source: doc/theses/jiada_liang_MMath/relatedwork.tex @ 7b05de4

Last change on this file since 7b05de4 was d734fa1, checked in by JiadaL <j82liang@…>, 5 months ago

Comment on relatedwork work

  • Property mode set to 100644
File size: 95.5 KB
Line 
1\chapter{Related Work}
2\label{s:RelatedWork}
3
4\begin{comment}
5An algebraic data type (ADT) can be viewed as a recursive sum of product types.
6A sum type lists values as members.
7A member in a sum type definition is known as a data constructor.
8For example, C supports sum types union and enumeration (enum).
9An enumeration in C can be viewed as the creation of a list of zero-arity data constructors.
10A union instance holds a value of one of its member types.
11Defining a union does not generate new constructors.
12The definition of member types and their constructors are from the outer lexical scope.
13
14In general, an \Newterm{algebraic data type} (ADT) is a composite type, \ie, a type formed by combining other types.
15Three common classes of algebraic types are \Newterm{array type}, \ie homogeneous types, \Newterm{product type}, \ie heterogeneous tuples and records (structures), and \Newterm{sum type}, \ie tagged product-types (unions).
16Enumerated types are a special case of product/sum types with non-mutable fields, \ie initialized (constructed) once at the type's declaration, possible restricted to compile-time initialization.
17Values of algebraic types are access by subscripting, field qualification, or type (pattern) matching.
18\end{comment}
19
20Enumeration types exist in many popular programming languages, both past and present, \eg Pascal~\cite{Pascal}, Ada~\cite{Ada}, \Csharp~\cite{Csharp}, OCaml~\cite{OCaml} \CC, Go~\cite{Go}, Java~\cite{Java}, Modula-3~\cite{Modula-3}, Rust~\cite{Rust}, Swift~\cite{Swift}, Python~\cite{Python}.
21Among theses languages, there are a large set of overlapping features, but each language has its own unique extensions and restrictions.
22
23\section{Pascal}
24\label{s:Pascal}
25\lstnewenvironment{pascal}[1][]{\lstset{language=pascal,escapechar=\$,moredelim=**[is][\color{red}]{@}{@},}\lstset{#1}}{}
26
27Classic Pascal has the \lstinline[language=pascal]{const} declaration binding a name to a constant literal/expression.
28\begin{pascal}
29const one = 0 + 1;   Vowels = set of (A,E,I,O,U);   NULL = NIL;
30                 PI = 3.14159;   Plus = '+';   Fred = 'Fred';
31\end{pascal}
32This mechanism is not an enumeration because there is no specific type (pseudo enumeration).
33Hence, there is no notion of a (possibly ordered) set, modulo the \lstinline[language=pascal]{set of} type.
34The type of each constant name (enumerator) is inferred from the constant-expression type.
35
36Free Pascal~\cite[\S~3.1.1]{FreePascal} is a modern, object-oriented version of classic Pascal, with a C-style enumeration type.
37Enumerators must be assigned in ascending numerical order with a constant expression and the range can be non-consecutive.
38\begin{pascal}
39Type EnumType = ( one, two, three, forty @= 40@, fortyone );
40\end{pascal}
41Pseudo-functions @Pred@ and @Succ@ can only be used if the range is consecutive.
42The underlying type is an implementation-defined integral-type large enough to hold all enumerated values; it does not have to be the smallest possible type.
43The integral size can be explicitly specified using compiler directive @$PACKENUM@~$N$, where $N$ is the number of bytes, \eg:
44\begin{pascal}
45Type @{$\color{red}\$$PACKENUM 1}@ SmallEnum = ( one, two, three );
46            @{$\color{red}\$$PACKENUM 4}@ LargeEnum = ( BigOne, BigTwo, BigThree );
47Var S : SmallEnum; { 1 byte }
48          L : LargeEnum; { 4 bytes}
49\end{pascal}
50
51
52\section{Ada}
53\lstnewenvironment{ada}[1][]{\lstset{language=[2005]Ada,escapechar=\$,moredelim=**[is][\color{red}]{@}{@},literate={'}{\ttfamily'\!}1}\lstset{#1}}{}
54
55An Ada enumeration type is an ordered list of constants, called \Newterm{literals} (enumerators).
56\begin{ada}
57type RGB is ( Red, Green, Blue ); -- 3 literals (enumerators)
58\end{ada}
59Object initialization and assignment are restricted to the enumerators of this type.
60Enumerators without an explicitly designated constant value are auto-initialized: from left to right, starting at zero or the next explicitly initialized constant, incrementing by 1.
61To explicitly set enumerator values, \emph{all} enumerators must be set in \emph{ascending} order, \ie there is no auto-initialization.
62\begin{ada}
63type RGB is ( Red, Green, Blue );
64@for RGB use ( Red => 10, Green => 20, Blue => 30 );@ -- ascending order
65\end{ada}
66Hence, the position, value, label tuples are:
67\begin{ada}
68(0, 10, RED)  (1, 20, GREEN)  (2, 30, BLUE) 
69\end{ada}
70Note, Ada is case-\emph{insensitive} so names may appear in multiple forms and still be the same, \eg @Red@ and @RED@ (a questionable design decision).
71
72Like C, Ada enumerators are unscoped, \ie enumerators declared inside of an enum are visible (projected) into the enclosing scope.
73The enumeration operators are the ordering operators, @=@, @<@, @<=@, @=@, @/=@, @>=@, @>@, where the ordering relationship is given implicitly by the sequence of enumerators, which is always ascending.
74
75Ada enumerators are overloadable.
76\begin{ada}
77type Traffic_Light is ( @Red@, Yellow, @Green@ );
78\end{ada}
79Like \CFA, Ada uses an advanced type-resolution algorithm, including the left-hand side of assignment, to disambiguate among overloaded names.
80\VRef[Figure]{f:AdaEnumeration} shows how ambiguity is handled using a cast, \ie \lstinline[language=ada]{RGB'(Red)}.
81
82\begin{figure}
83\begin{ada}
84with Ada.Text_IO; use Ada.Text_IO;
85procedure test is
86        type RGB is ( @Red@, Green, Blue );
87        type Traffic_Light is ( @Red@, Yellow, Green );         -- overload
88        procedure @Red@( Colour : RGB ) is begin            -- overload
89                Put_Line( "Colour is " & RGB'Image( Colour ) );
90        end Red;
91        procedure @Red@( TL : Traffic_Light ) is begin       -- overload
92                Put_Line( "Light is " & Traffic_Light'Image( TL ) );
93        end Red;
94begin
95        @Red@( Blue );                           -- RGB
96        @Red@( Yellow );                                -- Traffic_Light
97        @Red@( @RGB'(Red)@ );           -- ambiguous without cast
98end test;
99\end{ada}
100\caption{Ada Enumeration Overload Resolution}
101\label{f:AdaEnumeration}
102\end{figure}
103
104Ada provides an alias mechanism, \lstinline[language=ada]{renames}, for aliasing types, which is useful to shorten package names.
105\begin{ada}
106OtherRed : RGB renames Red;
107\end{ada}
108which suggests a possible \CFA extension to @typedef@.
109\begin{cfa}
110typedef RGB.Red OtherRed;
111\end{cfa}
112
113There are three pairs of inverse enumeration pseudo-functions (attributes): @'Pos@ and @'Val@, @'Enum_Rep@ and @'Enum_Val@, and @'Image@ and @'Value@,
114\begin{cquote}
115\lstDeleteShortInline@
116\setlength{\tabcolsep}{15pt}
117\begin{tabular}{@{}ll@{}}
118\begin{ada}
119RGB'Pos( Red ) = 0;
120RGB'Enum_Rep( Red ) = 10;
121RGB'Image( Red ) = "RED";
122\end{ada}
123&
124\begin{ada}
125RGB'Val( 0 ) = Red
126RGB'Enum_Val( 10 ) =  Red
127RGB'Value( "Red" ) =  Red
128\end{ada}
129\end{tabular}
130\lstMakeShortInline@
131\end{cquote}
132These attributes are important for IO.
133An enumeration type @T@ also has the following attributes: @T'First@, @T'Last@, @T'Range@, @T'Pred@, @T'Succ@, @T'Min@, and @T'Max@, producing an intuitive result based on the attribute name.
134
135Ada allows the enumerator label to be a character constant.
136\begin{ada}
137type Operator is ( '+', '-', '*', '/' );
138\end{ada}
139which is syntactic sugar for the label and not character literals from the predefined type @Character@.
140The purpose is strictly readability using character literals rather than names.
141\begin{ada}
142Op : Operator := '+';
143if Op = '+' or else Op = '-' then ... ;
144elsif Op = '*' or else Op = '/' then ... ; end if;
145\end{ada}
146Interestingly, arrays of character enumerators can be treated as strings.
147\begin{ada}
148Ops : array( 0..3 ) of Operator;
149Ops := @"+-*/"@;            -- string assignment to array elements
150Ops := @"+-" & "*/"@;   -- string concatenation and assignment
151\end{ada}
152Ada's @Character@ type is defined as a character enumeration across all Latin-1 characters.
153
154Ada's boolean type is also a special enumeration, which can be used in conditions.
155\begin{ada}
156type Boolean is (False, True); -- False / True not keywords
157@Flag@ : Boolean;
158if @Flag@ then ...    -- conditional
159\end{ada}
160Since only types derived from @Boolean@ can be a conditional, @Boolean@ is essentially  a builtin type.
161
162Ada provides \emph{consecutive} subtyping of an enumeration using \lstinline[language=ada]{range}.
163\begin{ada}
164type Week is ( Mon, Tue, Wed, Thu, Fri, Sat, Sun );
165subtype Weekday is Week @range Mon .. Fri@;
166subtype Weekend is Week @range Sat .. Sun@;
167Day : Week;
168\end{ada}
169Hence, the ordering of the enumerators is crucial to provide the necessary ranges.
170
171An enumeration type can be used in the Ada \lstinline[language=ada]{case} (all enumerators must appear or a default) or iterating constructs.
172\begin{cquote}
173\lstDeleteShortInline@
174\setlength{\tabcolsep}{15pt}
175\begin{tabular}{@{}ll@{}}
176\begin{ada}
177case Day is
178        when @Mon .. Fri@ => ... ;
179        when @Sat .. Sun@ => ... ;
180end case;
181\end{ada}
182&
183\begin{ada}
184case Day is
185        when @Weekday@ => ... ;  -- subtype ranges
186        when @Weekend@ => ... ;
187end case;
188\end{ada}
189\end{tabular}
190\end{cquote}
191
192\begin{cquote}
193\setlength{\tabcolsep}{12pt}
194\begin{tabular}{@{}lll@{}}
195\begin{ada}
196for Day in @Mon .. Sun@ loop
197        ...
198end loop;
199\end{ada}
200&
201\begin{ada}
202for Day in @Weekday@ loop
203        ...
204end loop;
205\end{ada}
206&
207\begin{ada}
208for Day in @Weekend@ loop
209        ...
210end loop;
211\end{ada}
212\end{tabular}
213\lstMakeShortInline@
214\end{cquote}
215
216An enumeration type can be used as an array dimension and subscript.
217\begin{ada}
218Lunch : array( @Week@ ) of Time;
219for Day in Week loop
220        Lunch( @Day@ ) := ... ;       -- set lunch time
221end loop;
222\end{ada}
223
224
225\section{\CC}
226\label{s:C++RelatedWork}
227\lstnewenvironment{c++}[1][]{\lstset{language=[GNU]C++,escapechar=\$,moredelim=**[is][\color{red}]{@}{@},}\lstset{#1}}{}
228
229\CC has the equivalent of Pascal typed @const@ declarations \see{\VRef{s:Pascal}}, with static and dynamic initialization.
230\begin{c++}
231const auto one = 0 + 1;                                 $\C{// static intialization}$
232const auto NULL = nullptr;
233const auto PI = 3.14159;
234const auto Plus = '+';
235const auto Fred = "Fred";
236const auto Mon = 0, Tue = Mon + 1, Wed = Tue + 1, Thu = Wed + 1, Fri = Thu + 1,
237                                Sat = Fri + 1, Sun = Sat + 1;
238int sa[Sun];
239const auto r = random();                                $\C{// dynamic intialization}$
240int da[r];                                                              $\C{// VLA}$
241\end{c++}
242Statically initialized identifiers may appear in any constant-expression context, \eg @case@.
243Dynamically intialized identifiers may appear as array dimensions in @g++@, which allows variable-sized arrays.
244Interestingly, global \CC @const@ declarations are implicitly marked @static@ (@r@ rather than @R@).
245\begin{c++}
246$\$$ nm test.o
2470000000000000018 @r@ Mon
248\end{c++}
249
250\CC enumeration is largely backwards compatible with C, so it inherited C's enumerations.
251However, the following non-backwards compatible changes are made.
252
253\begin{cquote}
2547.2 Change: \CC objects of enumeration type can only be assigned values of the same enumeration type.
255In C, objects of enumeration type can be assigned values of any integral type. \\
256Example:
257\begin{c++}
258enum color { red, blue, green };
259color c = 1;                                                    $\C{// valid C, invalid C++}$
260\end{c++}
261\textbf{Rationale}: The type-safe nature of \CC. \\
262\textbf{Effect on original feature}: Deletion of semantically well-defined feature. \\
263\textbf{Difficulty of converting}: Syntactic transformation. (The type error produced by the assignment can be automatically corrected by applying an explicit cast.) \\
264\textbf{How widely used}: Common.
265\end{cquote}
266
267\begin{cquote}
2687.2 Change: In \CC, the type of an enumerator is its enumeration.
269In C, the type of an enumerator is @int@. \\
270Example:
271\begin{c++}
272enum e { A };
273sizeof(A) == sizeof(int)                                $\C{// in C}$
274sizeof(A) == sizeof(e)                                  $\C{// in C++}$
275/* and sizeof(int) is not necessary equal to sizeof(e) */
276\end{c++}
277\textbf{Rationale}: In \CC, an enumeration is a distinct type. \\
278\textbf{Effect on original feature}: Change to semantics of well-defined feature. \\
279\textbf{Difficulty of converting}: Semantic transformation. \\
280\textbf{How widely used}: Seldom. The only time this affects existing C code is when the size of an enumerator is taken.
