members would lead to a violation of some important invariants of types and instances.
1284On the other hand, it makes sense to allow sharing some common behavior between a group of enumerations. (See OrderedEnum for an example.)
1285
1286\subsection{Dataclass support}
1287
1288When inheriting from a @dataclass@, the @__repr__()@ omits the inherited class' name.
1289For example:
1290\begin{python}
1291>>> from dataclasses import dataclass, field
1292>>> $@$dataclass
1293... class CreatureDataMixin:
1294...     size: str
1295...     legs: int
1296...     tail: bool = field(repr=False, default=True)
1297...
1298>>> class Creature(CreatureDataMixin, Enum):
1299...     BEETLE = 'small', 6
1300...     DOG = 'medium', 4
1301...
1302>>> Creature.DOG
1303<Creature.DOG: size='medium', legs=4>
1304\end{python}
1305Use the @dataclass()@ argument repr=False to use the standard @repr()@.
1306
1307Changed in version 3.12: Only the dataclass fields are shown in the value area, not the dataclass' name.
1308
1309\subsection{Pickling}
1310
1311Enumerations can be pickled and unpickled:
1312\begin{python}
1313>>> from test.test_enum import Fruit
1314>>> from pickle import dumps, loads
1315>>> Fruit.TOMATO is loads(dumps(Fruit.TOMATO))
1316True
1317\end{python}
1318The usual restrictions for pickling apply: picklable enums must be defined in the top level of a module, since unpickling requires them to be importable from that module.
1319
1320Note: With pickle protocol version 4 it is possible to easily pickle enums nested in other classes.
1321
1322It is possible to modify how enum members are pickled/unpickled by defining @__reduce_ex__()@ in the enumeration class.
1323The default method is by-value, but enums with complicated values may want to use by-name:
1324\begin{python}
1325>>> import enum
1326>>> class MyEnum(enum.Enum):
1327...     __reduce_ex__ = enum.pickle_by_enum_name
1328\end{python}
1329Note: Using by-name for flags is not recommended, as unnamed aliases will not unpickle.
1330
1331\subsection{Functional API}
1332
1333The @Enum@ class is callable, providing the following functional API:
1334\begin{python}
1335>>> Animal = Enum('Animal', 'ANT BEE CAT DOG')
1336>>> Animal
1337<enum 'Animal'>
1338>>> Animal.ANT
1339<Animal.ANT: 1>
1340>>> list(Animal)
1341[<Animal.ANT: 1>, <Animal.BEE: 2>, <Animal.CAT: 3>, <Animal.DOG: 4>]
1342\end{python}
1343The semantics of this API resemble @namedtuple@.
1344The first argument of the call to @Enum@ is the name of the enumeration.
1345
1346The second argument is the source of enumeration member names.
1347It can be a whitespace-separated string of names, a sequence of names, a sequence of 2-tuples with key/value pairs, or a mapping (e.g. dictionary) of names to values.
1348The last two options enable assigning arbitrary values to enumerations;
1349the others auto-assign increasing integers starting with 1 (use the @start@ parameter to specify a different starting value).
1350A new class derived from @Enum@ is returned.
1351In other words, the above assignment to Animal is equivalent to:
1352\begin{python}
1353>>> class Animal(Enum):
1354...     ANT = 1
1355...     BEE = 2
1356...     CAT = 3
1357...     DOG = 4
1358...
1359\end{python}
1360The reason for defaulting to 1 as the starting number and not 0 is that 0 is @False@ in a boolean sense, but by default enum members all evaluate to @True@.
1361
1362Pickling enums created with the functional API can be tricky as frame stack implementation details are used to try and figure out which module the enumeration is being created in (e.g. it will fail if you use a utility function in a separate module, and also may not work on IronPython or Jython).
1363The solution is to specify the module name explicitly as follows:
1364\begin{python}
1365>>> Animal = Enum('Animal', 'ANT BEE CAT DOG', module=__name__)
1366\end{python}
1367Warning: If module is not supplied, and @Enum@ cannot determine what it is, the new @Enum@ members will not be unpicklable; to keep errors closer to the source, pickling will be disabled.
1368
1369The new pickle protocol 4 also, in some circumstances, relies on @__qualname__@ being set to the location where pickle will be able to find the class.
1370For example, if the class was made available in class SomeData in the global scope:
1371\begin{python}
1372>>> Animal = Enum('Animal', 'ANT BEE CAT DOG', qualname='SomeData.Animal')
1373\end{python}
1374The complete signature is:
1375\begin{python}
1376Enum(
1377        value='NewEnumName',
1378        names=<...>,
1379        *,
1380        module='...',
1381        qualname='...',
1382        type=<mixed-in class>,
1383        start=1,
1384        )
1385\end{python}
1386\begin{itemize}
1387\item
1388@value@: What the new enum class will record as its name.
1389\item
1390@names@: The enum members.
1391This can be a whitespace- or comma-separated string (values will start at 1 unless otherwise specified):
1392\begin{python}
1393'RED GREEN BLUE' | 'RED,GREEN,BLUE' | 'RED, GREEN, BLUE'
1394\end{python}
1395or an iterator of names:
1396\begin{python}
1397['RED', 'GREEN', 'BLUE']
1398\end{python}
1399or an iterator of (name, value) pairs:
1400\begin{python}
1401[('CYAN', 4), ('MAGENTA', 5), ('YELLOW', 6)]
1402\end{python}
1403or a mapping:
1404\begin{python}
1405{'CHARTREUSE': 7, 'SEA_GREEN': 11, 'ROSEMARY': 42}
1406\end{python}
1407\item
1408module: name of module where new enum class can be found.
1409\item
1410@qualname@: where in module new enum class can be found.
1411\item
1412@type@: type to mix in to new enum class.
1413\item
1414@start@: number to start counting at if only names are passed in.
1415\end{itemize}
1416Changed in version 3.5: The start parameter was added.
1417
1418\subsection{Derived Enumerations}
1419
1420\subsection{IntEnum}
1421
1422The first variation of @Enum@ that is provided is also a subclass of @int@.
1423Members of an @IntEnum@ can be compared to integers;
1424by extension, integer enumerations of different types can also be compared to each other:
1425\begin{python}
1426>>> from enum import IntEnum
1427>>> class Shape(IntEnum):
1428...     CIRCLE = 1
1429...     SQUARE = 2
1430...
1431>>> class Request(IntEnum):
1432...     POST = 1
1433...     GET = 2
1434...
