source: doc/theses/jiada_liang_MMath/intro.tex @ f632117

Last change on this file since f632117 was f632117, checked in by Peter A. Buhr <pabuhr@…>, 6 weeks ago

more proofreading on enumeration chapters

  • Property mode set to 100644
File size: 14.1 KB
Line 
1\chapter{Introduction}
2
3All types in a programming language must have a set of constants, and these constants have \Newterm{primary names}, \eg integral types have constants @-1@, @17@, @0xff@, floating-point types have constants @5.3@, @2.3E-5@, @0xff.ffp0@, character types have constants @'a'@, @"abc\n"@, \mbox{\lstinline{u8"}\texttt{\guillemotleft{na\"{i}ve}\guillemotright}\lstinline{"}}, \etc.
4Con\-stants can be overloaded among types, \eg @0@ is a null pointer for all pointer types, and the value zero for integral and floating-point types.
5(In \CFA, the primary constants @0@ and @1@ can be overloaded for any type.)
6Hence, each primary constant has a symbolic name referring to its internal representation, and these names are dictated by language syntax related to types.
7In theory, there are an infinite set of primary constant names per type.
8
9\Newterm{Secondary naming} is a common practice in mathematics, engineering and computer science, \eg $\pi$, $\tau$ (2$\pi$), $\phi$ (golden ratio), MB (megabyte, 1E6), and in general situations, \eg specific times (noon, New Years), cities (Big Apple), flowers (Lily), \etc.
10Many programming languages capture this important software-engineering capability through a mechanism called \Newterm{constant} or \Newterm{literal} naming, where a secondary name is aliased to a primary name.
11Its purpose is for readability and to eliminate duplication of the primary constant throughout a program.
12For example, a meaningful secondary name replaces a primary name throughout a program;
13thereafter, changing the binding of the secondary to primary name automatically distributes the rebinding, preventing errors.
14In some cases, secondary naming is \Newterm{opaque}, where the matching internal representation can be chosen arbitrarily, and only equality operations are available, \eg @O_RDONLY@, @O_WRONLY@, @O_CREAT@, @O_TRUNC@, @O_APPEND@.
15Because a secondary name is a constant, it cannot appear in a mutable context, \eg \mbox{$\pi$ \lstinline{= 42}} is meaningless, and a constant has no address, \ie it is an \Newterm{rvalue}\footnote{
16The term rvalue defines an expression that can only appear on the right-hand side of an assignment expression.}.
17
18Secondary names can form an (ordered) set, \eg days of a week, months of a year, floors of a building (basement, ground, 1st), colours in a rainbow, \etc.
19Many programming languages capture these groupings through a mechanism called an \Newterm{enumeration}.
20\begin{quote}
21enumerate (verb, transitive).
22To count, ascertain the number of;
23more usually, to mention (a number of things or persons) separately, as if for the purpose of counting;
24to specify as in a list or catalogue.~\cite{OEDenumerate}
25\end{quote}
26Within an enumeration set, the enumeration names must be unique, and instances of an enumerated type are \emph{often} restricted to hold only the secondary names.
27It is possible to enumerate among set names without having an ordering among the set elements.
28For example, the week, the weekdays, the weekend, and every second day of the week.
29\begin{cfa}[morekeywords={in}]
30for ( cursor in Mon, Tue, Wed, Thu, Fri, Sat, Sun } ... $\C[3.75in]{// week}$
31for ( cursor in Mon, Tue, Wed, Thu, Fri } ...   $\C{// weekday}$
32for ( cursor in Sat, Sun } ...                                  $\C{// weekend}$
33for ( cursor in Mon, Wed, Fri, Sun } ...                $\C{// every second day of week}\CRT$
34\end{cfa}
35This independence from internal representation allows multiple names to have the same representation (eighth note, quaver), giving synonyms.
36A set can have a partial or total ordering, making it possible to compare set elements, \eg Monday is before Friday and Friday is after.
37Ordering allows iterating among the enumeration set using relational operators and advancement, \eg:
38\begin{cfa}
39for ( cursor = Monday; cursor @<=@ Friday; cursor = @succ@( cursor ) ) ...
40\end{cfa}
41Here the internal representation for the secondary names are logically \emph{generated} rather than listing a subset of names.
42
43Hence, the fundamental aspects of an enumeration are:
44\begin{enumerate}
45\item
46\begin{sloppypar}
47It provides a finite set of secondary names, which become its primary constants.
48This differentiates an enumeration from general types with an infinite set
49of primary constants.
50\end{sloppypar}
51\item
52The secondary names are constants, which follows transitively from their binding (aliasing) to primary names, which are constants.
53\item
54Defines a type for generating instants (variables).
55\item
56For safety, an enumeration instance should be restricted to hold only its type's secondary names.
57\item
58There is a mechanism for \emph{enumerating} over the secondary names, where the ordering can be implicit from the type, explicitly listed, or generated arithmetically.
59\end{enumerate}
60
61
62\section{Terminology}
63\label{s:Terminology}
64
65The term \Newterm{enumeration} defines a type with a set of secondary names, and the term \Newterm{enumerator} represents an arbitrary secondary name \see{\VRef{s:CEnumeration} for the name derivation}.
66As well, an enumerated type can have three fundamental properties, \Newterm{label}, \Newterm{order}, and \Newterm{value}.
67\begin{cquote}
68\sf\setlength{\tabcolsep}{3pt}
69\begin{tabular}{rcccccccr}