281Taking the size of an enumerator is not a common C coding practice.
282\end{cquote}
283
284Hence, the values in a \CC enumeration can only be its enumerators (without a cast).
285While the storage size of an enumerator is up to the compiler, there is still an implicit cast to @int@.
286\begin{c++}
287enum E { A, B, C };
288E e = A;
289int i = A;    i = e;                                    $\C{// implicit casts to int}$
290\end{c++}
291\CC{11} added a scoped enumeration, \lstinline[language=c++]{enum class} (or \lstinline[language=c++]{enum struct}), where the enumerators are accessed using type qualification.
292\begin{c++}
293enum class E { A, B, C };
294E e = @E::@A;                                                   $\C{// qualified enumerator}$
295e = B;                                                                  $\C{// error: B not in scope}$
296\end{c++}
297\CC{20} supports explicit unscoping with a \lstinline[language=c++]{using enum} declaration.
298\begin{c++}
299enum class E { A, B, C };
300@using enum E;@
301E e = A;    e = B;                                              $\C{// direct access}$
302\end{c++}
303\CC{11} added the ability to explicitly declare the underlying \emph{integral} type for \lstinline[language=c++]{enum class}.
304\begin{c++}
305enum class RGB @: long@ { Red, Green, Blue };
306enum class rgb @: char@ { Red = 'r', Green = 'g', Blue = 'b' };
307enum class srgb @: signed char@ { Red = -1, Green = 0, Blue = 1 };
308\end{c++}
309There is no implicit conversion from the \lstinline[language=c++]{enum class} type to its declared type.
310\begin{c++}
311rgb crgb = rgb::Red;
312char ch = rgb::Red;   ch = crgb;                $\C{// error}$
313\end{c++}
314Finally, enumerations can be used in the @switch@ statement but there is no mechanism to iterate through an enumeration.
315An enumeration type cannot declare an array dimension but can be used as a subscript.
316There is no mechanism to subtype or inherit from enumerations.
317
318
319\section{C\raisebox{-0.7ex}{\LARGE$^\sharp$}\xspace} % latex bug: cannot use \relsize{2} so use \LARGE
320\label{s:Csharp}
321\lstnewenvironment{csharp}[1][]{\lstset{language=[Sharp]C,escapechar=\$,moredelim=**[is][\color{red}]{@}{@},}\lstset{#1}}{}
322
323% https://www.tutorialsteacher.com/codeeditor?cid=cs-mk8Ojx
324
325\Csharp is a dynamically-typed programming-language with a scoped, integral enumeration-type similar to the C/\CC enumeration.
326\begin{csharp}
327enum Weekday : byte { Mon, Tue, Wed, Thu@ = 10@, Fri, Sat, Sun@,@ };
328\end{csharp}
329The default underlying type is @int@, with auto-incrementing, implicit/explicit initialization, terminator comma, and optional integral typing (default @int@).
330A method cannot be defined in an enumeration type.
331As well, there is an explicit bidirectional conversion between an enumeration and its integral type, and an implicit conversion to the enumerator label in display contexts.
332\begin{csharp}
333int day = (int)Weekday.Fri;             $\C{// day == 10}$
334Weekday weekday = (Weekdays)42;         $\C{// weekday == 42, logically invalid}$
335Console.WriteLine( Weekday.Fri ); $\C{// print Fri}$
336string mon = Weekday.Mon.ToString(); $\C{// mon == "Mon"}$
337\end{csharp}
338
339The @Enum.GetValues@ pseudo-method retrieves an array of the enumeration constants for looping over an enumeration type or variable (expensive operation).
340\begin{csharp}
341foreach ( Weekday constant in @Enum.GetValues@( typeof(Weekday) ) ) {
342        Console.WriteLine( constant + " " + (int)constant ); // label, position
343}
344\end{csharp}
345
346The @Flags@ attribute creates a bit-flags enumeration, allowing bitwise operators @&@, @|@, @~@ (complement), @^@ (xor).
347\begin{csharp}
348@[Flags]@ public enum Weekday {
349        None = 0x0, Mon = 0x1, Tue = 0x2, Wed = 0x4,
350        Thu = 0x8, Fri = 0x10, Sat = 0x20, Sun = 0x40,
351        Weekend = @Sat | Sun@,
352        Weekdays = @Mon | Tue | Wed | Thu | Fri@
353}
354Weekday meetings = @Weekday.Mon | Weekday.Wed@; // 0x5
355\end{csharp}
356
357\VRef[Figure]{CsharpFreeVersusClass} shows an enumeration with free routines for manipulation, and embedding the enumeration and operations into an enumeration class.
358The key observation is that an enumeration class is just a structuring mechanism without any additional semantics.
359
360% https://learn.microsoft.com/en-us/dotnet/api/system.enum?view=net-8.0
361
362\begin{figure}
363\centering
364\lstDeleteShortInline@
365\begin{tabular}{@{}l|l@{}}
366\multicolumn{1}{@{}c|}{non-object oriented} & \multicolumn{1}{c@{}}{object oriented} \\
367\hline
368\begin{csharp}
369public class Program {
370
371        enum Weekday {
372                Mon, Tue, Wed, Thu, Fri, Sat, Sun };
373
374        static bool isWeekday( Weekday wd ) {
375                return wd <= Weekday.Fri;
376        }
377        static bool isWeekend( Weekday wd ) {
378                return Weekday.Sat <= wd;
379        }
380
381
382        public static void Main() {
383                Weekday day = Weekday.Sat;
384
385                Console.WriteLine( isWeekday( day ) );
386                Console.WriteLine( isWeekend( day ) );
387        }
388}
389\end{csharp}
390&
391\begin{csharp}
392public class Program {
393        public @class@ WeekDay : Enumeration {
394                public enum Day {
395                                Mon, Tue, Wed, Thu, Fri, Sat, Sun };
396                public enum Day2 : Day {
397                                XXX, YYY };
398                Day day;
399                public bool isWeekday() {
400                        return day <= Day.Fri;
401                }
402                public bool isWeekend() {
403                        return day > Day.Fri;
404                }
405                public WeekDay( Day d ) { day = d; }
406        }
407        public static void Main() {
408                WeekDay cday = new
409                                WeekDay( WeekDay.Day.Sat );
410                Console.WriteLine( cday.isWeekday() );
411                Console.WriteLine( cday.isWeekend() );
412        }
413}
414\end{csharp}
415\end{tabular}
416\lstMakeShortInline@
417\caption{\Csharp: Free Routine Versus Class Enumeration}
418\label{CsharpFreeVersusClass}
419\end{figure}
420
421
422\section{Golang}
423\lstnewenvironment{Go}[1][]{\lstset{language=Go,escapechar=\$,moredelim=**[is][\color{red}]{@}{@},}\lstset{#1}}{}
424
425Golang provides pseudo-enumeration similar to classic Pascal \lstinline[language=pascal]{const}, binding a name to a constant literal/expression.
426\begin{Go}
427const ( R = 0; G; B )                                   $\C{// implicit: 0 0 0}$
428const ( Fred = "Fred"; Mary = "Mary"; Jane = "Jane" ) $\C{// explicit: Fred Mary Jane}$
429const ( S = 0; T; USA = "USA"; U; V = 3.1; W ) $\C{// type change, implicit/explicit: 0 0 USA USA 3.1 3.1}$
430\end{Go}
431Constant names are unscoped and must be unique (no overloading).
432The first enumerator \emph{must} be explicitly initialized;
433subsequent enumerators can be implicitly or explicitly initialized.
434Implicit initialization is the previous (predecessor) enumerator value.
435
436Auto-incrementing is supported by the keyword \lstinline[language=Go]{iota}, available only in the \lstinline[language=Go]{const} declaration.
437The \lstinline[language=Go]{iota} is a \emph{per \lstinline[language=golang]{const} declaration} integer counter, starting at zero and implicitly incremented by one for each \lstinline[language=golang]{const} identifier (enumerator).
438\begin{Go}
439const ( R = @iota@; G; B )                              $\C{// implicit: 0 1 2}$
440const ( C = @iota + B + 1@; G; Y )              $\C{// implicit: 3 4 5}$
441\end{Go}
442An underscore \lstinline[language=golang]{const} identifier advances \lstinline[language=Go]{iota}.
443\begin{Go}
444const ( O1 = iota + 1; @_@; O3; @_@; O5 ) // 1, 3, 5 
445\end{Go}
446Auto-incrementing stops after an explicit initialization.
447\begin{Go}
448const ( Mon = iota; Tue; Wed; // 0, 1, 2
449        @Thu = 10@; Fri; Sat; Sun ) // 10, 10, 10, 10
450\end{Go}
451Auto-incrementing can be restarted with an expression containing \emph{one} \lstinline[language=Go]{iota}.
452\begin{Go}
453const ( V1 = iota; V2; @V3 = 7;@ V4 = @iota@; V5 ) // 0 1 7 3 4
454const ( Mon = iota; Tue; Wed; // 0, 1, 2
455        @Thu = 10;@ Fri = @iota - Wed + Thu - 1@; Sat; Sun ) // 10, 11, 12, 13
456\end{Go}
457Note, \lstinline[language=Go]{iota} is advanced for an explicitly initialized enumerator, like the underscore @_@ identifier.
458
459Basic switch and looping are possible.
460\begin{cquote}
461\lstDeleteShortInline@
462\setlength{\tabcolsep}{15pt}
463\begin{tabular}{@{}ll@{}}
464\begin{Go}
465day := Mon;
466switch day {
467  case Mon, Tue, Wed, Thu, Fri:
468        fmt.Println( "weekday" );
469  case Sat, Sun:
470        fmt.Println( "weekend" );
471}
472\end{Go}
473&
474\begin{Go}
475
476for i := Mon; i <= Sun; i += 1 {
477        fmt.Println( i )
478}
479
480
481
482\end{Go}
483\end{tabular}
484\lstMakeShortInline@
485\end{cquote}
486However, the loop prints the values from 0 to 13 because there is no actual enumeration.
487
488
489\section{Java}
490\lstnewenvironment{Java}[1][]{\lstset{language=Java,morekeywords={enum,assert,strictfp},
491        escapechar=\$,moredelim=**[is][\color{red}]{!}{!},}\lstset{#1}}{}
492
493Every enumeration in Java is an enumeration class.
494For a basic enumeration
495\begin{Java}
496enum Weekday { Mon, Tue, Wed, Thu, Fri, Sat, Sun };
497Weekday day = Weekday.Sat;
498\end{Java}
499the scoped enumerators are an ordered list of @final@ methods of type integer, ordered left to right starting at 0, increasing by 1.
500The value of an enumeration instance is restricted to the enumeration's enumerators.
501There is an implicit @int@ variable in the enumeration used to store the value of an enumeration instance.
502The position (ordinal) and label are accessible, where the value is the same as the position.
503\begin{Java}
504System.out.println( day.!ordinal()! + " " + day.!name()! ); // 5 Sat
505\end{Java}
506There is an inverse function @valueOf@ from string to enumerator.
507\begin{Java}
508day = Weekday.valueOf( "Wed" );
509\end{Java}
510There are no implicit conversions to/from an enumerator and its underlying type.
511Like \Csharp, \VRef[Figure]{f:JavaFreeVersusClass} shows the same example for an enumeration with free routines for manipulation, and embedding the enumeration and operations into an enumeration class.
512
513\begin{figure}
514\centering
515\lstDeleteShortInline@
516\begin{tabular}{@{}l|l@{}}
517\multicolumn{1}{@{}c|}{non-object oriented} & \multicolumn{1}{c@{}}{object oriented} \\
518\hline
519\begin{Java}
520enum Weekday !{!
521        Mon, Tue, Wed, Thu, Fri, Sat, Sun !}!;
522
523static boolean isWeekday( Weekday wd ) {
524        return wd.ordinal() <= Weekday.Fri.ordinal();
525}
526static boolean isWeekend( Weekday wd ) {
527        return Weekday.Fri.ordinal() < wd.ordinal();
528}
529
530public static void main( String[] args ) {
531        Weekday day = Weekday.Sat;
532        System.out.println( isWeekday( day ) );
533        System.out.println( isWeekend( day ) );
534}
535\end{Java}
536&
537\begin{Java}
538enum Weekday !{!
539        Mon, Tue, Wed, Thu, Fri, Sat, Sun;
540
541        public boolean isWeekday() {
542                return ordinal() <= Weekday.Fri.ordinal();
543        }
544        public boolean isWeekend() {
545                return Weekday.Fri.ordinal() < ordinal();
546        }
547!}!
548public static void main( String[] args ) {
549        WeekDay day = WeekDay.Sat;
550        System.out.println( day.isWeekday() );
551        System.out.println( day.isWeekend() );
552}
553\end{Java}
554\end{tabular}
555\lstMakeShortInline@
556\caption{Java: Free Routine Versus Class Enumeration}
557\label{f:JavaFreeVersusClass}
558\end{figure}
559
560To explicitly assign enumerator values and/or use a non-@int@ enumeration type (any Java type may be used), the enumeration must specify an explicit type in the enumeration class and a constructor.
561\begin{Java}
562enum Weekday {
563        Mon!(1)!, Tue!(2)!, Wed!(3)!, Thu!(4)!, Fri!(5)!, Sat!(6)!, Sun!(7)!; // must appear first
564        private !long! day;                                     $\C{// underlying enumeration type}$
565        private Weekday( !long! d ) { day = d; } $\C{// used to initialize enumerators}$
566};
567Weekday day = Weekday.Sat;
568\end{Java}
569If an enumerator initialization is a runtime expression, the expression is executed once at the point the enumeration is declaraed.
570
571The position, value, and label are accessible.
572\begin{Java}
573System.out.println( !day.ordinal()! + " " + !day.day! + " " + !day.name()! )// 5 6 Sat
574\end{Java}
575The constructor is private so only initialization or assignment can be used to set an enumeration, which ensures only corresponding enumerator values are allowed.