1435>>> Shape == 1
1436False
1437>>> Shape.CIRCLE == 1
1438True
1439>>> Shape.CIRCLE == Request.POST
1440True
1441\end{python}
1442However, they still can't be compared to standard @Enum@ enumerations:
1443\begin{python}
1444>>> class Shape(IntEnum):
1445...     CIRCLE = 1
1446...     SQUARE = 2
1447...
1448>>> class Color(Enum):
1449...     RED = 1
1450...     GREEN = 2
1451...
1452>>> Shape.CIRCLE == Color.RED
1453False
1454\end{python}
1455@IntEnum@ values behave like integers in other ways you'd expect:
1456\begin{python}
1457>>> int(Shape.CIRCLE)
14581
1459>>> ['a', 'b', 'c'][Shape.CIRCLE]
1460'b'
1461>>> [i for i in range(Shape.SQUARE)]
1462[0, 1]
1463\end{python}
1464
1465\subsection{StrEnum}
1466
1467The second variation of @Enum@ that is provided is also a subclass of @str@.
1468Members of a @StrEnum@ can be compared to strings;
1469by extension, string enumerations of different types can also be compared to each other.
1470
1471New in version 3.11.
1472
1473\subsection{IntFlag}
1474
1475The next variation of @Enum@ provided, @IntFlag@, is also based on @int@.
1476The difference being @IntFlag@ members can be combined using the bitwise operators (@&, |, ^, ~@) and the result is still an @IntFlag@ member, if possible.
1477Like @IntEnum@, @IntFlag@ members are also integers and can be used wherever an int is used.
1478
1479Note: Any operation on an IntFlag member besides the bit-wise operations will lose the @IntFlag@ membership.
1480
1481Bit-wise operations that result in invalid @IntFlag@ values will lose the @IntFlag@ membership.
1482See @FlagBoundary@ for details.
1483
1484New in version 3.6.
1485
1486Changed in version 3.11.
1487
1488Sample @IntFlag@ class:
1489\begin{python}
1490>>> from enum import IntFlag
1491>>> class Perm(IntFlag):
1492...     R = 4
1493...     W = 2
1494...     X = 1
1495...
1496>>> Perm.R | Perm.W
1497<Perm.R|W: 6>
1498>>> Perm.R + Perm.W
14996
1500>>> RW = Perm.R | Perm.W
1501>>> Perm.R in RW
1502True
1503\end{python}
1504It is also possible to name the combinations:
1505\begin{python}
1506>>> class Perm(IntFlag):
1507...     R = 4
1508...     W = 2
1509...     X = 1
1510...     RWX = 7
1511...
1512>>> Perm.RWX
1513<Perm.RWX: 7>
1514>>> ~Perm.RWX
1515<Perm: 0>
1516>>> Perm(7)
1517<Perm.RWX: 7>
1518\end{python}
1519Note: Named combinations are considered aliases. Aliases do not show up during iteration, but can be returned from by-value lookups.
1520
1521Changed in version 3.11.
1522
1523Another important difference between @IntFlag@ and @Enum@ is that if no flags are set (the value is 0), its boolean evaluation is @False@:
1524\begin{python}
1525>>> Perm.R & Perm.X
1526<Perm: 0>
1527>>> bool(Perm.R & Perm.X)
1528False
1529\end{python}
1530Because @IntFlag@ members are also subclasses of int they can be combined with them (but may lose @IntFlag@ membership:
1531\begin{python}
1532>>> Perm.X | 4
1533<Perm.R|X: 5>
1534
1535>>> Perm.X + 8
15369
1537\end{python}
1538Note: The negation operator, @~@, always returns an @IntFlag@ member with a positive value:
1539\begin{python}
1540>>> (~Perm.X).value == (Perm.R|Perm.W).value == 6
1541True
1542\end{python}
1543@IntFlag@ members can also be iterated over:
1544\begin{python}
1545>>> list(RW)
1546[<Perm.R: 4>, <Perm.W: 2>]
1547\end{python}
1548New in version 3.11.
1549
1550\subsection{Flag}
1551
1552The last variation is @Flag@.
1553Like @IntFlag@, @Flag@ members can be combined using the bitwise operators (@&, |, ^, ~@).
1554Unlike @IntFlag@, they cannot be combined with, nor compared against, any other @Flag@ enumeration, nor @int@.
1555While it is possible to specify the values directly it is recommended to use @auto@ as the value and let @Flag@ select an appropriate value.
1556
1557New in version 3.6.
1558
1559Like @IntFlag@, if a combination of @Flag@ members results in no flags being set, the boolean evaluation is @False@:
1560\begin{python}
1561>>> from enum import Flag, auto
1562>>> class Color(Flag):
1563...     RED = auto()
1564...     BLUE = auto()
1565...     GREEN = auto()
1566...
1567>>> Color.RED & Color.GREEN
1568<Color: 0>
1569>>> bool(Color.RED & Color.GREEN)
1570False
1571\end{python}
1572Individual flags should have values that are powers of two (1, 2, 4, 8, ...), while combinations of flags will not:
1573\begin{python}
1574>>> class Color(Flag):
1575...     RED = auto()
1576...     BLUE = auto()
1577...     GREEN = auto()
1578...     WHITE = RED | BLUE | GREEN
1579...
1580>>> Color.WHITE
1581<Color.WHITE: 7>
1582\end{python}
1583Giving a name to the ``no flags set'' condition does not change its boolean value:
1584\begin{python}
1585>>> class Color(Flag):
1586...     BLACK = 0
1587...     RED = auto()
1588...     BLUE = auto()
1589...     GREEN = auto()
1590...
1591>>> Color.BLACK
1592<Color.BLACK: 0>
1593>>> bool(Color.BLACK)
1594False
1595\end{python}
1596@Flag@ members can also be iterated over:
1597\begin{python}
1598>>> purple = Color.RED | Color.BLUE
1599>>> list(purple)
1600[<Color.RED: 1>, <Color.BLUE: 2>]
1601\end{python}
1602New in version 3.11.
1603
1604Note: For the majority of new code, @Enum@ and @Flag@ are strongly recommended, since @IntEnum@ and @IntFlag@ break some semantic promises of an enumeration (by being comparable to integers, and thus by transitivity to other unrelated enumerations).
1605@IntEnum@ and @IntFlag@ should be used only in cases where @Enum@ and @Flag@ will not do;
1606for example, when integer constants are replaced with enumerations, or for interoperability with other systems.
1607
1608\subsection{Others}
1609
1610While @IntEnum@ is part of the enum module, it would be very simple to implement independently:
1611\begin{python}
1612class IntEnum(int, Enum):
1613        pass
1614\end{python}
1615This demonstrates how similar derived enumerations can be defined;
1616for example a @FloatEnum@ that mixes in float instead of @int@.