576
577An enumeration can appear in a @switch@ statement, but no ranges.
578\begin{Java}
579switch ( day ) {
580  case Mon: case Tue: case Wed: case Thu: case Fri:
581        System.out.println( "weekday" );
582        break;
583  case Sat: case Sun:
584        System.out.println( "weekend" );
585        break;
586}
587\end{Java}
588Like \Csharp, looping over an enumeration is done using method @values@, which returns the array of enumerator values (expensive operation).
589\begin{Java}
590for ( Weekday iday : Weekday.values() ) {
591        System.out.print( iday.ordinal() + iday.day + " " +  iday.name() + ",  " );
592}
5930 1 Mon,  1 2 Tue,  2 3 Wed,  3 4 Thu,  4 5 Fri,  5 6 Sat,  6 7 Sun, 
594\end{Java}
595
596As well, Java provides an @EnumSet@ where the underlying type is an efficient set of bits, one per enumeration \see{\Csharp \lstinline{Flags}, \VRef{s:Csharp}}, providing (logical) operations on groups of enumerators.
597There is also a specialized version of @HashMap@ with enumerator keys, which has performance benefits.
598
599Enumeration inheritence is disallowed because an enumeration is @final@.
600
601
602
603\section{Modula-3}
604
605
606
607\section{Rust}
608\lstnewenvironment{rust}[1][]{\lstset{language=Rust,escapechar=\$,moredelim=**[is][\color{red}]{@}{@},}\lstset{#1}}{}
609
610Rust provides a scoped enumeration based on variant types.
611% An enumeration, also referred to as an enum, is a simultaneous definition of a nominal enumerated type as well as a set of constructors, that can be used to create or pattern-match values of the corresponding enumerated type.
612An enumeration without constructors is called field-less.
613\begin{rust}
614enum Week { Mon, Tues, Wed, Thu, Fri, Sat, Sun@,@ }
615let mut week: Week = Week::Mon;
616week = Week::Fri;
617\end{rust}
618A field-less enumeration with only unit variants is called unit-only.
619\begin{rust}
620enum Week { Mon = 0, Tues = 1, Wed = 2, Thu = 3, Fri = 4, Sat = 5, Sun = 6 }
621\end{rust}
622Enum constructors can have either named or unnamed fields:
623\begin{rust}
624enum Animal {
625        Dog( String, f64 ),
626        Cat{ name: String, weight: f64 },
627}
628let mut a: Animal = Animal::Dog("Cocoa".to_string(), 37.2);
629a = Animal::Cat { name: "Spotty".to_string(), weight: 2.7 };
630\end{rust}
631Here, @Dog@ is an @enum@ variant, whereas @Cat@ is a struct-like variant.
632
633Each @enum@ type has an implicit integer tag (discriminant), with a unique value for each variant type.
634Like a C enumeration, the tag values for the variant types start at 0 with auto incrementing.
635The tag is re-purposed for enumeration by allowing it to be explicitly set, and auto incrmenting continues from that value.
636\begin{cquote}
637\sf\setlength{\tabcolsep}{3pt}
638\begin{tabular}{rcccccccr}
639@enum@ Week \{  & Mon,  & Tue,  & Wed = 2,      & Thu = 10,     & Fri,  & Sat = 5,      & Sun   & \};   \\
640\rm tags                & 0             & 1             & 2                     & 10            & 11    & 5                     & 6             &               \\
641\end{tabular}
642\end{cquote}
643In general, the tag can only be read as an opaque reference for comparison.
644\begin{rust}
645if mem::discriminant(&week) == mem::discriminant(&Week::Mon) ...
646\end{rust}
647If the enumeration is unit-only, or field-less with no explicit discriminants and where only unit variants are explicit, then the discriminant is accessible with a numeric cast.
648\begin{rust}
649if week as isize == Week::Mon as isize ...
650\end{rust}
651
652
653\section{Swift}
654\lstnewenvironment{swift}[1][]{\lstset{language=Swift,escapechar=\$,moredelim=**[is][\color{red}]{@}{@},}\lstset{#1}}{}
655
656% https://www.programiz.com/swift/online-compiler
657
658A Swift enumeration provides a heterogenous set of enumerators, like a tagged @union@, where the field name is the enumerator and its list of type parameters form its type.
659\begin{swift}
660enum Many {
661        case Mon, Tue, Wed, Thu, Fri, Sat, Sun // basic enumerator
662        case code( String ) // string enumerator
663        case tuple( Int, Int, Int ) // tuple enumerator
664};
665var day = Many.Sat; // qualification to resolve type
666print( day );
667day = .Wed // no qualification after type resolved
668print( day );
669day = .code( "ABC" );
670print( day );
671day = .tuple( 1, 2, 3 );
672print( day );
673
674Sat
675Wed
676code("ABC")
677tuple(1, 2, 3)
678\end{swift}
679
680
681An enumeration defines a common type for a group of related values and enables you to work with those values in a type-safe way within your code.
682
683If you are familiar with C, you will know that C enumerations assign related names to a set of integer values.
684Enumerations in Swift are much more flexible, and don't have to provide a value for each case of the enumeration.
685If a value (known as a raw value) is provided for each enumeration case, the value can be a string, a character, or a value of any integer or floating-point type.
686
687Alternatively, enumeration cases can specify associated values of any type to be stored along with each different case value, much as unions or variants do in other languages.
688You can define a common set of related cases as part of one enumeration, each of which has a different set of values of appropriate types associated with it.
689
690Enumerations in Swift are first-class types in their own right.
691They adopt many features traditionally supported only by classes, such as computed properties to provide additional information about the enumeration's current value, and instance methods to provide functionality related to the values the enumeration represents.
692Enumerations can also define initializers to provide an initial case value;
693can be extended to expand their functionality beyond their original implementation; and can conform to protocols to provide standard functionality.
694
695For more about these capabilities, see Properties, Methods, Initialization, Extensions, and Protocols.
696
697\paragraph{Enumeration Syntax}
698
699
700Note:
701Swift enumeration cases don't have an integer value set by default, unlike languages like C and Objective-C.
702In the CompassPoint example above, @north@, @south@, @east@ and @west@ don't implicitly equal 0, 1, 2 and 3.
703Instead, the different enumeration cases are values in their own right, with an explicitly defined type of CompassPoint.
704
705Multiple cases can appear on a single line, separated by commas:
706\begin{swift}
707enum Planet {
708        case mercury, venus, earth, mars, jupiter, saturn, uranus, neptune
709}
710\end{swift}
711Each enumeration definition defines a new type.
712Like other types in Swift, their names (such as @CompassPoint@ and @Planet@) start with a capital letter.
713Give enumeration types singular rather than plural names, so that they read as self-evident:
714\begin{swift}
715var directionToHead = CompassPoint.west
716\end{swift}
717The type of @directionToHead@ is inferred when it's initialized with one of the possible values of @CompassPoint@.
718Once @directionToHead@ is declared as a @CompassPoint@, you can set it to a different @CompassPoint@ value using a shorter dot syntax:
719\begin{swift}
720directionToHead = .east
721\end{swift}
722The type of @directionToHead@ is already known, and so you can drop the type when setting its value.
723This makes for highly readable code when working with explicitly typed enumeration values.
724
725\paragraph{Matching Enumeration Values with a Switch Statement}
726
727You can match individual enumeration values with a switch statement:
728\begin{swift}
729directionToHead = .south
730switch directionToHead {
731case .north:
732        print("Lots of planets have a north")
733case .south:
734        print("Watch out for penguins")
735case .east:
736        print("Where the sun rises")
737case .west:
738        print("Where the skies are blue")
739}
740// Prints "Watch out for penguins"
741\end{swift}
742You can read this code as:
743\begin{quote}
744"Consider the value of directionToHead.
745In the case where it equals @.north@, print "Lots of planets have a north".
746In the case where it equals @.south@, print "Watch out for penguins"."
747
748...and so on.
749\end{quote}
750As described in Control Flow, a switch statement must be exhaustive when considering an enumeration's cases.
751If the case for @.west@ is omitted, this code doesn't compile, because it doesn't consider the complete list of @CompassPoint@ cases.
752Requiring exhaustiveness ensures that enumeration cases aren't accidentally omitted.
753
754When it isn't appropriate to provide a case for every enumeration case, you can provide a default case to cover any cases that aren't addressed explicitly:
755\begin{swift}
756let somePlanet = Planet.earth
757switch somePlanet {
758case .earth:
759        print("Mostly harmless")
760default:
761        print("Not a safe place for humans")
762}
763// Prints "Mostly harmless"
764\end{swift}
765
766\paragraph{Iterating over Enumeration Cases}
767
768For some enumerations, it's useful to have a collection of all of that enumeration's cases.
769You enable this by writing @CaseIterable@ after the enumeration's name.
770Swift exposes a collection of all the cases as an allCases property of the enumeration type.
771Here's an example:
772\begin{swift}
773enum Beverage: CaseIterable {
774        case coffee, tea, juice
775}
776let numberOfChoices = Beverage.allCases.count
777print("\(numberOfChoices) beverages available")
778// Prints "3 beverages available"
779\end{swift}
780In the example above, you write @Beverage.allCases@ to access a collection that contains all of the cases of the @Beverage@ enumeration.
781You can use @allCases@ like any other collection -- the collection's elements are instances of the enumeration type, so in this case they're Beverage values.
782The example above counts how many cases there are, and the example below uses a for-in loop to iterate over all the cases.
783\begin{swift}
784for beverage in Beverage.allCases {
785        print(beverage)
786}
787// coffee
788// tea
789// juice
790\end{swift}
791The syntax used in the examples above marks the enumeration as conforming to the @CaseIterable@ protocol.
792For information about protocols, see Protocols.
793
794\paragraph{Associated Values}
795The examples in the previous section show how the cases of an enumeration are a defined (and typed) value in their own right.
796You can set a constant or variable to Planet.earth, and check for this value later.
797However, it's sometimes useful to be able to store values of other types alongside these case values.
798This additional information is called an associated value, and it varies each time you use that case as a value in your code.
799
800You can define Swift enumerations to store associated values of any given type, and the value types can be different for each case of the enumeration if needed.
801Enumerations similar to these are known as discriminated unions, tagged unions, or variants in other programming languages.
802
803For example, suppose an inventory tracking system needs to track products by two different types of barcode.
804Some products are labeled with 1D barcodes in UPC format, which uses the numbers 0 to 9.
805Each barcode has a number system digit, followed by five manufacturer code digits and five product code digits.
806These are followed by a check digit to verify that the code has been scanned correctly:
807
808Other products are labeled with 2D barcodes in QR code format, which can use any ISO 8859-1 character and can encode a string up to 2,953 characters long:
809
810It's convenient for an inventory tracking system to store UPC barcodes as a tuple of four integers, and QR code barcodes as a string of any length.
811
812In Swift, an enumeration to define product barcodes of either type might look like this:
813\begin{swift}
814enum Barcode {
815        case upc(Int, Int, Int, Int)
816        case qrCode(String)
817}
818\end{swift}
819This can be read as:
820\begin{quote}
821"Define an enumeration type called Barcode, which can take either a value of upc with an associated value of type @(Int, Int, Int, Int)@, or a value of @qrCode@ with an associated value of type @String@."
822\end{quote}
823This definition doesn't provide any actual @Int@ or @String@ values -- it just defines the type of associated values that Barcode constants and variables can store when they're equal to @Barcode.upc@ or @Barcode.qrCode@.
824
825You can then create new barcodes using either type:
826\begin{swift}
827var productBarcode = Barcode.upc(8, 85909, 51226, 3)
828\end{swift}
829This example creates a new variable called @productBarcode@ and assigns it a value of @Barcode.upc@ with an associated tuple value of @(8, 85909, 51226, 3)@.
830
831You can assign the same product a different type of barcode:
832\begin{swift}
833productBarcode = .qrCode("ABCDEFGHIJKLMNOP")
834\end{swift}
835At this point, the original @Barcode.upc@ and its integer values are replaced by the new @Barcode.qrCode@ and its string value.
836Constants and variables of type Barcode can store either a @.upc@ or a @.qrCode@ (together with their associated values), but they can store only one of them at any given time.
837
838You can check the different barcode types using a switch statement, similar to the example in Matching Enumeration Values with a Switch Statement.
839This time, however, the associated values are extracted as part of the switch statement.
840You extract each associated value as a constant (with the let prefix) or a variable (with the var prefix) for use within the switch case's body:
841\begin{swift}
842switch productBarcode {
843case .upc(let numberSystem, let manufacturer, let product, let check):
844        print("UPC: \(numberSystem), \(manufacturer), \(product), \(check).")
845case .qrCode(let productCode):
846        print("QR code: \(productCode).")
847}
848// Prints "QR code: ABCDEFGHIJKLMNOP."
849\end{swift}
850If all of the associated values for an enumeration case are extracted as constants, or if all are extracted as variables, you can place a single let or var annotation before the case name, for brevity:
851\begin{swift}
852switch productBarcode {
853case let .upc(numberSystem, manufacturer, product, check):
854        print("UPC : \(numberSystem), \(manufacturer), \(product), \(check).")
855case let .qrCode(productCode):
856        print("QR code: \(productCode).")
857}
858// Prints "QR code: ABCDEFGHIJKLMNOP."
859\end{swift}
860
861\paragraph{Raw Values}
862
863The barcode example in Associated Values shows how cases of an enumeration can declare that they store associated values of different types.
864As an alternative to associated values, enumeration cases can come prepopulated with default values (called raw values), which are all of the same type.
865
866Here's an example that stores raw ASCII values alongside named enumeration cases:
867\begin{swift}
868enum ASCIIControlCharacter: Character {
869        case tab = "\t"
870        case lineFeed = "\n"
871        case carriageReturn = "\r"
872}
873\end{swift}
874Here, the raw values for an enumeration called ASCIIControlCharacter are defined to be of type Character, and are set to some of the more common ASCII control characters.
875Character values are described in Strings and Characters.
876
877Raw values can be strings, characters, or any of the integer or floating-point number types.
878Each raw value must be unique within its enumeration declaration.
879
880Note
881
882Raw values are not the same as associated values.
883Raw values are set to prepopulated values when you first define the enumeration in your code, like the three ASCII codes above.
884The raw value for a particular enumeration case is always the same.
885Associated values are set when you create a new constant or variable based on one of the enumeration's cases, and can be different each time you do so.
886Implicitly Assigned Raw Values
887
888When you're working with enumerations that store integer or string raw values, you don't have to explicitly assign a raw value for each case.
889When you don't, Swift automatically assigns the values for you.
890
891For example, when integers are used for raw values, the implicit value for each case is one more than the previous case.
892If the first case doesn't have a value set, its value is 0.
893
894The enumeration below is a refinement of the earlier Planet enumeration, with integer raw values to represent each planet's order from the sun:
895
896\begin{swift}
897enum Planet: Int {
898        case mercury = 1, venus, earth, mars, jupiter, saturn, uranus, neptune
899}
900\end{swift}
901In the example above, Planet.mercury has an explicit raw value of 1, Planet.venus has an implicit raw value of 2, and so on.
902
903When strings are used for raw values, the implicit value for each case is the text of that case's name.
904
905The enumeration below is a refinement of the earlier CompassPoint enumeration, with string raw values to represent each direction's name:
906\begin{swift}
907enum CompassPoint: String {
908        case north, south, east, west
909}
910\end{swift}
911In the example above, CompassPoint.south has an implicit raw value of "south", and so on.
912
913You access the raw value of an enumeration case with its rawValue property:
914\begin{swift}
915let earthsOrder = Planet.earth.rawValue
916// earthsOrder is 3
917
918let sunsetDirection = CompassPoint.west.rawValue
919// sunsetDirection is "west"
920\end{swift}
921
922\paragraph{Initializing from a Raw Value}
923
924If you define an enumeration with a raw-value type, the enumeration automatically receives an initializer that takes a value of the raw value's type (as a parameter called rawValue) and returns either an enumeration case or nil.
925You can use this initializer to try to create a new instance of the enumeration.
926
927This example identifies Uranus from its raw value of 7:
928\begin{swift}
929let possiblePlanet = Planet(rawValue: 7)
930// possiblePlanet is of type Planet? and equals Planet.uranus
931\end{swift}
932Not all possible Int values will find a matching planet, however.
933Because of this, the raw value initializer always returns an optional enumeration case.
934In the example above, possiblePlanet is of type Planet?, or "optional Planet."
935Note
936
937The raw value initializer is a failable initializer, because not every raw value will return an enumeration case.
938For more information, see Failable Initializers.
939
940If you try to find a planet with a position of 11, the optional Planet value returned by the raw value initializer will be nil:
941\begin{swift}
942let positionToFind = 11
943if let somePlanet = Planet(rawValue: positionToFind) {
944        switch somePlanet {
945        case .earth:
946                print("Mostly harmless")
947        default:
948                print("Not a safe place for humans")
949        }
950} else {
951        print("There isn't a planet at position \(positionToFind)")
952}
953// Prints "There isn't a planet at position 11"
954\end{swift}
955This example uses optional binding to try to access a planet with a raw value of 11.
956The statement if let somePlanet = Planet(rawValue: 11) creates an optional Planet, and sets somePlanet to the value of that optional Planet if it can be retrieved.
957In this case, it isn't possible to retrieve a planet with a position of 11, and so the else branch is executed instead.
958
959\paragraph{Recursive Enumerations}
960
961A recursive enumeration is an enumeration that has another instance of the enumeration as the associated value for one or more of the enumeration cases.
962You indicate that an enumeration case is recursive by writing indirect before it, which tells the compiler to insert the necessary layer of indirection.
963
964For example, here is an enumeration that stores simple arithmetic expressions:
965\begin{swift}
966enum ArithmeticExpression {
967        case number(Int)
968        indirect case addition(ArithmeticExpression, ArithmeticExpression)
969        indirect case multiplication(ArithmeticExpression, ArithmeticExpression)
970}
971\end{swift}
972You can also write indirect before the beginning of the enumeration to enable indirection for all of the enumeration's cases that have an associated value:
973\begin{swift}
974indirect enum ArithmeticExpression {
975        case number(Int)
976        case addition(ArithmeticExpression, ArithmeticExpression)
977        case multiplication(ArithmeticExpression, ArithmeticExpression)
978}
979\end{swift}
980This enumeration can store three kinds of arithmetic expressions: a plain number, the addition of two expressions, and the multiplication of two expressions.
981The addition and multiplication cases have associated values that are also arithmetic expressions -- these associated values make it possible to nest expressions.
982For example, the expression (5 + 4) * 2 has a number on the right-hand side of the multiplication and another expression on the left-hand side of the multiplication.
983Because the data is nested, the enumeration used to store the data also needs to support nesting -- this means the enumeration needs to be recursive.
984The code below shows the ArithmeticExpression recursive enumeration being created for (5 + 4) * 2:
985\begin{swift}
986let five = ArithmeticExpression.number(5)
987let four = ArithmeticExpression.number(4)
988let sum = ArithmeticExpression.addition(five, four)
989let product = ArithmeticExpression.multiplication(sum, ArithmeticExpression.number(2))
990\end{swift}
991A recursive function is a straightforward way to work with data that has a recursive structure.
992For example, here's a function that evaluates an arithmetic expression:
993\begin{swift}
994func evaluate(_ expression: ArithmeticExpression) -> Int {
995        switch expression {
996        case let .number(value):
997                return value
998        case let .addition(left, right):
999                return evaluate(left) + evaluate(right)
1000        case let .multiplication(left, right):
1001                return evaluate(left) * evaluate(right)
1002        }
1003}
1004
1005print(evaluate(product))
1006// Prints "18"
1007\end{swift}
1008This function evaluates a plain number by simply returning the associated value.
1009It evaluates an addition or multiplication by evaluating the expression on the left-hand side, evaluating the expression on the right-hand side, and then adding them or multiplying them.
1010
1011
1012\section{Python}
1013\lstnewenvironment{python}[1][]{\lstset{language=Python,escapechar=\$,moredelim=**[is][\color{red}]{@}{@},}\lstset{#1}}{}
1014
1015A Python enumeration is a set of symbolic names bound to \emph{unique} values.
1016They are similar to global variables, but offer a more useful @repr()@, grouping, type-safety, and additional features.
1017Enumerations inherits from the @Enum@ class, \eg:
1018\begin{python}
1019class Weekday(@Enum@): Mon = 1; Tue = 2; Wed = 3; Thu = 4; Fri = 5; Sat = 6; Sun = 7
1020class RGB(@Enum@): Red = 1; Green = 2; Blue = 3
1021\end{python}
1022
1023Depending on the nature of the enum a member's value may or may not be important, but either way that value can be used to get the corresponding member:
1024\begin{python}
1025print( repr( Weekday( 3 ) ) )
1026<Weekday.Wed: 3>
1027\end{python}
1028As you can see, the @repr()@ of a member shows the enum name, the member name, and the value.
1029The @str()@ of a member shows only the enum name and member name:
1030\begin{python}
1031print( str( Weekday.Thu ), Weekday.Thu )
1032Weekday.Thu Weekday.Thu
1033\end{python}
1034The type of an enumeration member is the enum it belongs to:
1035\begin{python}
1036print( type( Weekday.Thu ) )
1037<enum 'Weekday'>
1038print( isinstance(Weekday.Fri, Weekday) )
1039True
1040\end{python}
1041Enum members have an attribute that contains just their name:
1042\begin{python}
1043print(Weekday.TUESDAY.name)
1044TUESDAY
1045\end{python}
1046Likewise, they have an attribute for their value:
1047\begin{python}
1048Weekday.WEDNESDAY.value
10493
1050\end{python}
1051
1052Unlike many languages that treat enumerations solely as name/value pairs, Python @Enum@s can have behavior added.
1053For example, @datetime.date@ has two methods for returning the weekday: @weekday()@ and @isoweekday()@.
1054The difference is that one of them counts from 0-6 and the other from 1-7.
1055Rather than keep track of that ourselves we can add a method to the @Weekday@ enum to extract the day from the date instance and return the matching enum member:
1056\begin{python}
1057class Weekday(Enum): Mon = 1; Tue = 2; Wed = 3; Thu = 10; Fri = 15; Sat = 16; Sun = 17
1058$@$classmethod
1059def from_date(cls, date):
1060        return cls(date.isoweekday())
1061\end{python}
1062Now we can find out what today is! Observe:
1063\begin{python}
1064>>> from datetime import date
1065>>> Weekday.from_date(date.today())     
1066<Weekday.TUESDAY: 2>
1067\end{python}
1068Of course, if you're reading this on some other day, you'll see that day instead.
1069
1070This Weekday enum is great if our variable only needs one day, but what if we need several? Maybe we're writing a function to plot chores during a week, and don't want to use a @list@ -- we could use a different type of @Enum@:
1071\begin{python}
1072from enum import Flag
1073class WeekdayF(@Flag@): Mon = @1@; Tue = @2@; Wed = @4@; Thu = @8@; Fri = @16@; Sat = @32@; Sun = @64@
1074\end{python}
1075We've changed two things: we're inherited from @Flag@, and the values are all powers of 2.
1076
1077@Flag@ allows combining several members into a single variable:
1078\begin{python}
1079print( repr(WeekdayF.Sat | WeekdayF.Sun) )
1080<WeekdayF.Sun|Sat: 96>
1081\end{python}
1082You can even iterate over a @Flag@ variable:
1083\begin{python}
1084for day in weekend:
1085        print(day)
1086Weekday.SATURDAY
1087Weekday.SUNDAY
1088\end{python}
1089Okay, let's get some chores set up:
1090\begin{python}
1091>>> chores_for_ethan = {
1092...    'feed the cat': Weekday.MONDAY | Weekday.WEDNESDAY | Weekday.FRIDAY,
1093...    'do the dishes': Weekday.TUESDAY | Weekday.THURSDAY,
1094...    'answer SO questions': Weekday.SATURDAY,
1095...    }
1096\end{python}
1097And a function to display the chores for a given day:
1098\begin{python}
1099>>> def show_chores(chores, day):
1100...    for chore, days in chores.items():
1101...        if day in days:
1102...            print(chore)
1103>>> show_chores(chores_for_ethan, Weekday.SATURDAY)
1104answer SO questions
1105\end{python}
1106In cases where the actual values of the members do not matter, you can save yourself some work and use @auto()@ for the values:
1107\begin{python}
1108>>> from enum import auto
1109>>> class Weekday(Flag):
1110...    MONDAY = auto()
1111...    TUESDAY = auto()
1112...    WEDNESDAY = auto()
1113...    THURSDAY = auto()
1114...    FRIDAY = auto()
1115...    SATURDAY = auto()
1116...    SUNDAY = auto()
1117...    WEEKEND = SATURDAY | SUNDAY
1118\end{python}
1119
1120\subsection{Programmatic access to enumeration members and their attributes}
1121
1122Sometimes it's useful to access members in enumerations programmatically (i.e. situations where @Color.RED@ won't do because the exact color is not known at program-writing time).
1123@Enum@ allows such access:
1124\begin{python}
1125>>> Color(1)
1126<Color.RED: 1>
1127>>> Color(3)
1128<Color.BLUE: 3>
1129\end{python}
1130If you want to access enum members by name, use item access:
1131\begin{python}
1132Color['RED']
1133<Color.RED: 1>
1134
1135Color['GREEN']
1136<Color.GREEN: 2>
1137\end{python}
1138If you have an enum member and need its name or value:
1139\begin{python}
1140>>> member = Color.RED
1141>>> member.name
1142'RED'
1143>>> member.value
11441
1145\end{python}
1146
1147\subsection{Duplicating enum members and values}
1148
1149An enum member can have other names associated with it.
1150Given two entries @A@ and @B@ with the same value (and @A@ defined first), @B@ is an alias for the member @A@.
1151By-value lookup of the value of @A@ will return the member @A@.
1152By-name lookup of @A@ will return the member @A@.
1153By-name lookup of @B@ will also return the member @A@:
1154\begin{python}
1155class Shape(Enum): SQUARE = 2; DIAMOND = 1; CIRCLE = 3; ALIAS_FOR_SQUARE = 2
1156>>> Shape.SQUARE
1157<Shape.SQUARE: 2>
1158>>> Shape.ALIAS_FOR_SQUARE
1159<Shape.SQUARE: 2>
1160>>> Shape(2)
1161<Shape.SQUARE: 2>
1162\end{python}
1163
1164Note: Attempting to create a member with the same name as an already defined attribute (another member, a method, etc.) or attempting to create an attribute with the same name as a member is not allowed.
1165
1166\subsection{Ensuring unique enumeration values}
1167
1168By default, enumerations allow multiple names as aliases for the same value.
1169When this behavior isn't desired, you can use the @unique()@ decorator:
1170\begin{python}
1171from enum import Enum, unique
1172$@$unique
1173class DupVal(Enum): ONE = 1; TWO = 2; THREE = 3; FOUR = 3
1174ValueError: duplicate values found in <enum 'Mistake'>: FOUR -> THREE
1175\end{python}
1176
1177\subsection{Using automatic values}
1178
1179If the exact value is unimportant you can use @auto@:
1180\begin{python}
1181from enum import Enum, auto
1182class RGBa(Enum): RED = auto(); BLUE = auto(); GREEN = auto()
1183\end{python}
1184(Like Golang @iota@.)
1185The values are chosen by @_generate_next_value_()@, which can be overridden:
1186\begin{python}
1187>>> class AutoName(Enum):
1188...     $@$staticmethod
1189...     def _generate_next_value_(name, start, count, last_values):
1190...         return name
1191...
1192>>> class Ordinal(AutoName):
1193...     NORTH = auto()
1194...     SOUTH = auto()
1195...     EAST = auto()
1196...     WEST = auto()
1197...
1198>>> [member.value for member in Ordinal]
1199['NORTH', 'SOUTH', 'EAST', 'WEST']
1200\end{python}
1201Note The @_generate_next_value_()@ method must be defined before any members.