1617
1618Some rules:
1619\begin{itemize}
1620\item
1621When subclassing @Enum@, mix-in types must appear before @Enum@ itself in the sequence of bases, as in the @IntEnum@ example above.
1622\item
1623Mix-in types must be subclassable.
1624For example, @bool@ and @range@ are not subclassable and will throw an error during Enum creation if used as the mix-in type.
1625\item
1626While @Enum@ can have members of any type, once you mix in an additional type, all the members must have values of that type, e.g. @int@ above.
1627This restriction does not apply to mix-ins which only add methods and don't specify another type.
1628\item
1629When another data type is mixed in, the value attribute is not the same as the enum member itself, although it is equivalent and will compare equal.
1630\item
1631A data type is a mixin that defines @__new__()@, or a @dataclass@
1632\item
1633\%-style formatting: @%s@ and @%r@ call the @Enum@ class's @__str__()@ and @__repr__()@ respectively; other codes (such as @%i@ or @%h@ for @IntEnum@) treat the enum member as its mixed-in type.
1634\item
1635Formatted string literals, @str.format()@, and format() will use the enum's @__str__()@ method.
1636\end{itemize}
1637Note: Because @IntEnum@, @IntFlag@, and @StrEnum@ are designed to be drop-in replacements for existing constants, their @__str__()@ method has been reset to their data types' @__str__()@ method.
1638
1639\subsection{When to use \lstinline{__new__()} vs. \lstinline{__init__()}}
1640
1641@__new__()@ must be used whenever you want to customize the actual value of the @Enum@ member.
1642Any other modifications may go in either @__new__()@ or @__init__()@, with @__init__()@ being preferred.
1643
1644For example, if you want to pass several items to the constructor, but only want one of them to be the value:
1645\begin{python}
1646>>> class Coordinate(bytes, Enum):
1647...     """
1648...     Coordinate with binary codes that can be indexed by the int code.
1649...     """
1650...     def __new__(cls, value, label, unit):
1651...         obj = bytes.__new__(cls, [value])
1652...         obj._value_ = value
1653...         obj.label = label
1654...         obj.unit = unit
1655...         return obj
1656...     PX = (0, 'P.X', 'km')
1657...     PY = (1, 'P.Y', 'km')
1658...     VX = (2, 'V.X', 'km/s')
1659...     VY = (3, 'V.Y', 'km/s')
1660
1661>>> print(Coordinate['PY'])
1662Coordinate.PY
1663
1664>>> print(Coordinate(3))
1665Coordinate.VY
1666\end{python}
1667Warning: Do not call @super().__new__()@, as the lookup-only @__new__@ is the one that is found; instead, use the data type directly.
1668
1669\subsection{Finer Points}
1670
1671Supported @__dunder__@ names
1672
1673@__members__@ is a read-only ordered mapping of member\_name:member items. It is only available on the class.
1674
1675@__new__()@, if specified, must create and return the enum members; it is also a very good idea to set the member's @_value_@ appropriately. Once all the members are created it is no longer used.
1676Supported @_sunder_@ names
1677\begin{itemize}
1678\item
1679@_name_@ -- name of the member
1680\item
1681@_value_@ -- value of the member; can be set / modified in @__new__@
1682\item
1683@_missing_@ -- a lookup function used when a value is not found; may be overridden
1684\item
1685@_ignore_@ -- a list of names, either as a @list@ or a @str@, that will not be transformed into members, and will be removed from the final class
1686\item
1687@_order_@ -- used in Python 2/3 code to ensure member order is consistent (class attribute, removed during class creation)
1688\item
1689@_generate_@next@_value_@ -- used by the Functional API and by @auto@ to get an appropriate value for an enum member; may be overridden
1690\end{itemize}
1691Note: For standard @Enum@ classes the next value chosen is the last value seen incremented by one.
1692
1693For @Flag@ classes the next value chosen will be the next highest power-of-two, regardless of the last value seen.
1694
1695New in version 3.6: @_missing_@, @_order_@, @_generate_@next@_value_@
1696
1697New in version 3.7: @_ignore_@
1698
1699To help keep Python 2 / Python 3 code in sync an @_order_@ attribute can be provided.
1700It will be checked against the actual order of the enumeration and raise an error if the two do not match:
1701\begin{python}
1702>>> class Color(Enum):
1703...     _order_ = 'RED GREEN BLUE'
1704...     RED = 1
1705...     BLUE = 3
1706...     GREEN = 2
1707...
1708Traceback (most recent call last):
1709...
1710TypeError: member order does not match _order_:
1711  ['RED', 'BLUE', 'GREEN']
1712  ['RED', 'GREEN', 'BLUE']
1713\end{python}
1714Note: In Python 2 code the @_order_@ attribute is necessary as definition order is lost before it can be recorded.
1715
1716\subsection{\lstinline{_Private__names}}
1717
1718Private names are not converted to enum members, but remain normal attributes.
1719
1720Changed in version 3.11.
1721
1722\subsection{\lstinline{Enum} member type}
1723
1724@Enum@ members are instances of their enum class, and are normally accessed as @EnumClass.member@.
1725In certain situations, such as writing custom enum behavior, being able to access one member directly from another is useful, and is supported;
1726however, in order to avoid name clashes between member names and attributes/methods from mixed-in classes, upper-case names are strongly recommended.
1727
1728Changed in version 3.5.
1729
1730\subsection{Creating members that are mixed with other data types}
1731
1732When subclassing other data types, such as @int@ or @str@, with an @Enum@, all values after the = @are@ passed to that data type's constructor. For example:
1733\begin{python}
1734>>> class MyEnum(IntEnum):      # help(int) -> int(x, base=10) -> integer
1735...     example = '11', 16      # so x='11' and base=16
1736...
1737MyEnum.example.value        # and hex(11) is...
173817
1739\end{python}
1740
1741\subsection{\lstinline{Boolean} value of \lstinline{Enum} classes and members}
1742
1743Enum classes that are mixed with non-@Enum@ types (such as @int@, @str@, etc.) are evaluated according to the mixed-in type's rules;
1744otherwise, all members evaluate as @True@.
1745To make your own enum's boolean evaluation depend on the member's value add the following to your class:
1746\begin{python}
1747def __bool__(self):
1748        return bool(self.value)
1749\end{python}
1750Plain @Enum@ classes always evaluate as @True@.