1202
1203\subsection{Iteration}
1204
1205Iterating over the members of an enum does not provide the aliases:
1206\begin{python}
1207>>> list(Shape)
1208[<Shape.SQUARE: 2>, <Shape.DIAMOND: 1>, <Shape.CIRCLE: 3>]
1209>>> list(Weekday)
1210[<Weekday.MONDAY: 1>, <Weekday.TUESDAY: 2>, <Weekday.WEDNESDAY: 4>, <Weekday.THURSDAY: 8>,
1211<Weekday.FRIDAY: 16>, <Weekday.SATURDAY: 32>, <Weekday.SUNDAY: 64>]
1212\end{python}
1213Note that the aliases @Shape.ALIAS_FOR_SQUARE@ and @Weekday.WEEKEND@ aren't shown.
1214
1215The special attribute @__members__@ is a read-only ordered mapping of names to members.
1216It includes all names defined in the enumeration, including the aliases:
1217\begin{python}
1218>>> for name, member in Shape.__members__.items():
1219...     name, member
1220...
1221('SQUARE', <Shape.SQUARE: 2>)
1222('DIAMOND', <Shape.DIAMOND: 1>)
1223('CIRCLE', <Shape.CIRCLE: 3>)
1224('ALIAS_FOR_SQUARE', <Shape.SQUARE: 2>)
1225\end{python}
1226The @__members__@ attribute can be used for detailed programmatic access to the enumeration members.
1227For example, finding all the aliases:
1228\begin{python}
1229>>> [name for name, member in Shape.__members__.items() if member.name != name]
1230['ALIAS_FOR_SQUARE']
1231\end{python}
1232Note: Aliases for flags include values with multiple flags set, such as 3, and no flags set, i.e. 0.
1233
1234\subsection{Comparisons}
1235
1236Enumeration members are compared by identity:
1237\begin{python}
1238>>> Color.RED is Color.RED
1239True
1240>>> Color.RED is Color.BLUE
1241False
1242>>> Color.RED is not Color.BLUE
1243True
1244\end{python}
1245Ordered comparisons between enumeration values are not supported.
1246Enum members are not integers (but see @IntEnum@ below):
1247\begin{python}
1248>>> Color.RED < Color.BLUE
1249Traceback (most recent call last):
1250  File "<stdin>", line 1, in <module>
1251TypeError: '<' not supported between instances of 'Color' and 'Color'
1252\end{python}
1253Equality comparisons are defined though:
1254\begin{python}
1255>>> Color.BLUE == Color.RED
1256False
1257>>> Color.BLUE != Color.RED
1258True
1259>>> Color.BLUE == Color.BLUE
1260True
1261\end{python}
1262Comparisons against non-enumeration values will always compare not equal (again, @IntEnum@ was explicitly designed to behave differently, see below):
1263\begin{python}
1264>>> Color.BLUE == 2
1265False
1266\end{python}
1267
1268Warning: It is possible to reload modules -- if a reloaded module contains enums, they will be recreated, and the new members may not compare identical/equal to the original members.
1269
1270\subsection{Allowed members and attributes of enumerations}
1271
1272Most of the examples above use integers for enumeration values.
1273Using integers is short and handy (and provided by default by the Functional API), but not strictly enforced.
1274In the vast majority of use-cases, one doesn't care what the actual value of an enumeration is.
1275But if the value is important, enumerations can have arbitrary values.
1276
1277Enumerations are Python classes, and can have methods and special methods as usual. If we have this enumeration:
1278\begin{python}
1279>>> class Mood(Enum):
1280...     FUNKY = 1
1281...     HAPPY = 3
1282...
1283...     def describe(self):
1284...         # self is the member here
1285...         return self.name, self.value
1286...
1287...     def __str__(self):
1288...         return 'my custom str! {0}'.format(self.value)
1289...
1290...     $@$classmethod
1291...
1292...     def favorite_mood(cls):
1293...         # cls here is the enumeration
1294...         return cls.HAPPY
1295...
1296\end{python}
1297Then:
1298\begin{python}
1299>>> Mood.favorite_mood()
1300<Mood.HAPPY: 3>
1301>>> Mood.HAPPY.describe()
1302('HAPPY', 3)
1303>>> str(Mood.FUNKY)
1304'my custom str! 1'
1305\end{python}
1306The rules for what is allowed are as follows: names that start and end with a single underscore are reserved by enum and cannot be used;
1307all other attributes defined within an enumeration will become members of this enumeration, with the exception of special methods (@__str__()@, @__add__()@, etc.), descriptors (methods are also descriptors), and variable names listed in @_ignore_@.
1308
1309Note: if your enumeration defines @__new__()@ and/or @__init__()@, any value(s) given to the enum member will be passed into those methods.
1310See Planet for an example.
1311
1312Note: The @__new__()@ method, if defined, is used during creation of the Enum members;
1313it is then replaced by Enum's @__new__()@ which is used after class creation for lookup of existing members.
1314See When to use @__new__()@ vs. @__init__()@ for more details.
1315
1316\subsection{Restricted Enum subclassing}
1317
1318A new @Enum@ class must have one base enum class, up to one concrete data type, and as many object-based mixin classes as needed.
1319The order of these base classes is:
1320\begin{python}
1321class EnumName([mix-in, ...,] [data-type,] base-enum):
1322        pass
1323\end{python}
1324Also, subclassing an enumeration is allowed only if the enumeration does not define any members.
1325So this is forbidden:
1326\begin{python}
1327>>> class MoreColor(Color):
1328...     PINK = 17
1329...
1330Traceback (most recent call last):
1331...
1332TypeError: <enum 'MoreColor'> cannot extend <enum 'Color'>
1333\end{python}
1334But this is allowed:
1335\begin{python}
1336>>> class Foo(Enum):
1337...     def some_behavior(self):
1338...         pass
1339...
1340>>> class Bar(Foo):
1341...     HAPPY = 1
1342...     SAD = 2
1343...
1344\end{python}
1345Allowing subclassing of enums that define members would lead to a violation of some important invariants of types and instances.
1346On the other hand, it makes sense to allow sharing some common behavior between a group of enumerations. (See OrderedEnum for an example.)
1347
1348\subsection{Dataclass support}
1349
1350When inheriting from a @dataclass@, the @__repr__()@ omits the inherited class' name.
1351For example:
1352\begin{python}
1353>>> from dataclasses import dataclass, field
1354>>> $@$dataclass
1355... class CreatureDataMixin:
1356...     size: str
1357...     legs: int
1358...     tail: bool = field(repr=False, default=True)
1359...
1360>>> class Creature(CreatureDataMixin, Enum):
1361...     BEETLE = 'small', 6
1362...     DOG = 'medium', 4
1363...
1364>>> Creature.DOG
1365<Creature.DOG: size='medium', legs=4>
1366\end{python}
1367Use the @dataclass()@ argument repr=False to use the standard @repr()@.
1368
1369Changed in version 3.12: Only the dataclass fields are shown in the value area, not the dataclass' name.
1370
1371\subsection{Pickling}
1372
1373Enumerations can be pickled and unpickled:
1374\begin{python}
1375>>> from test.test_enum import Fruit
1376>>> from pickle import dumps, loads
1377>>> Fruit.TOMATO is loads(dumps(Fruit.TOMATO))
1378True
1379\end{python}
1380The usual restrictions for pickling apply: picklable enums must be defined in the top level of a module, since unpickling requires them to be importable from that module.
1381
1382Note: With pickle protocol version 4 it is possible to easily pickle enums nested in other classes.
1383
1384It is possible to modify how enum members are pickled/unpickled by defining @__reduce_ex__()@ in the enumeration class.
1385The default method is by-value, but enums with complicated values may want to use by-name:
1386\begin{python}
1387>>> import enum
1388>>> class MyEnum(enum.Enum):
1389...     __reduce_ex__ = enum.pickle_by_enum_name
1390\end{python}
1391Note: Using by-name for flags is not recommended, as unnamed aliases will not unpickle.
1392
1393\subsection{Functional API}
1394
1395The @Enum@ class is callable, providing the following functional API:
1396\begin{python}
1397>>> Animal = Enum('Animal', 'ANT BEE CAT DOG')
1398>>> Animal
1399<enum 'Animal'>
1400>>> Animal.ANT
1401<Animal.ANT: 1>
1402>>> list(Animal)
1403[<Animal.ANT: 1>, <Animal.BEE: 2>, <Animal.CAT: 3>, <Animal.DOG: 4>]
1404\end{python}
1405The semantics of this API resemble @namedtuple@.
1406The first argument of the call to @Enum@ is the name of the enumeration.
1407
1408The second argument is the source of enumeration member names.
1409It can be a whitespace-separated string of names, a sequence of names, a sequence of 2-tuples with key/value pairs, or a mapping (e.g. dictionary) of names to values.
1410The last two options enable assigning arbitrary values to enumerations;
1411the others auto-assign increasing integers starting with 1 (use the @start@ parameter to specify a different starting value).
1412A new class derived from @Enum@ is returned.
1413In other words, the above assignment to Animal is equivalent to:
1414\begin{python}
1415>>> class Animal(Enum):
1416...     ANT = 1
1417...     BEE = 2
1418...     CAT = 3
1419...     DOG = 4
1420...
1421\end{python}
1422The reason for defaulting to 1 as the starting number and not 0 is that 0 is @False@ in a boolean sense, but by default enum members all evaluate to @True@.
1423
1424Pickling enums created with the functional API can be tricky as frame stack implementation details are used to try and figure out which module the enumeration is being created in (e.g. it will fail if you use a utility function in a separate module, and also may not work on IronPython or Jython).
1425The solution is to specify the module name explicitly as follows:
1426\begin{python}
1427>>> Animal = Enum('Animal', 'ANT BEE CAT DOG', module=__name__)
1428\end{python}
1429Warning: If module is not supplied, and @Enum@ cannot determine what it is, the new @Enum@ members will not be unpicklable; to keep errors closer to the source, pickling will be disabled.
1430
1431The new pickle protocol 4 also, in some circumstances, relies on @__qualname__@ being set to the location where pickle will be able to find the class.
1432For example, if the class was made available in class SomeData in the global scope:
1433\begin{python}
1434>>> Animal = Enum('Animal', 'ANT BEE CAT DOG', qualname='SomeData.Animal')
1435\end{python}
1436The complete signature is:
1437\begin{python}
1438Enum(
1439        value='NewEnumName',
1440        names=<...>,
1441        *,
1442        module='...',
1443        qualname='...',
1444        type=<mixed-in class>,
1445        start=1,
1446        )
1447\end{python}
1448\begin{itemize}
1449\item
1450@value@: What the new enum class will record as its name.
1451\item
1452@names@: The enum members.
1453This can be a whitespace- or comma-separated string (values will start at 1 unless otherwise specified):
1454\begin{python}
1455'RED GREEN BLUE' | 'RED,GREEN,BLUE' | 'RED, GREEN, BLUE'
1456\end{python}
1457or an iterator of names:
1458\begin{python}
1459['RED', 'GREEN', 'BLUE']
1460\end{python}
1461or an iterator of (name, value) pairs:
1462\begin{python}
1463[('CYAN', 4), ('MAGENTA', 5), ('YELLOW', 6)]
1464\end{python}
1465or a mapping:
1466\begin{python}
1467{'CHARTREUSE': 7, 'SEA_GREEN': 11, 'ROSEMARY': 42}
1468\end{python}
1469\item
1470module: name of module where new enum class can be found.
1471\item
1472@qualname@: where in module new enum class can be found.
1473\item
1474@type@: type to mix in to new enum class.
1475\item
1476@start@: number to start counting at if only names are passed in.
1477\end{itemize}
1478Changed in version 3.5: The start parameter was added.
1479
1480\subsection{Derived Enumerations}
1481
1482\subsection{IntEnum}
1483
1484The first variation of @Enum@ that is provided is also a subclass of @int@.
1485Members of an @IntEnum@ can be compared to integers;
1486by extension, integer enumerations of different types can also be compared to each other:
1487\begin{python}
1488>>> from enum import IntEnum
1489>>> class Shape(IntEnum):
1490...     CIRCLE = 1
1491...     SQUARE = 2
1492...
1493>>> class Request(IntEnum):
1494...     POST = 1
1495...     GET = 2
1496...
1497>>> Shape == 1
1498False
1499>>> Shape.CIRCLE == 1
1500True
1501>>> Shape.CIRCLE == Request.POST
1502True
1503\end{python}
1504However, they still can't be compared to standard @Enum@ enumerations:
1505\begin{python}
1506>>> class Shape(IntEnum):
1507...     CIRCLE = 1
1508...     SQUARE = 2
1509...
1510>>> class Color(Enum):
1511...     RED = 1
1512...     GREEN = 2
1513...
1514>>> Shape.CIRCLE == Color.RED
1515False
1516\end{python}
1517@IntEnum@ values behave like integers in other ways you'd expect:
1518\begin{python}
1519>>> int(Shape.CIRCLE)
15201
1521>>> ['a', 'b', 'c'][Shape.CIRCLE]
1522'b'
1523>>> [i for i in range(Shape.SQUARE)]
1524[0, 1]
1525\end{python}
1526
1527\subsection{StrEnum}
1528
1529The second variation of @Enum@ that is provided is also a subclass of @str@.
1530Members of a @StrEnum@ can be compared to strings;
1531by extension, string enumerations of different types can also be compared to each other.
1532
1533New in version 3.11.
1534
1535\subsection{IntFlag}
1536
1537The next variation of @Enum@ provided, @IntFlag@, is also based on @int@.
1538The difference being @IntFlag@ members can be combined using the bitwise operators (@&, |, ^, ~@) and the result is still an @IntFlag@ member, if possible.
1539Like @IntEnum@, @IntFlag@ members are also integers and can be used wherever an int is used.
1540
1541Note: Any operation on an IntFlag member besides the bit-wise operations will lose the @IntFlag@ membership.
1542
1543Bit-wise operations that result in invalid @IntFlag@ values will lose the @IntFlag@ membership.
1544See @FlagBoundary@ for details.
1545
1546New in version 3.6.
1547
1548Changed in version 3.11.
1549
1550Sample @IntFlag@ class:
1551\begin{python}
1552>>> from enum import IntFlag
1553>>> class Perm(IntFlag):
1554...     R = 4
1555...     W = 2
1556...     X = 1
1557...
1558>>> Perm.R | Perm.W
1559<Perm.R|W: 6>
1560>>> Perm.R + Perm.W
15616
1562>>> RW = Perm.R | Perm.W
1563>>> Perm.R in RW
1564True
1565\end{python}
1566It is also possible to name the combinations:
1567\begin{python}
1568>>> class Perm(IntFlag):
1569...     R = 4
1570...     W = 2
1571...     X = 1
1572...     RWX = 7
1573...
1574>>> Perm.RWX
1575<Perm.RWX: 7>
1576>>> ~Perm.RWX
1577<Perm: 0>
1578>>> Perm(7)
1579<Perm.RWX: 7>
1580\end{python}
1581Note: Named combinations are considered aliases. Aliases do not show up during iteration, but can be returned from by-value lookups.
1582
1583Changed in version 3.11.
1584
1585Another important difference between @IntFlag@ and @Enum@ is that if no flags are set (the value is 0), its boolean evaluation is @False@:
1586\begin{python}
1587>>> Perm.R & Perm.X
1588<Perm: 0>
1589>>> bool(Perm.R & Perm.X)
1590False
1591\end{python}
1592Because @IntFlag@ members are also subclasses of int they can be combined with them (but may lose @IntFlag@ membership:
1593\begin{python}
1594>>> Perm.X | 4
1595<Perm.R|X: 5>
1596
1597>>> Perm.X + 8
15989
1599\end{python}
1600Note: The negation operator, @~@, always returns an @IntFlag@ member with a positive value:
1601\begin{python}
1602>>> (~Perm.X).value == (Perm.R|Perm.W).value == 6
1603True
1604\end{python}
1605@IntFlag@ members can also be iterated over:
1606\begin{python}
1607>>> list(RW)
1608[<Perm.R: 4>, <Perm.W: 2>]
1609\end{python}
1610New in version 3.11.
1611
1612\subsection{Flag}
1613
1614The last variation is @Flag@.
1615Like @IntFlag@, @Flag@ members can be combined using the bitwise operators (@&, |, ^, ~@).
1616Unlike @IntFlag@, they cannot be combined with, nor compared against, any other @Flag@ enumeration, nor @int@.
1617While it is possible to specify the values directly it is recommended to use @auto@ as the value and let @Flag@ select an appropriate value.
1618
1619New in version 3.6.
1620
1621Like @IntFlag@, if a combination of @Flag@ members results in no flags being set, the boolean evaluation is @False@:
1622\begin{python}
1623>>> from enum import Flag, auto
1624>>> class Color(Flag):
1625...     RED = auto()
1626...     BLUE = auto()
1627...     GREEN = auto()
1628...
1629>>> Color.RED & Color.GREEN
1630<Color: 0>
1631>>> bool(Color.RED & Color.GREEN)
1632False
1633\end{python}
1634Individual flags should have values that are powers of two (1, 2, 4, 8, ...), while combinations of flags will not:
1635\begin{python}
1636>>> class Color(Flag):
1637...     RED = auto()
1638...     BLUE = auto()
1639...     GREEN = auto()
1640...     WHITE = RED | BLUE | GREEN
1641...
1642>>> Color.WHITE
1643<Color.WHITE: 7>
1644\end{python}
1645Giving a name to the ``no flags set'' condition does not change its boolean value:
1646\begin{python}
1647>>> class Color(Flag):
1648...     BLACK = 0
1649...     RED = auto()
1650...     BLUE = auto()
1651...     GREEN = auto()
1652...
1653>>> Color.BLACK
1654<Color.BLACK: 0>
1655>>> bool(Color.BLACK)
1656False
1657\end{python}
1658@Flag@ members can also be iterated over:
1659\begin{python}
1660>>> purple = Color.RED | Color.BLUE
1661>>> list(purple)
1662[<Color.RED: 1>, <Color.BLUE: 2>]
1663\end{python}
1664New in version 3.11.
1665
1666Note: For the majority of new code, @Enum@ and @Flag@ are strongly recommended, since @IntEnum@ and @IntFlag@ break some semantic promises of an enumeration (by being comparable to integers, and thus by transitivity to other unrelated enumerations).
1667@IntEnum@ and @IntFlag@ should be used only in cases where @Enum@ and @Flag@ will not do;
1668for example, when integer constants are replaced with enumerations, or for interoperability with other systems.
1669
1670\subsection{Others}
1671
1672While @IntEnum@ is part of the enum module, it would be very simple to implement independently:
1673\begin{python}
1674class IntEnum(int, Enum):
1675        pass
1676\end{python}
1677This demonstrates how similar derived enumerations can be defined;
1678for example a @FloatEnum@ that mixes in float instead of @int@.
1679
1680Some rules:
1681\begin{itemize}
1682\item
1683When subclassing @Enum@, mix-in types must appear before @Enum@ itself in the sequence of bases, as in the @IntEnum@ example above.
1684\item
1685Mix-in types must be subclassable.
1686For example, @bool@ and @range@ are not subclassable and will throw an error during Enum creation if used as the mix-in type.
1687\item
1688While @Enum@ can have members of any type, once you mix in an additional type, all the members must have values of that type, e.g. @int@ above.
1689This restriction does not apply to mix-ins which only add methods and don't specify another type.
1690\item
1691When another data type is mixed in, the value attribute is not the same as the enum member itself, although it is equivalent and will compare equal.
1692\item
1693A data type is a mixin that defines @__new__()@, or a @dataclass@
1694\item
1695\%-style formatting: @%s@ and @%r@ call the @Enum@ class's @__str__()@ and @__repr__()@ respectively; other codes (such as @%i@ or @%h@ for @IntEnum@) treat the enum member as its mixed-in type.
1696\item
1697Formatted string literals, @str.format()@, and format() will use the enum's @__str__()@ method.
1698\end{itemize}
1699Note: Because @IntEnum@, @IntFlag@, and @StrEnum@ are designed to be drop-in replacements for existing constants, their @__str__()@ method has been reset to their data types' @__str__()@ method.
1700
1701\subsection{When to use \lstinline{__new__()} vs. \lstinline{__init__()}}
1702
1703@__new__()@ must be used whenever you want to customize the actual value of the @Enum@ member.
1704Any other modifications may go in either @__new__()@ or @__init__()@, with @__init__()@ being preferred.
1705
1706For example, if you want to pass several items to the constructor, but only want one of them to be the value:
1707\begin{python}
1708>>> class Coordinate(bytes, Enum):
1709...     """
1710...     Coordinate with binary codes that can be indexed by the int code.
1711...     """
1712...     def __new__(cls, value, label, unit):
1713...         obj = bytes.__new__(cls, [value])
1714...         obj._value_ = value
1715...         obj.label = label
1716...         obj.unit = unit
1717...         return obj
1718...     PX = (0, 'P.X', 'km')
1719...     PY = (1, 'P.Y', 'km')
1720...     VX = (2, 'V.X', 'km/s')
1721...     VY = (3, 'V.Y', 'km/s')
1722
1723>>> print(Coordinate['PY'])
1724Coordinate.PY
1725
1726>>> print(Coordinate(3))
1727Coordinate.VY
1728\end{python}
1729Warning: Do not call @super().__new__()@, as the lookup-only @__new__@ is the one that is found; instead, use the data type directly.
1730
1731\subsection{Finer Points}
1732
1733Supported @__dunder__@ names
1734
1735@__members__@ is a read-only ordered mapping of member\_name:member items. It is only available on the class.
1736
1737@__new__()@, if specified, must create and return the enum members; it is also a very good idea to set the member's @_value_@ appropriately. Once all the members are created it is no longer used.
1738Supported @_sunder_@ names
1739\begin{itemize}
1740\item
1741@_name_@ -- name of the member
1742\item
1743@_value_@ -- value of the member; can be set / modified in @__new__@
1744\item
1745@_missing_@ -- a lookup function used when a value is not found; may be overridden
1746\item
1747@_ignore_@ -- a list of names, either as a @list@ or a @str@, that will not be transformed into members, and will be removed from the final class
1748\item
1749@_order_@ -- used in Python 2/3 code to ensure member order is consistent (class attribute, removed during class creation)
1750\item
1751@_generate_@next@_value_@ -- used by the Functional API and by @auto@ to get an appropriate value for an enum member; may be overridden
1752\end{itemize}
1753Note: For standard @Enum@ classes the next value chosen is the last value seen incremented by one.
1754
1755For @Flag@ classes the next value chosen will be the next highest power-of-two, regardless of the last value seen.
1756
1757New in version 3.6: @_missing_@, @_order_@, @_generate_@next@_value_@
1758
1759New in version 3.7: @_ignore_@
1760
1761To help keep Python 2 / Python 3 code in sync an @_order_@ attribute can be provided.
1762It will be checked against the actual order of the enumeration and raise an error if the two do not match:
1763\begin{python}
1764>>> class Color(Enum):
1765...     _order_ = 'RED GREEN BLUE'
1766...     RED = 1
1767...     BLUE = 3
1768...     GREEN = 2
1769...
1770Traceback (most recent call last):
1771...
1772TypeError: member order does not match _order_:
1773  ['RED', 'BLUE', 'GREEN']
1774  ['RED', 'GREEN', 'BLUE']
1775\end{python}
1776Note: In Python 2 code the @_order_@ attribute is necessary as definition order is lost before it can be recorded.
1777
1778\subsection{\lstinline{_Private__names}}
1779
1780Private names are not converted to enum members, but remain normal attributes.
1781
1782Changed in version 3.11.
1783
1784\subsection{\lstinline{Enum} member type}
1785
1786@Enum@ members are instances of their enum class, and are normally accessed as @EnumClass.member@.
1787In certain situations, such as writing custom enum behavior, being able to access one member directly from another is useful, and is supported;
1788however, in order to avoid name clashes between member names and attributes/methods from mixed-in classes, upper-case names are strongly recommended.
1789
1790Changed in version 3.5.
1791
1792\subsection{Creating members that are mixed with other data types}
1793
1794When subclassing other data types, such as @int@ or @str@, with an @Enum@, all values after the = @are@ passed to that data type's constructor. For example:
1795\begin{python}
1796>>> class MyEnum(IntEnum):      # help(int) -> int(x, base=10) -> integer
1797...     example = '11', 16      # so x='11' and base=16
1798...
1799MyEnum.example.value        # and hex(11) is...
180017
1801\end{python}
1802
1803\subsection{\lstinline{Boolean} value of \lstinline{Enum} classes and members}
1804
1805Enum classes that are mixed with non-@Enum@ types (such as @int@, @str@, etc.) are evaluated according to the mixed-in type's rules;
1806otherwise, all members evaluate as @True@.
1807To make your own enum's boolean evaluation depend on the member's value add the following to your class:
1808\begin{python}
1809def __bool__(self):
1810        return bool(self.value)
1811\end{python}
1812Plain @Enum@ classes always evaluate as @True@.
1813
1814\subsection{\lstinline{Enum} classes with methods}
1815
1816If you give your enum subclass extra methods, like the Planet class below, those methods will show up in a dir() of the member, but not of the class:
1817\begin{python}
1818>>> dir(Planet)                         
1819['EARTH', 'JUPITER', 'MARS', 'MERCURY', 'NEPTUNE', 'SATURN', 'URANUS', 'VENUS',
1820 '__class__', '__doc__', '__members__', '__module__']
1821>>> dir(Planet.EARTH)                   
1822['__class__', '__doc__', '__module__', 'mass', 'name', 'radius', 'surface_gravity', 'value']
1823\end{python}
1824
1825\subsection{Combining members of \lstinline{Flag}}
1826
1827Iterating over a combination of @Flag@ members will only return the members that are comprised of a single bit:
1828\begin{python}
1829>>> class Color(Flag):
1830...     RED = auto()
1831...     GREEN = auto()
1832...     BLUE = auto()
1833...     MAGENTA = RED | BLUE
1834...     YELLOW = RED | GREEN
1835...     CYAN = GREEN | BLUE
1836...
1837>>> Color(3)  # named combination
1838<Color.YELLOW: 3>
1839>>> Color(7)      # not named combination
1840<Color.RED|GREEN|BLUE: 7>
1841\end{python}
1842
1843\subsection{\lstinline{Flag} and \lstinline{IntFlag} minutia}
1844
1845Using the following snippet for our examples:
1846\begin{python}
1847>>> class Color(IntFlag):
1848...     BLACK = 0
1849...     RED = 1
1850...     GREEN = 2
1851...     BLUE = 4
1852...     PURPLE = RED | BLUE
1853...     WHITE = RED | GREEN | BLUE
1854...
1855\end{python}
1856the following are true:
1857\begin{itemize}
1858\item
1859single-bit flags are canonical
1860\item
1861multi-bit and zero-bit flags are aliases
1862\item
1863only canonical flags are returned during iteration:
1864\begin{python}
1865>>> list(Color.WHITE)
1866[<Color.RED: 1>, <Color.GREEN: 2>, <Color.BLUE: 4>]
1867\end{python}
1868negating a flag or flag set returns a new flag/flag set with the corresponding positive integer value:
1869\begin{python}
1870>>> Color.BLUE
1871<Color.BLUE: 4>
1872
1873>>> ~Color.BLUE
1874<Color.RED|GREEN: 3>
1875\end{python}
1876\item
1877names of pseudo-flags are constructed from their members' names:
1878\begin{python}
1879>>> (Color.RED | Color.GREEN).name
1880'RED|GREEN'
1881\end{python}
1882\item
1883multi-bit flags, aka aliases, can be returned from operations:
1884\begin{python}
1885>>> Color.RED | Color.BLUE
1886<Color.PURPLE: 5>
1887
1888>>> Color(7)  # or Color(-1)
1889<Color.WHITE: 7>
1890
1891>>> Color(0)
1892<Color.BLACK: 0>
1893\end{python}
1894\item
1895membership / containment checking: zero-valued flags are always considered to be contained:
1896\begin{python}
1897>>> Color.BLACK in Color.WHITE
1898True
1899\end{python}
1900otherwise, only if all bits of one flag are in the other flag will True be returned:
1901\begin{python}
1902>>> Color.PURPLE in Color.WHITE
1903True
1904
1905>>> Color.GREEN in Color.PURPLE
1906False
1907\end{python}
1908\end{itemize}
1909There is a new boundary mechanism that controls how out-of-range / invalid bits are handled: @STRICT@, @CONFORM@, @EJECT@, and @KEEP@:
1910\begin{itemize}
1911\item
1912@STRICT@ --> raises an exception when presented with invalid values
1913\item
1914@CONFORM@ --> discards any invalid bits
1915\item
1916@EJECT@ --> lose Flag status and become a normal int with the given value
1917\item
1918@KEEP@ --> keep the extra bits
1919\begin{itemize}
1920\item
1921keeps Flag status and extra bits
1922\item
1923extra bits do not show up in iteration
1924\item
1925extra bits do show up in repr() and str()
1926\end{itemize}
1927\end{itemize}
1928The default for @Flag@ is @STRICT@, the default for @IntFlag@ is @EJECT@, and the default for @_convert_@ is @KEEP@ (see @ssl.Options@ for an example of when @KEEP@ is needed).