1751
1752\subsection{\lstinline{Enum} classes with methods}
1753
1754If you give your enum subclass extra methods, like the Planet class below, those methods will show up in a dir() of the member, but not of the class:
1755\begin{python}
1756>>> dir(Planet)                         
1757['EARTH', 'JUPITER', 'MARS', 'MERCURY', 'NEPTUNE', 'SATURN', 'URANUS', 'VENUS',
1758 '__class__', '__doc__', '__members__', '__module__']
1759>>> dir(Planet.EARTH)                   
1760['__class__', '__doc__', '__module__', 'mass', 'name', 'radius', 'surface_gravity', 'value']
1761\end{python}
1762
1763\subsection{Combining members of \lstinline{Flag}}
1764
1765Iterating over a combination of @Flag@ members will only return the members that are comprised of a single bit:
1766\begin{python}
1767>>> class Color(Flag):
1768...     RED = auto()
1769...     GREEN = auto()
1770...     BLUE = auto()
1771...     MAGENTA = RED | BLUE
1772...     YELLOW = RED | GREEN
1773...     CYAN = GREEN | BLUE
1774...
1775>>> Color(3)  # named combination
1776<Color.YELLOW: 3>
1777>>> Color(7)      # not named combination
1778<Color.RED|GREEN|BLUE: 7>
1779\end{python}
1780
1781\subsection{\lstinline{Flag} and \lstinline{IntFlag} minutia}
1782
1783Using the following snippet for our examples:
1784\begin{python}
1785>>> class Color(IntFlag):
1786...     BLACK = 0
1787...     RED = 1
1788...     GREEN = 2
1789...     BLUE = 4
1790...     PURPLE = RED | BLUE
1791...     WHITE = RED | GREEN | BLUE
1792...
1793\end{python}
1794the following are true:
1795\begin{itemize}
1796\item
1797single-bit flags are canonical
1798\item
1799multi-bit and zero-bit flags are aliases
1800\item
1801only canonical flags are returned during iteration:
1802\begin{python}
1803>>> list(Color.WHITE)
1804[<Color.RED: 1>, <Color.GREEN: 2>, <Color.BLUE: 4>]
1805\end{python}
1806negating a flag or flag set returns a new flag/flag set with the corresponding positive integer value:
1807\begin{python}
1808>>> Color.BLUE
1809<Color.BLUE: 4>
1810
1811>>> ~Color.BLUE
1812<Color.RED|GREEN: 3>
1813\end{python}
1814\item
1815names of pseudo-flags are constructed from their members' names:
1816\begin{python}
1817>>> (Color.RED | Color.GREEN).name
1818'RED|GREEN'
1819\end{python}
1820\item
1821multi-bit flags, aka aliases, can be returned from operations:
1822\begin{python}
1823>>> Color.RED | Color.BLUE
1824<Color.PURPLE: 5>
1825
1826>>> Color(7)  # or Color(-1)
1827<Color.WHITE: 7>
1828
1829>>> Color(0)
1830<Color.BLACK: 0>
1831\end{python}
1832\item
1833membership / containment checking: zero-valued flags are always considered to be contained:
1834\begin{python}
1835>>> Color.BLACK in Color.WHITE
1836True
1837\end{python}
1838otherwise, only if all bits of one flag are in the other flag will True be returned:
1839\begin{python}
1840>>> Color.PURPLE in Color.WHITE
1841True
1842
1843>>> Color.GREEN in Color.PURPLE
1844False
1845\end{python}
1846\end{itemize}
1847There is a new boundary mechanism that controls how out-of-range / invalid bits are handled: @STRICT@, @CONFORM@, @EJECT@, and @KEEP@:
1848\begin{itemize}
1849\item
1850@STRICT@ --> raises an exception when presented with invalid values
1851\item
1852@CONFORM@ --> discards any invalid bits
1853\item
1854@EJECT@ --> lose Flag status and become a normal int with the given value
1855\item
1856@KEEP@ --> keep the extra bits
1857\begin{itemize}
1858\item
1859keeps Flag status and extra bits
1860\item
1861extra bits do not show up in iteration
1862\item
1863extra bits do show up in repr() and str()
1864\end{itemize}
1865\end{itemize}
1866The default for @Flag@ is @STRICT@, the default for @IntFlag@ is @EJECT@, and the default for @_convert_@ is @KEEP@ (see @ssl.Options@ for an example of when @KEEP@ is needed).
1867
1868\section{How are Enums and Flags different?}
1869
1870Enums have a custom metaclass that affects many aspects of both derived @Enum@ classes and their instances (members).
1871
1872\subsection{Enum Classes}
1873
1874The @EnumType@ metaclass is responsible for providing the @__contains__()@, @__dir__()@, @__iter__()@ and other methods that allow one to do things with an @Enum@ class that fail on a typical class, such as @list(Color)@ or @some_enum_var@ in @Color@.
1875@EnumType@ is responsible for ensuring that various other methods on the final @Enum@ class are correct (such as @__new__()@, @__getnewargs__()@, @__str__()@ and @__repr__()@).
1876
1877\subsection{Flag Classes}
1878
1879Flags have an expanded view of aliasing: to be canonical, the value of a flag needs to be a power-of-two value, and not a duplicate name.
1880So, in addition to the @Enum@ definition of alias, a flag with no value (a.k.a. 0) or with more than one power-of-two value (e.g. 3) is considered an alias.
1881
1882\subsection{Enum Members (aka instances)}
1883
1884The most interesting thing about enum members is that they are singletons.
1885@EnumType@ creates them all while it is creating the enum class itself, and then puts a custom @__new__()@ in place to ensure that no new ones are ever instantiated by returning only the existing member instances.
1886
1887\subsection{Flag Members}
1888
1889Flag members can be iterated over just like the @Flag@ class, and only the canonical members will be returned.
1890For example:
1891\begin{python}
1892>>> list(Color)
1893[<Color.RED: 1>, <Color.GREEN: 2>, <Color.BLUE: 4>]
1894\end{python}
1895(Note that BLACK, PURPLE, and WHITE do not show up.)
1896
1897Inverting a flag member returns the corresponding positive value, rather than a negative value -- for example:
1898\begin{python}
1899>>> ~Color.RED
1900<Color.GREEN|BLUE: 6>
1901\end{python}
1902Flag members have a length corresponding to the number of power-of-two values they contain. For example:
1903\begin{python}
1904>>> len(Color.PURPLE)
19052
1906\end{python}
1907
1908\subsection{Enum Cookbook}
1909
1910While @Enum@, @IntEnum@, @StrEnum@, @Flag@, and @IntFlag@ are expected to cover the majority of use-cases, they cannot cover them all. Here are recipes for some different types of enumerations that can be used directly, or as examples for creating one's own.
1911
1912\subsection{Omitting values}
1913
1914In many use-cases, one doesn't care what the actual value of an enumeration is. There are several ways to define this type of simple enumeration:
1915\begin{itemize}
1916\item
1917use instances of auto for the value
1918\item
1919use instances of object as the value
1920\item
1921use a descriptive string as the value
1922\item
1923use a tuple as the value and a custom @__new__()@ to replace the tuple with an @int@ value
1924\end{itemize}
1925Using any of these methods signifies to the user that these values are not important, and also enables one to add, remove, or reorder members without having to renumber the remaining members.
1926
1927\subsection{Using \lstinline{auto}}
1928
1929Using @auto@ would look like:
1930\begin{python}
1931>>> class Color(Enum):
1932...     RED = auto()
1933...     BLUE = auto()
1934...     GREEN = auto()
1935...
1936>>> Color.GREEN
1937<Color.GREEN: 3>
1938\end{python}
1939
1940\subsection{Using \lstinline{object}}
1941
1942Using @object@ would look like:
1943\begin{python}
1944>>> class Color(Enum):
1945...     RED = object()
1946...     GREEN = object()
1947...     BLUE = object()
1948...
1949>>> Color.GREEN                         
1950<Color.GREEN: <object object at 0x...>>
1951\end{python}
1952This is also a good example of why you might want to write your own @__repr__()@:
1953\begin{python}
1954>>> class Color(Enum):
1955...     RED = object()
1956...     GREEN = object()
1957...     BLUE = object()
1958...     def __repr__(self):
1959...         return "<%s.%s>" % (self.__class__.__name__, self._name_)
1960...
1961>>> Color.GREEN
1962<Color.GREEN>
1963\end{python}
1964
1965\subsection{Using a descriptive string}
1966
1967Using a string as the value would look like:
1968\begin{python}
1969>>> class Color(Enum):
1970...     RED = 'stop'
1971...     GREEN = 'go'
1972...     BLUE = 'too fast!'
1973...
1974>>> Color.GREEN
1975<Color.GREEN: 'go'>
1976\end{python}
1977
1978\subsection{Using a custom \lstinline{__new__()}}
1979
1980Using an auto-numbering @__new__()@ would look like:
1981\begin{python}
1982>>> class AutoNumber(Enum):
1983...     def __new__(cls):
1984...         value = len(cls.__members__) + 1
1985...         obj = object.__new__(cls)
1986...         obj._value_ = value
1987...         return obj
1988...
1989>>> class Color(AutoNumber):
1990...     RED = ()
1991...     GREEN = ()
1992...     BLUE = ()
1993...
1994>>> Color.GREEN
1995<Color.GREEN: 2>
1996\end{python}
1997To make a more general purpose @AutoNumber@, add @*args@ to the signature:
1998\begin{python}
1999>>> class AutoNumber(Enum):
2000...     def __new__(cls, *args):      # this is the only change from above
2001...         value = len(cls.__members__) + 1
2002...         obj = object.__new__(cls)
2003...         obj._value_ = value
2004...         return obj
2005\end{python}
2006Then when you inherit from @AutoNumber@ you can write your own @__init__@ to handle any extra arguments:
2007\begin{python}
2008>>> class Swatch(AutoNumber):
2009...     def __init__(self, pantone='unknown'):
2010...         self.pantone = pantone
2011...     AUBURN = '3497'
2012...     SEA_GREEN = '1246'
2013...     BLEACHED_CORAL = () # New color, no Pantone code yet!
2014...
2015>>> Swatch.SEA_GREEN
2016<Swatch.SEA_GREEN: 2>
2017>>> Swatch.SEA_GREEN.pantone
2018'1246'
2019>>> Swatch.BLEACHED_CORAL.pantone
2020'unknown'
2021\end{python}
2022Note: The @__new__()@ method, if defined, is used during creation of the Enum members;
2023it is then replaced by Enum's @__new__()@ which is used after class creation for lookup of existing members.
2024
2025Warning: Do not call @super().__new__()@, as the lookup-only @__new__@ is the one that is found;
2026instead, use the data type directly -- e.g.:
2027\begin{python}
2028obj = int.__new__(cls, value)
2029\end{python}
2030
2031\subsection{OrderedEnum}
2032
2033An ordered enumeration that is not based on @IntEnum@ and so maintains the normal @Enum@ invariants (such as not being comparable to other enumerations):
2034\begin{python}
2035>>> class OrderedEnum(Enum):
2036...     def __ge__(self, other):
2037...         if self.__class__ is other.__class__:
2038...             return self.value >= other.value
2039...         return NotImplemented
2040...     def __gt__(self, other):
2041...         if self.__class__ is other.__class__:
2042...             return self.value > other.value
2043...         return NotImplemented
2044...     def __le__(self, other):
2045...         if self.__class__ is other.__class__:
2046...             return self.value <= other.value
2047...         return NotImplemented
2048...     def __lt__(self, other):
2049...         if self.__class__ is other.__class__:
2050...             return self.value < other.value
2051...         return NotImplemented
2052...
2053>>> class Grade(OrderedEnum):
2054...     A = 5
2055...     B = 4
2056...     C = 3
2057...     D = 2
2058...     F = 1
2059>>> Grade.C < Grade.A
2060True
2061\end{python}
2062
2063\subsection{DuplicateFreeEnum}
2064
2065Raises an error if a duplicate member value is found instead of creating an alias:
2066\begin{python}
2067>>> class DuplicateFreeEnum(Enum):
2068...     def __init__(self, *args):
2069...         cls = self.__class__
2070...         if any(self.value == e.value for e in cls):
2071...             a = self.name
2072...             e = cls(self.value).name
2073...             raise ValueError(
2074...                 "aliases not allowed in DuplicateFreeEnum:  %r --> %r"
2075...                 % (a, e))
2076>>> class Color(DuplicateFreeEnum):
2077...     RED = 1
2078...     GREEN = 2
2079...     BLUE = 3
2080...     GRENE = 2
2081...
2082Traceback (most recent call last):
2083  ...
2084ValueError: aliases not allowed in DuplicateFreeEnum:  'GRENE' --> 'GREEN'
2085\end{python}
2086Note: This is a useful example for subclassing Enum to add or change other behaviors as well as disallowing aliases.
2087If the only desired change is disallowing aliases, the @unique()@ decorator can be used instead.