1929
1930\section{How are Enums and Flags different?}
1931
1932Enums have a custom metaclass that affects many aspects of both derived @Enum@ classes and their instances (members).
1933
1934\subsection{Enum Classes}
1935
1936The @EnumType@ metaclass is responsible for providing the @__contains__()@, @__dir__()@, @__iter__()@ and other methods that allow one to do things with an @Enum@ class that fail on a typical class, such as @list(Color)@ or @some_enum_var@ in @Color@.
1937@EnumType@ is responsible for ensuring that various other methods on the final @Enum@ class are correct (such as @__new__()@, @__getnewargs__()@, @__str__()@ and @__repr__()@).
1938
1939\subsection{Flag Classes}
1940
1941Flags have an expanded view of aliasing: to be canonical, the value of a flag needs to be a power-of-two value, and not a duplicate name.
1942So, in addition to the @Enum@ definition of alias, a flag with no value (a.k.a. 0) or with more than one power-of-two value (e.g. 3) is considered an alias.
1943
1944\subsection{Enum Members (aka instances)}
1945
1946The most interesting thing about enum members is that they are singletons.
1947@EnumType@ creates them all while it is creating the enum class itself, and then puts a custom @__new__()@ in place to ensure that no new ones are ever instantiated by returning only the existing member instances.
1948
1949\subsection{Flag Members}
1950
1951Flag members can be iterated over just like the @Flag@ class, and only the canonical members will be returned.
1952For example:
1953\begin{python}
1954>>> list(Color)
1955[<Color.RED: 1>, <Color.GREEN: 2>, <Color.BLUE: 4>]
1956\end{python}
1957(Note that BLACK, PURPLE, and WHITE do not show up.)
1958
1959Inverting a flag member returns the corresponding positive value, rather than a negative value -- for example:
1960\begin{python}
1961>>> ~Color.RED
1962<Color.GREEN|BLUE: 6>
1963\end{python}
1964Flag members have a length corresponding to the number of power-of-two values they contain. For example:
1965\begin{python}
1966>>> len(Color.PURPLE)
19672
1968\end{python}
1969
1970\subsection{Enum Cookbook}
1971
1972While @Enum@, @IntEnum@, @StrEnum@, @Flag@, and @IntFlag@ are expected to cover the majority of use-cases, they cannot cover them all. Here are recipes for some different types of enumerations that can be used directly, or as examples for creating one's own.
1973
1974\subsection{Omitting values}
1975
1976In many use-cases, one doesn't care what the actual value of an enumeration is. There are several ways to define this type of simple enumeration:
1977\begin{itemize}
1978\item
1979use instances of auto for the value
1980\item
1981use instances of object as the value
1982\item
1983use a descriptive string as the value
1984\item
1985use a tuple as the value and a custom @__new__()@ to replace the tuple with an @int@ value
1986\end{itemize}
1987Using any of these methods signifies to the user that these values are not important, and also enables one to add, remove, or reorder members without having to renumber the remaining members.
1988
1989\subsection{Using \lstinline{auto}}
1990
1991Using @auto@ would look like:
1992\begin{python}
1993>>> class Color(Enum):
1994...     RED = auto()
1995...     BLUE = auto()
1996...     GREEN = auto()
1997...
1998>>> Color.GREEN
1999<Color.GREEN: 3>
2000\end{python}
2001
2002\subsection{Using \lstinline{object}}
2003
2004Using @object@ would look like:
2005\begin{python}
2006>>> class Color(Enum):
2007...     RED = object()
2008...     GREEN = object()
2009...     BLUE = object()
2010...
2011>>> Color.GREEN                         
2012<Color.GREEN: <object object at 0x...>>
2013\end{python}
2014This is also a good example of why you might want to write your own @__repr__()@:
2015\begin{python}
2016>>> class Color(Enum):
2017...     RED = object()
2018...     GREEN = object()
2019...     BLUE = object()
2020...     def __repr__(self):
2021...         return "<%s.%s>" % (self.__class__.__name__, self._name_)
2022...
2023>>> Color.GREEN
2024<Color.GREEN>
2025\end{python}
2026
2027\subsection{Using a descriptive string}
2028
2029Using a string as the value would look like:
2030\begin{python}
2031>>> class Color(Enum):
2032...     RED = 'stop'
2033...     GREEN = 'go'
2034...     BLUE = 'too fast!'
2035...
2036>>> Color.GREEN
2037<Color.GREEN: 'go'>
2038\end{python}
2039
2040\subsection{Using a custom \lstinline{__new__()}}
2041
2042Using an auto-numbering @__new__()@ would look like:
2043\begin{python}
2044>>> class AutoNumber(Enum):
2045...     def __new__(cls):
2046...         value = len(cls.__members__) + 1
2047...         obj = object.__new__(cls)
2048...         obj._value_ = value
2049...         return obj
2050...
2051>>> class Color(AutoNumber):
2052...     RED = ()
2053...     GREEN = ()
2054...     BLUE = ()
2055...
2056>>> Color.GREEN
2057<Color.GREEN: 2>
2058\end{python}
2059To make a more general purpose @AutoNumber@, add @*args@ to the signature:
2060\begin{python}
2061>>> class AutoNumber(Enum):
2062...     def __new__(cls, *args):      # this is the only change from above
2063...         value = len(cls.__members__) + 1
2064...         obj = object.__new__(cls)
2065...         obj._value_ = value
2066...         return obj
2067\end{python}
2068Then when you inherit from @AutoNumber@ you can write your own @__init__@ to handle any extra arguments:
2069\begin{python}
2070>>> class Swatch(AutoNumber):
2071...     def __init__(self, pantone='unknown'):
2072...         self.pantone = pantone
2073...     AUBURN = '3497'
2074...     SEA_GREEN = '1246'
2075...     BLEACHED_CORAL = () # New color, no Pantone code yet!
2076...
2077>>> Swatch.SEA_GREEN
2078<Swatch.SEA_GREEN: 2>
2079>>> Swatch.SEA_GREEN.pantone
2080'1246'
2081>>> Swatch.BLEACHED_CORAL.pantone
2082'unknown'
2083\end{python}
2084Note: The @__new__()@ method, if defined, is used during creation of the Enum members;
2085it is then replaced by Enum's @__new__()@ which is used after class creation for lookup of existing members.
2086
2087Warning: Do not call @super().__new__()@, as the lookup-only @__new__@ is the one that is found;
2088instead, use the data type directly -- e.g.:
2089\begin{python}
2090obj = int.__new__(cls, value)
2091\end{python}
2092
2093\subsection{OrderedEnum}
2094
2095An ordered enumeration that is not based on @IntEnum@ and so maintains the normal @Enum@ invariants (such as not being comparable to other enumerations):
2096\begin{python}
2097>>> class OrderedEnum(Enum):
2098...     def __ge__(self, other):
2099...         if self.__class__ is other.__class__:
2100...             return self.value >= other.value
2101...         return NotImplemented
2102...     def __gt__(self, other):
2103...         if self.__class__ is other.__class__:
2104...             return self.value > other.value
2105...         return NotImplemented
2106...     def __le__(self, other):
2107...         if self.__class__ is other.__class__:
2108...             return self.value <= other.value
2109...         return NotImplemented
2110...     def __lt__(self, other):
2111...         if self.__class__ is other.__class__:
2112...             return self.value < other.value
2113...         return NotImplemented
2114...
2115>>> class Grade(OrderedEnum):
2116...     A = 5
2117...     B = 4
2118...     C = 3
2119...     D = 2
2120...     F = 1
2121>>> Grade.C < Grade.A
2122True
2123\end{python}
2124
2125\subsection{DuplicateFreeEnum}
2126
2127Raises an error if a duplicate member value is found instead of creating an alias:
2128\begin{python}
2129>>> class DuplicateFreeEnum(Enum):
2130...     def __init__(self, *args):
2131...         cls = self.__class__
2132...         if any(self.value == e.value for e in cls):
2133...             a = self.name
2134...             e = cls(self.value).name
2135...             raise ValueError(
2136...                 "aliases not allowed in DuplicateFreeEnum:  %r --> %r"
2137...                 % (a, e))
2138>>> class Color(DuplicateFreeEnum):
2139...     RED = 1
2140...     GREEN = 2
2141...     BLUE = 3
2142...     GRENE = 2
2143...
2144Traceback (most recent call last):
2145  ...
2146ValueError: aliases not allowed in DuplicateFreeEnum:  'GRENE' --> 'GREEN'
2147\end{python}
2148Note: This is a useful example for subclassing Enum to add or change other behaviors as well as disallowing aliases.
2149If the only desired change is disallowing aliases, the @unique()@ decorator can be used instead.
2150
2151\subsection{Planet}
2152
2153If @__new__()@ or @__init__()@ is defined, the value of the enum member will be passed to those methods:
2154\begin{figure}
2155\begin{python}
2156from enum import Enum
2157class Planet(Enum):
2158        MERCURY = ( 3.303E23, 2.4397E6 )
2159        VENUS       = ( 4.869E24, 6.0518E6 )
2160        EARTH       = (5.976E24, 6.37814E6)
2161        MARS         = (6.421E23, 3.3972E6)
2162        JUPITER    = (1.9E27,   7.1492E7)
2163        SATURN     = (5.688E26, 6.0268E7)
2164        URANUS    = (8.686E25, 2.5559E7)
2165        NEPTUNE  = (1.024E26, 2.4746E7)
2166        def __init__( self, mass, radius ):
2167                self.mass = mass                # in kilograms
2168                self.radius = radius    # in meters
2169        def surface_gravity( self ):
2170                # universal gravitational constant  (m3 kg-1 s-2)
2171                G = 6.67300E-11
2172                return G * self.mass / (self.radius * self.radius)
2173for p in Planet:
2174        print( f"{p.name}: {p.value}" )
2175
2176MERCURY: (3.303e+23, 2439700.0)
2177VENUS: (4.869e+24, 6051800.0)
2178EARTH: (5.976e+24, 6378140.0)
2179MARS: (6.421e+23, 3397200.0)
2180JUPITER: (1.9e+27, 71492000.0)
2181SATURN: (5.688e+26, 60268000.0)
2182URANUS: (8.686e+25, 25559000.0)
2183NEPTUNE: (1.024e+26, 24746000.0)
2184\end{python}
2185\caption{Python Planet Example}
2186\label{f:PythonPlanetExample}
2187\end{figure}
2188
2189
2190\subsection{TimePeriod}
2191
2192An example to show the @_ignore_@ attribute in use:
2193\begin{python}
2194>>> from datetime import timedelta
2195>>> class Period(timedelta, Enum):
2196...     "different lengths of time"
2197...     _ignore_ = 'Period i'
2198...     Period = vars()
2199...     for i in range(367):
2200...         Period['day_%d' % i] = i
2201...
2202>>> list(Period)[:2]
2203[<Period.day_0: datetime.timedelta(0)>, <Period.day_1: datetime.timedelta(days=1)>]
2204>>> list(Period)[-2:]
2205[<Period.day_365: datetime.timedelta(days=365)>, <Period.day_366: datetime.timedelta(days=366)>]
2206\end{python}
2207
2208\subsection{Subclassing EnumType}
2209
2210While most enum needs can be met by customizing @Enum@ subclasses, either with class decorators or custom functions, @EnumType@ can be subclassed to provide a different Enum experience.
2211
2212
2213\section{OCaml}
2214\lstnewenvironment{ocaml}[1][]{\lstset{language=OCaml,escapechar=\$,moredelim=**[is][\color{red}]{@}{@},}\lstset{#1}}{}
2215
2216% https://ocaml.org/docs/basic-data-types#enumerated-data-types
2217% https://dev.realworldocaml.org/runtime-memory-layout.html
2218
2219OCaml provides a variant (union) type, where multiple heterogeneously-typed objects share the same storage.
2220The simplest form of the variant type is a list of nullary datatype constructors, which is like an unscoped, pure enumeration.
2221
2222(I think the value of a ocaml variants are types not object, so I am not sure about this line)
2223OCaml provides a variant (union) type, which is an aggregation of heterogeneous types.
2224A basic variant is a list of nullary datatype constructors, which is like an unscoped, pure enumeration.
2225\begin{ocaml}
2226type weekday = Mon | Tue | Wed | Thu | Fri | Sat | Sun
2227let day : weekday @= Mon@                               $\C{(* bind *)}$
2228let take_class( d : weekday ) =
2229        @match@ d with                                          $\C{(* matching *)}$
2230                Mon | Wed -> Printf.printf "CS442\n" |
2231                Tue | Thu -> Printf.printf "CS343\n" |
2232                Fri -> Printf.printf "Tutorial\n" |
2233                _ -> Printf.printf "Take a break\n"
2234let _ = take_class( Mon );
2235@CS442@
2236\end{ocaml}
2237The only operations are binding and pattern matching (equality), where the variant name is logically the implementation tag stored in the union for discriminating the value in the object storage.