2088
2089\subsection{Planet}
2090
2091If @__new__()@ or @__init__()@ is defined, the value of the enum member will be passed to those methods:
2092\begin{figure}
2093\begin{python}
2094from enum import Enum
2095class Planet(Enum):
2096        MERCURY = ( 3.303E23, 2.4397E6 )
2097        VENUS       = ( 4.869E24, 6.0518E6 )
2098        EARTH       = (5.976E24, 6.37814E6)
2099        MARS         = (6.421E23, 3.3972E6)
2100        JUPITER    = (1.9E27,   7.1492E7)
2101        SATURN     = (5.688E26, 6.0268E7)
2102        URANUS    = (8.686E25, 2.5559E7)
2103        NEPTUNE  = (1.024E26, 2.4746E7)
2104        def __init__( self, mass, radius ):
2105                self.mass = mass                # in kilograms
2106                self.radius = radius    # in meters
2107        def surface_gravity( self ):
2108                # universal gravitational constant  (m3 kg-1 s-2)
2109                G = 6.67300E-11
2110                return G * self.mass / (self.radius * self.radius)
2111for p in Planet:
2112        print( f"{p.name}: {p.value}" )
2113
2114MERCURY: (3.303e+23, 2439700.0)
2115VENUS: (4.869e+24, 6051800.0)
2116EARTH: (5.976e+24, 6378140.0)
2117MARS: (6.421e+23, 3397200.0)
2118JUPITER: (1.9e+27, 71492000.0)
2119SATURN: (5.688e+26, 60268000.0)
2120URANUS: (8.686e+25, 25559000.0)
2121NEPTUNE: (1.024e+26, 24746000.0)
2122\end{python}
2123\caption{Python Planet Example}
2124\label{f:PythonPlanetExample}
2125\end{figure}
2126
2127
2128\subsection{TimePeriod}
2129
2130An example to show the @_ignore_@ attribute in use:
2131\begin{python}
2132>>> from datetime import timedelta
2133>>> class Period(timedelta, Enum):
2134...     "different lengths of time"
2135...     _ignore_ = 'Period i'
2136...     Period = vars()
2137...     for i in range(367):
2138...         Period['day_%d' % i] = i
2139...
2140>>> list(Period)[:2]
2141[<Period.day_0: datetime.timedelta(0)>, <Period.day_1: datetime.timedelta(days=1)>]
2142>>> list(Period)[-2:]
2143[<Period.day_365: datetime.timedelta(days=365)>, <Period.day_366: datetime.timedelta(days=366)>]
2144\end{python}
2145
2146\subsection{Subclassing EnumType}
2147
2148While most enum needs can be met by customizing @Enum@ subclasses, either with class decorators or custom functions, @EnumType@ can be subclassed to provide a different Enum experience.
2149
2150
2151\section{OCaml}
2152
2153% https://ocaml.org/docs/basic-data-types#enumerated-data-types
2154% https://dev.realworldocaml.org/runtime-memory-layout.html
2155
2156OCaml provides a variant (union) type, where multiple heterogeneously-typed objects share the same storage.
2157The simplest form of the variant type is a list of nullary datatype constructors, which is like an unscoped, opaque enumeration.
2158
2159OCaml provides a variant (union) type, which is an aggregation of heterogeneous types.
2160A basic variant is a list of nullary datatype constructors, which is like an unscoped, opaque enumeration.
2161\begin{ocaml}
2162type weekday = Mon | Tue | Wed | Thu | Fri | Sat | Sun
2163let day : weekday @= Mon@                               $\C{(* bind *)}$
2164let take_class( d : weekday ) =
2165        @match@ d with                                          $\C{(* matching *)}$
2166                Mon | Wed -> Printf.printf "CS442\n" |
2167                Tue | Thu -> Printf.printf "CS343\n" |
2168                Fri -> Printf.printf "Tutorial\n" |
2169                _ -> Printf.printf "Take a break\n"
2170let _ = take_class( Mon );
2171@CS442@
2172\end{ocaml}
2173The only operations are binding and pattern matching (equality), where the variant name is logically the implementation tag stored in the union for discriminating the value in the object storage.
2174After compilation, variant names are mapped to an opague ascending intergral type discriminants, starting from 0.
2175Here, function @take_class@ has a @weekday@ parameter, and returns @"CS442"@, if the weekday value is @Mon@ or @Wed@, @"CS343"@, if the value is @Tue@ or @Thu@, and @"Tutorial"@ for @Fri@.
2176The ``@_@'' is a wildcard matching any @weekday@ value, so the function returns @"Take a break"@ for values @Sat@ or @Sun@, which are not matched by the previous cases.
2177Since the variant has no type, it has a \Newterm{0-arity constructor}, \ie no parameters.
2178Because @weekday@ is a union of values @Mon@ to @Sun@, it is a \Newterm{union type} in turns of the functional-programming paradigm.
2179
2180Each variant can have an associated heterogeneous type, with an n-ary constructor for creating a corresponding value.
2181\begin{ocaml}
2182type colour = Red | Green of @string@ | Blue of @int * float@
2183\end{ocaml}
2184A variant with parameter is stored in a memory block, prefixed by an int tag and has its parameters stores as words in the block.
2185@colour@ is a summation of a nullary type, a unary product type of @string@, and a cross product of @int@ and @float@.
2186(Mathematically, a @Blue@ value is a Cartesian product of the types @int@ type and @float@.)
2187Hence, a variant type creates a sum of product of different types.
2188\begin{ocaml}
2189let c = Red                                                             $\C{(* 0-ary constructor, set tag *)}$
2190let _ = match c with Red -> Printf.printf "Red, "
2191let c = Green( "abc" )                                  $\C{(* 1-ary constructor, set tag *)}$
2192let _ = match c with Green g -> Printf.printf "%s, " g
2193let c = Blue( 1, 1.5 )                                  $\C{(* 2-ary constructor, set tag *)}$
2194let _ = match c with Blue( i, f ) -> Printf.printf "%d %g\n" i f
2195@Red, abc, 1 1.5@
2196\end{ocaml}
2197
2198A variant type can have a recursive definition.
2199\begin{ocaml}
2200type @stringList@ = Empty | Pair of string * @stringList@
2201\end{ocaml}
2202which is a recursive sum of product of types, called an \Newterm{algebraic data-type}.
2203A recursive function is often used to pattern match against a recursive variant type.
2204\begin{ocaml}
2205let rec @len_of_string_list@( list : stringList ): int =
2206        match list with
2207                Empty -> 0 |
2208                Pair( _ , r ) -> 1 + @len_of_string_list@ r
2209\end{ocaml}
2210Here, the head of the recursive type is removed and the remainder is processed until the type is empty.
2211Each recursion is counted to obtain the number of elements in the type.
2212
2213Note, the compiler statically guarantees that only the correct kind of type is used in the \lstinline[language=OCaml]{match} statement.
2214However, the union tag is dynamically set on binding (and possible reset on assignment), so a \lstinline[language=OCaml]{match} statement is effectively doing RTTI to select the matching case clause.
2215
2216In summary, an OCaml variant is a singleton value rather than a set of possibly ordered values, and hence, has no notion of enumerabilty.
2217Therefore it is not an enumeration, except for the simple opaque (nullary) case.
2218
2219\begin{comment}
2220Date: Wed, 13 Mar 2024 10:52:34 -0400
2221Subject: Re: OCaml
2222To: "Peter A. Buhr" <pabuhr@uwaterloo.ca>
2223From: Gregor Richards <gregor.richards@uwaterloo.ca>
2224
2225On 3/12/24 18:34, Peter A. Buhr wrote:
2226> Gregor, attached is a section Jiada wrote on OCaml (1-page).
2227> Does it reflect our discussion about functional languages and enumerations?
2228
2229Yeah, I think so. The most important part, i.e., that once they're
2230parameterized they're not really enumerations at all, is covered clearly
2231enough.
2232
2233A couple quibbles:
2234
2235<<a list of untyped tags>>
2236
2237This is true, but leaking implementation details. These are nullary datatype
2238constructors. Indeed, you later talk about "tagged variants", which are really
2239just parameterized variants, using the term "tag" differently, confusing the
2240term "tag" further.
2241
2242<<Because weekday is a summation of values Mon to Sun, it is a sum type in
2243turns of the functional-programming paradigm>>
2244
2245It is a *union* of values and is a *union* type.
2246
2247With valediction,
2248  - Gregor Richards
2249
2250
2251Date: Thu, 14 Mar 2024 21:45:52 -0400
2252Subject: Re: OCaml "enums" do come with ordering
2253To: "Peter A. Buhr" <pabuhr@uwaterloo.ca>
2254From: Gregor Richards <gregor.richards@uwaterloo.ca>
2255
2256On 3/14/24 21:30, Peter A. Buhr wrote:
2257> I've marked 3 places with your name to shows places with enum ordering.
2258>
2259> type weekday = Mon | Tue | Wed | Thu | Fri | Sat | Sun
2260> let day : weekday = Mon
2261> let take_class( d : weekday ) =
2262>       if d <= Fri then                                (* Gregor *)
2263>               Printf.printf "weekday\n"
2264>       else if d >= Sat then                   (* Gregor *)
2265>               Printf.printf "weekend\n";
2266>       match d with
2267>               Mon | Wed -> Printf.printf "CS442\n" |
2268>               Tue | Thu -> Printf.printf "CS343\n" |
2269>               Fri -> Printf.printf "Tutorial\n" |
2270>               _ -> Printf.printf "Take a break\n"
2271>
2272> let _ = take_class( Mon ); take_class( Sat );
2273>
2274> type colour = Red | Green of string | Blue of int * float
2275> let c = Red
2276> let _ = match c with Red -> Printf.printf "Red, "
2277> let c = Green( "abc" )
2278> let _ = match c with Green g -> Printf.printf "%s, " g
2279> let c = Blue( 1, 1.5 )
2280> let _ = match c with Blue( i, f ) -> Printf.printf "%d %g\n" i f
2281>
2282> let check_colour(c: colour): string =
2283>       if c < Green( "xyz" ) then              (* Gregor *)
2284>               Printf.printf "green\n";
2285>       match c with
2286>               Red -> "Red" |
2287>               Green g -> g |
2288>               Blue(i, f) -> string_of_int i ^ string_of_float f
2289> let _ = check_colour( Red ); check_colour( Green( "xyz" ) );
2290>
2291> type stringList = Empty | Pair of string * stringList
2292> let rec len_of_string_list(l: stringList): int =
2293>       match l with
2294>               Empty -> 0 |
2295>               Pair(_ , r) -> 1 + len_of_string_list r
2296>
2297> let _ = for i = 1 to 10 do
2298>       Printf.printf "%d, " i
2299> done
2300>
2301> (* Local Variables: *)
2302> (* tab-width: 4 *)
2303> (* compile-command: "ocaml test.ml" *)
2304> (* End: *)
2305
2306My functional-language familiarity is far more with Haskell than OCaml.  I
2307mostly view OCaml through a lens of "it's Haskell but with cheating".  Haskell
2308"enums" (ADTs) aren't ordered unless you specifically and manually put them in
2309the Ord typeclass by defining the comparators.  Apparently, OCaml has some
2310other rule, which I would guess is something like "sort by tag then by order of
2311parameter". Having a default behavior for comparators is *bizarre*; my guess
2312would be that it gained this behavior in its flirtation with object
2313orientation, but that's just a guess (and irrelevant).
2314
2315This gives a total order, but not enumerability (which would still be
2316effectively impossible or even meaningless since enums are just a special case
2317of ADTs).
2318
2319With valediction,
2320  - Gregor Richards
2321
2322Date: Wed, 20 Mar 2024 18:16:44 -0400
2323Subject: Re:
2324To: "Peter A. Buhr" <pabuhr@uwaterloo.ca>
2325From: Gregor Richards <gregor.richards@uwaterloo.ca>
2326
2327
2328On 3/20/24 17:26, Peter A. Buhr wrote:
2329> Gregor, everyone at this end would like a definition of "enumerability". Can
2330> you formulate one?
2331
2332According to the OED (emphasis added to the meaning I'm after):
2333
2334enumerate (verb, transitive). To count, ascertain the number of; **more
2335usually, to mention (a number of things or persons) separately, as if for the
2336purpose of counting**; to specify as in a list or catalogue.
2337
2338With C enums, if you know the lowest and highest value, you can simply loop
2339over them in a for loop (this is, of course, why so many enums come with an
2340ENUM_WHATEVER_LAST value). But, I would be hesitant to use the word "loop" to
2341describe enumerability, since in functional languages, you would recurse for
2342such a purpose.
2343
2344In Haskell, in order to do something with every member of an "enumeration", you
2345would have to explicitly list them all. The type system will help a bit since
2346it knows if you haven't listed them all, but you would have to statically have
2347every element in the enumeration.  If somebody added new elements to the
2348enumeration later, your code to enumerate over them would no longer work
2349correctly, because you can't simply say "for each member of this enumeration do
2350X". In Haskell that's because there aren't actually enumerations; what they use
2351as enumerations are a degenerate form of algebraic datatypes, and ADTs are
2352certainly not enumerable. In OCaml, you've demonstrated that they impose
2353comparability, but I would still assume that you can't make a loop over every
2354member of an enumeration. (But, who knows!)