2238OCaml compile store tags as ascending int, starting from 0. Variants @Mon@ to @Sun@ are stored as int value 0 to 6.
2239Here, function @take_class@ has a @weekday@ parameter, and returns @"CS442"@, if the weekday value is @Mon@ or @Wed@, @"CS343"@, if the value is @Tue@ or @Thu@, and @"Tutorial"@ for @Fri@.
2240The ``@_@'' is a wildcard matching any @weekday@ value, so the function returns @"Take a break"@ for values @Sat@ or @Sun@, which are not matched by the previous cases.
2241Since the variant has no type, it has a \Newterm{0-arity constructor}, \ie no parameters.
2242Because @weekday@ is a union of values @Mon@ to @Sun@, it is a \Newterm{union type} in turns of the functional-programming paradigm.
2243
2244Each variant can have an associated heterogeneous type, with an n-ary constructor for creating a corresponding value.
2245\begin{ocaml}
2246type colour = Red | Green of @string@ | Blue of @int * float@
2247\end{ocaml}
2248A variant with parameter is stored in a memory block, prefixed by an int tag and has its parameters stores as words in the block.
2249@colour@ is a summation of a nullary type, a unary product type of @string@, and a cross product of @int@ and @float@.
2250(Mathematically, a @Blue@ value is a Cartesian product of the types @int@ type and @float@.)
2251Hence, a variant type creates a sum of product of different types.
2252\begin{ocaml}
2253let c = Red                                                             $\C{(* 0-ary constructor, set tag *)}$
2254let _ = match c with Red -> Printf.printf "Red, "
2255let c = Green( "abc" )                                  $\C{(* 1-ary constructor, set tag *)}$
2256let _ = match c with Green g -> Printf.printf "%s, " g
2257let c = Blue( 1, 1.5 )                                  $\C{(* 2-ary constructor, set tag *)}$
2258let _ = match c with Blue( i, f ) -> Printf.printf "%d %g\n" i f
2259@Red, abc, 1 1.5@
2260\end{ocaml}
2261
2262
2263A variant type can have a recursive definition.
2264\begin{ocaml}
2265type @stringList@ = Empty | Pair of string * @stringList@
2266\end{ocaml}
2267which is a recursive sum of product of types, called an \Newterm{algebraic data-type}.
2268A recursive function is often used to pattern match against a recursive variant type.
2269\begin{ocaml}
2270let rec @len_of_string_list@( list : stringList ): int =
2271        match list with
2272                Empty -> 0 |
2273                Pair( _ , r ) -> 1 + @len_of_string_list@ r
2274\end{ocaml}
2275Here, the head of the recursive type is removed and the remainder is processed until the type is empty.
2276Each recursion is counted to obtain the number of elements in the type.
2277
2278Note, the compiler statically guarantees that only the correct kind of type is used in the \lstinline[language=OCaml]{match} statement.
2279However, the union tag is dynamically set on binding (and possible reset on assignment), so a \lstinline[language=OCaml]{match} statement is effectively doing RTTI to select the matching case clause.
2280
2281In summary, an OCaml variant is a singleton value rather than a set of possibly ordered values, and hence, has no notion of enumerabilty.
2282Therefore it is not an enumeration, except for the simple pure (nullary) case.
2283
2284\begin{comment}
2285Date: Wed, 13 Mar 2024 10:52:34 -0400
2286Subject: Re: OCaml
2287To: "Peter A. Buhr" <pabuhr@uwaterloo.ca>
2288From: Gregor Richards <gregor.richards@uwaterloo.ca>
2289
2290On 3/12/24 18:34, Peter A. Buhr wrote:
2291> Gregor, attached is a section Jiada wrote on OCaml (1-page).
2292> Does it reflect our discussion about functional languages and enumerations?
2293
2294Yeah, I think so. The most important part, i.e., that once they're
2295parameterized they're not really enumerations at all, is covered clearly
2296enough.
2297
2298A couple quibbles:
2299
2300<<a list of untyped tags>>
2301
2302This is true, but leaking implementation details. These are nullary datatype
2303constructors. Indeed, you later talk about "tagged variants", which are really
2304just parameterized variants, using the term "tag" differently, confusing the
2305term "tag" further.
2306
2307<<Because weekday is a summation of values Mon to Sun, it is a sum type in
2308turns of the functional-programming paradigm>>
2309
2310It is a *union* of values and is a *union* type.
2311
2312With valediction,
2313  - Gregor Richards
2314
2315
2316Date: Thu, 14 Mar 2024 21:45:52 -0400
2317Subject: Re: OCaml "enums" do come with ordering
2318To: "Peter A. Buhr" <pabuhr@uwaterloo.ca>
2319From: Gregor Richards <gregor.richards@uwaterloo.ca>
2320
2321On 3/14/24 21:30, Peter A. Buhr wrote:
2322> I've marked 3 places with your name to shows places with enum ordering.
2323>
2324> type weekday = Mon | Tue | Wed | Thu | Fri | Sat | Sun
2325> let day : weekday = Mon
2326> let take_class( d : weekday ) =
2327>       if d <= Fri then                                (* Gregor *)
2328>               Printf.printf "weekday\n"
2329>       else if d >= Sat then                   (* Gregor *)
2330>               Printf.printf "weekend\n";
2331>       match d with
2332>               Mon | Wed -> Printf.printf "CS442\n" |
2333>               Tue | Thu -> Printf.printf "CS343\n" |
2334>               Fri -> Printf.printf "Tutorial\n" |
2335>               _ -> Printf.printf "Take a break\n"
2336>
2337> let _ = take_class( Mon ); take_class( Sat );
2338>
2339> type colour = Red | Green of string | Blue of int * float
2340> let c = Red
2341> let _ = match c with Red -> Printf.printf "Red, "
2342> let c = Green( "abc" )
2343> let _ = match c with Green g -> Printf.printf "%s, " g
2344> let c = Blue( 1, 1.5 )
2345> let _ = match c with Blue( i, f ) -> Printf.printf "%d %g\n" i f
2346>
2347> let check_colour(c: colour): string =
2348>       if c < Green( "xyz" ) then              (* Gregor *)
2349>               Printf.printf "green\n";
2350>       match c with
2351>               Red -> "Red" |
2352>               Green g -> g |
2353>               Blue(i, f) -> string_of_int i ^ string_of_float f
2354> let _ = check_colour( Red ); check_colour( Green( "xyz" ) );
2355>
2356> type stringList = Empty | Pair of string * stringList
2357> let rec len_of_string_list(l: stringList): int =
2358>       match l with
2359>               Empty -> 0 |
2360>               Pair(_ , r) -> 1 + len_of_string_list r
2361>
2362> let _ = for i = 1 to 10 do
2363>       Printf.printf "%d, " i
2364> done
2365>
2366> (* Local Variables: *)
2367> (* tab-width: 4 *)
2368> (* compile-command: "ocaml test.ml" *)
2369> (* End: *)
2370
2371My functional-language familiarity is far more with Haskell than OCaml.  I
2372mostly view OCaml through a lens of "it's Haskell but with cheating".  Haskell
2373"enums" (ADTs) aren't ordered unless you specifically and manually put them in
2374the Ord typeclass by defining the comparators.  Apparently, OCaml has some
2375other rule, which I would guess is something like "sort by tag then by order of
2376parameter". Having a default behavior for comparators is *bizarre*; my guess
2377would be that it gained this behavior in its flirtation with object
2378orientation, but that's just a guess (and irrelevant).
2379
2380This gives a total order, but not enumerability (which would still be
2381effectively impossible or even meaningless since enums are just a special case
2382of ADTs).
2383
2384With valediction,
2385  - Gregor Richards
2386
2387Date: Wed, 20 Mar 2024 18:16:44 -0400
2388Subject: Re:
2389To: "Peter A. Buhr" <pabuhr@uwaterloo.ca>
2390From: Gregor Richards <gregor.richards@uwaterloo.ca>
2391
2392
2393On 3/20/24 17:26, Peter A. Buhr wrote:
2394> Gregor, everyone at this end would like a definition of "enumerability". Can
2395> you formulate one?
2396
2397According to the OED (emphasis added to the meaning I'm after):
2398
2399enumerate (verb, transitive). To count, ascertain the number of; **more
2400usually, to mention (a number of things or persons) separately, as if for the
2401purpose of counting**; to specify as in a list or catalogue.
2402
2403With C enums, if you know the lowest and highest value, you can simply loop
2404over them in a for loop (this is, of course, why so many enums come with an
2405ENUM_WHATEVER_LAST value). But, I would be hesitant to use the word "loop" to
2406describe enumerability, since in functional languages, you would recurse for
2407such a purpose.
2408
2409In Haskell, in order to do something with every member of an "enumeration", you
2410would have to explicitly list them all. The type system will help a bit since
2411it knows if you haven't listed them all, but you would have to statically have
2412every element in the enumeration.  If somebody added new elements to the
2413enumeration later, your code to enumerate over them would no longer work
2414correctly, because you can't simply say "for each member of this enumeration do
2415X". In Haskell that's because there aren't actually enumerations; what they use
2416as enumerations are a degenerate form of algebraic datatypes, and ADTs are
2417certainly not enumerable. In OCaml, you've demonstrated that they impose
2418comparability, but I would still assume that you can't make a loop over every
2419member of an enumeration. (But, who knows!)
2420
2421Since that's literally what "enumerate" means, it seems like a rather important
2422property for enumerations to have ;)
2423
2424With valediction,
2425  - Gregor Richards
2426
2427
2428From: Andrew James Beach <ajbeach@uwaterloo.ca>
2429To: Gregor Richards <gregor.richards@uwaterloo.ca>, Peter Buhr <pabuhr@uwaterloo.ca>
2430CC: Michael Leslie Brooks <mlbrooks@uwaterloo.ca>, Fangren Yu <f37yu@uwaterloo.ca>,
2431    Jiada Liang <j82liang@uwaterloo.ca>
2432Subject: Re: Re:
2433Date: Thu, 21 Mar 2024 14:26:36 +0000
2434
2435Does this mean that not all enum declarations in C create enumerations? If you
2436declare an enumeration like:
2437
2438enum Example {
2439    Label,
2440    Name = 10,
2441    Tag = 3,
2442};
2443
2444I don't think there is any way to enumerate (iterate, loop, recurse) over these
2445values without listing all of them.
2446
2447
2448Date: Thu, 21 Mar 2024 10:31:49 -0400
2449Subject: Re:
2450To: Andrew James Beach <ajbeach@uwaterloo.ca>, Peter Buhr <pabuhr@uwaterloo.ca>
2451CC: Michael Leslie Brooks <mlbrooks@uwaterloo.ca>, Fangren Yu <f37yu@uwaterloo.ca>,
2452    Jiada Liang <j82liang@uwaterloo.ca>
2453From: Gregor Richards <gregor.richards@uwaterloo.ca>
2454
2455I consider this conclusion reasonable. C enums can be nothing more than const
2456ints, and if used in that way, I personally wouldn't consider them as
2457enumerations in any meaningful sense, particularly since the type checker
2458essentially does nothing for you there. Then they're a way of writing consts
2459repeatedly with some textual indicator that these definitions are related; more
2460namespace, less enum.
2461
2462When somebody writes bitfield members as an enum, is that *really* an
2463enumeration, or just a use of the syntax for enums to keep related definitions
2464together?
2465
2466With valediction,
2467  - Gregor Richards
2468\end{comment}
2469
2470
2471\section{Comparison}
2472
2473\VRef[Table]{t:FeatureLanguageComparison} shows a comparison of enumeration features and programming languages.
2474The features are high level and may not capture nuances within a particular language
2475The @const@ feature is simple macros substitution and not a typed enumeration.
2476
2477\begin{table}
2478\caption{Enumeration Feature / Language Comparison}
2479\label{t:FeatureLanguageComparison}
2480\small
2481\setlength{\tabcolsep}{3pt}
2482\newcommand{\CM}{\checkmark}
2483\begin{tabular}{r|c|c|c|c|c|c|c|c|c|c|c|c|c}
2484                                &Pascal & Ada   &\Csharp& OCaml & Java  &Modula-3&Golang& Rust  & Swift & Python& C             & \CC   & \CFA  \\
2485\hline
2486@const@                 & \CM   &               &               &               &               &               & \CM   &               &               &               &               & \CM   &               \\
2487\hline
2488\hline
2489pure                    &               &               &               &               &               &               &               &               &               &               &               &               & \CM   \\
2490\hline
2491typed                   &               &               &               &               &               &               &               &               &               &               & @int@ & integral      & @T@   \\
2492\hline
2493safe                    &               &               &               &               &               &               &               &               &               &               &               & \CM   & \CM   \\
2494\hline
2495ordered                 &               &               &               &               &               &               &               &               &               &               & \CM   & \CM   & \CM   \\
2496\hline
2497dup. values             &               &               &               &               &               &               &               &               &               & alias & \CM   & \CM   & \CM   \\
2498\hline
2499setable                 &               &               &               &               &               &               &               &               &               &               & \CM   & \CM   & \CM   \\
2500\hline
2501auto-init               &               &               &               &               &               &               &               &               &               &               & \CM   & \CM   & \CM   \\
2502\hline
2503(un)scoped              &               &               &               &               &               &               &               &               &               &               & U             & U/S   & U/S   \\
2504\hline
2505overload                &               & \CM   &               &               &               &               &               &               &               &               &               & \CM   & \CM   \\
2506\hline
2507switch                  &               &               &               &               &               &               &               &               &               &               & \CM   & \CM   & \CM   \\
2508\hline
2509loop                    &               &               &               &               &               &               &               &               &               &               &               &               & \CM   \\
2510\hline
2511array                   &               &               &               &               &               &               &               &               &               &               & \CM   &               & \CM   \\
2512\hline
2513subtype                 &               &               &               &               &               &               &               &               &               &               &               &               & \CM   \\
2514\hline
2515inheritance             &               &               &               &               &               &               &               &               &               &               &               &               & \CM   \\
2516\end{tabular}
2517\end{table}
Note: See TracBrowser for help on using the repository browser.