2355
2356Since that's literally what "enumerate" means, it seems like a rather important
2357property for enumerations to have ;)
2358
2359With valediction,
2360  - Gregor Richards
2361
2362
2363From: Andrew James Beach <ajbeach@uwaterloo.ca>
2364To: Gregor Richards <gregor.richards@uwaterloo.ca>, Peter Buhr <pabuhr@uwaterloo.ca>
2365CC: Michael Leslie Brooks <mlbrooks@uwaterloo.ca>, Fangren Yu <f37yu@uwaterloo.ca>,
2366    Jiada Liang <j82liang@uwaterloo.ca>
2367Subject: Re: Re:
2368Date: Thu, 21 Mar 2024 14:26:36 +0000
2369
2370Does this mean that not all enum declarations in C create enumerations? If you
2371declare an enumeration like:
2372
2373enum Example {
2374    Label,
2375    Name = 10,
2376    Tag = 3,
2377};
2378
2379I don't think there is any way to enumerate (iterate, loop, recurse) over these
2380values without listing all of them.
2381
2382
2383Date: Thu, 21 Mar 2024 10:31:49 -0400
2384Subject: Re:
2385To: Andrew James Beach <ajbeach@uwaterloo.ca>, Peter Buhr <pabuhr@uwaterloo.ca>
2386CC: Michael Leslie Brooks <mlbrooks@uwaterloo.ca>, Fangren Yu <f37yu@uwaterloo.ca>,
2387    Jiada Liang <j82liang@uwaterloo.ca>
2388From: Gregor Richards <gregor.richards@uwaterloo.ca>
2389
2390I consider this conclusion reasonable. C enums can be nothing more than const
2391ints, and if used in that way, I personally wouldn't consider them as
2392enumerations in any meaningful sense, particularly since the type checker
2393essentially does nothing for you there. Then they're a way of writing consts
2394repeatedly with some textual indicator that these definitions are related; more
2395namespace, less enum.
2396
2397When somebody writes bitfield members as an enum, is that *really* an
2398enumeration, or just a use of the syntax for enums to keep related definitions
2399together?
2400
2401With valediction,
2402  - Gregor Richards
2403
2404
2405Date: Tue, 16 Apr 2024 11:04:51 -0400
2406Subject: Re: C unnamed enumeration
2407To: "Peter A. Buhr" <pabuhr@uwaterloo.ca>
2408CC: <ajbeach@uwaterloo.ca>, <j82liang@uwaterloo.ca>, <mlbrooks@uwaterloo.ca>,
2409        <f37yu@uwaterloo.ca>
2410From: Gregor Richards <gregor.richards@uwaterloo.ca>
2411
2412On 4/16/24 09:55, Peter A. Buhr wrote:
2413> So what is a variant? Is it a set of tag names, which might be a union or is it
2414> a union, which might have tag names?
2415
2416Your tagless variant bears no resemblance to variants in any functional
2417programming language. A variant is a tag AND a union. You might not need to put
2418anything in the union, in which case it's a pointless union, but the named tag
2419is absolutely mandatory. That's the thing that varies.
2420
2421I was unaware of std::variant. As far as functional languages are concerned,
2422std::variant IS NOT A VARIANT. Perhaps it would be best to use the term ADT for
2423the functional language concept, because that term has no other meanings.
2424
2425An ADT cannot not have a named tag. That's meaningless. The tag is the data
2426constructor, which is the thing you actually define when you define an ADT. It
2427is strictly the union that's optional.
2428
2429With valediction,
2430  - Gregor Richards
2431\end{comment}
2432
2433
2434\section{Comparison}
2435
2436\VRef[Table]{t:FeatureLanguageComparison} shows a comparison of enumeration features and programming languages.
2437The features are high level and may not capture nuances within a particular language
2438The @const@ feature is simple macros substitution and not a typed enumeration.
2439
2440\begin{table}
2441\caption{Enumeration Feature / Language Comparison}
2442\label{t:FeatureLanguageComparison}
2443\small
2444\setlength{\tabcolsep}{3pt}
2445\newcommand{\CM}{\checkmark}
2446\begin{tabular}{r|c|c|c|c|c|c|c|c|c|c|c|c|c}
2447                                &Pascal & Ada   &\Csharp& OCaml & Java  &Modula-3&Golang& Rust  & Swift & Python& C             & \CC   & \CFA  \\
2448\hline
2449@const@                 & \CM   &               &               &               &               &               & \CM   &               &               &               &               & \CM   &               \\
2450\hline
2451\hline
2452opaque                  &               &               &               &               &               &               &               &               &               &               &               &               & \CM   \\
2453\hline
2454typed                   &               &               &               &               &               &               &               &               &               &               & @int@ & integral      & @T@   \\
2455\hline
2456safe                    &               &               &               &               &               &               &               &               &               &               &               & \CM   & \CM   \\
2457\hline
2458ordered                 &               &               &               &               &               &               &               &               &               &               & \CM   & \CM   & \CM   \\
2459\hline
2460dup. values             &               &               &               &               &               &               &               &               &               & alias & \CM   & \CM   & \CM   \\
2461\hline
2462setable                 &               &               &               &               &               &               &               &               &               &               & \CM   & \CM   & \CM   \\
2463\hline
2464auto-init               &               &               &               &               &               &               &               &               &               &               & \CM   & \CM   & \CM   \\
2465\hline
2466(un)scoped              &               &               &               &               &               &               &               &               &               &               & U             & U/S   & U/S   \\
2467\hline
2468overload                &               & \CM   &               &               &               &               &               &               &               &               &               & \CM   & \CM   \\
2469\hline
2470switch                  &               &               &               &               &               &               &               &               &               &               & \CM   & \CM   & \CM   \\
2471\hline
2472loop                    &               &               &               &               &               &               &               &               &               &               &               &               & \CM   \\
2473\hline
2474array                   &               &               &               &               &               &               &               &               &               &               & \CM   &               & \CM   \\
2475\hline
2476subtype                 &               &               &               &               &               &               &               &               &               &               &               &               & \CM   \\
2477\hline
2478inheritance             &               &               &               &               &               &               &               &               &               &               &               &               & \CM   \\
2479\end{tabular}
2480\end{table}
Note: See TracBrowser for help on using the repository browser.