70\it\color{red}enumeration       & \multicolumn{8}{c}{\it\color{red}enumerators} \\
71$\downarrow$\hspace*{15pt}      & \multicolumn{8}{c}{$\downarrow$}                              \\
72@enum@ Week \{                          & Mon,  & Tue,  & Wed,  & Thu,  & Fri,  & Sat,  & Sun {\color{red}= 42} & \};   \\
73\it\color{red}label                     & Mon   & Tue   & Wed   & Thu   & Fri   & Sat   & Sun           &               \\
74\it\color{red}order                     & 0             & 1             & 2             & 3             & 4             & 5             & 6                     &               \\
75\it\color{red}value                     & 0             & 1             & 2             & 3             & 4             & 5             & {\color{red}42}               &
76\end{tabular}
77\end{cquote}
78Here, the enumeration @Week@ defines the enumerator labels @Mon@, @Tue@, @Wed@, @Thu@, @Fri@, @Sat@ and @Sun@.
79The implicit ordering implies the successor of @Tue@ is @Mon@ and the predecessor of @Tue@ is @Wed@, independent of any associated enumerator values.
80The value is the constant represented by the secondary name, which can be implicitly or explicitly set.
81
82Specifying complex ordering is possible:
83\begin{cfa}
84enum E1 { $\color{red}[\(_1\)$ {A, B}, $\color{blue}[\(_2\)$ C $\color{red}]\(_1\)$, {D, E} $\color{blue}]\(_2\)$ }; $\C{// overlapping square brackets}$
85enum E2 { {A, {B, C} }, { {D, E}, F };  $\C{// nesting}$
86\end{cfa}
87For @E1@, there is the partial ordering among @A@, @B@ and @C@, and @C@, @D@ and @E@, but not among @A@, @B@ and @D@, @E@.
88For @E2@, there is the total ordering @A@ $<$ @{B, C}@ $<$ @{D, E}@ $<$ @F@.
89Only flat total-ordering among enumerators is considered in this work.
90
91
92\section{Motivation}
93
94Many programming languages provide an enumeration-like mechanism, which may or may not cover the previous five fundamental enumeration aspects.
95Hence, the term \emph{enumeration} can be confusing and misunderstood.
96Furthermore, some languages conjoin the enumeration with other type features, making it difficult to tease apart which featuring is being used.
97This section discusses some language features that are sometimes called an enumeration but do not provide all enumeration aspects.
98
99
100\subsection{Aliasing}
101\label{s:Aliasing}
102
103Some languages provide simple secondary aliasing (renaming), \eg:
104\begin{cfa}
105const Size = 20, Pi = 3.14159, Name = "Jane";
106\end{cfa}
107The secondary name is logically replaced in the program text by its corresponding primary name.
108Therefore, it is possible to compare the secondary names, \eg @Size < Pi@, only because the primary constants allow it, whereas \eg @Pi < Name@ might be disallowed depending on the language.
109
110Aliasing is not macro substitution, \eg @#define Size 20@, where a name is replaced by its value \emph{before} compilation, so the name is invisible to the programming language.
111With aliasing, each secondary name is part of the language, and hence, participates fully, such as name overloading in the type system.
112Aliasing is not an immutable variable, \eg:
113\begin{cfa}
114extern @const@ int Size = 20;
115extern void foo( @const@ int @&@ size );
116foo( Size ); // take the address of (reference) Size
117\end{cfa}
118Taking the address of an immutable variable makes it an \Newterm{lvalue}, which implies it has storage.
119With separate compilation, it is necessary to choose one translation unit to perform the initialization.
120If aliasing does require storage, its address and initialization are opaque (compiler only), similar to \CC rvalue reference @&&@.
121
122Aliasing does provide readability and automatic resubstitution.
123It also provides simple enumeration properties, but with extra effort.
124\begin{cfa}
125const Mon = 1, Tue = 2, Wed = 3, Thu = 4, Fri = 5, Sat = 6, Sun = 7;
126\end{cfa}
127Any reordering of the enumerators requires manual renumbering.
128\begin{cfa}
129const Sun = 1, Mon = 2, Tue = 3, Wed = 4, Thu = 5, Fri = 6, Sat = 7;
130\end{cfa}
131For these reasons, aliasing is sometimes called an enumeration.
132However, there is no type to create a type-checked instance or iterator cursor, so there is no ability for enumerating.
133Hence, there are multiple enumeration aspects not provided by aliasing, justifying a separate enumeration type in a programming language.
134
135
136\subsection{Algebraic Data Type}
137
138An algebraic data type (ADT)\footnote{ADT is overloaded with abstract data type.} is another language feature often linked with enumeration, where an ADT conjoins an arbitrary type, possibly a \lstinline[language=C++]{class} or @union@, and a named constructor.
139For example, in Haskell:
140\begin{haskell}
141data S = S { i::Int, d::Double }                $\C{// structure}$
142data @Foo@ = A Int | B Double | C S             $\C{// ADT, composed of three types}$
143foo = A 3;                                                              $\C{// type Foo is inferred}$
144bar = B 3.5
145baz = C S{ i = 7, d = 7.5 }
146\end{haskell}
147the ADT has three variants (constructors), @A@, @B@, @C@ with associated types @Int@, @Double@, and @S@.
148The constructors create an initialized value of the specific type that is bound to the immutable variables @foo@, @bar@, and @baz@.
149Hence, the ADT @Foo@ is like a union containing values of the associated types, and a constructor name is used to access the value using dynamic pattern-matching.
150\begin{cquote}
151\setlength{\tabcolsep}{15pt}
152\begin{tabular}{@{}ll@{}}
153\begin{haskell}
154prtfoo val = -- function
155    -- pattern match on constructor
156    case val of
157      @A@ a -> print a
158      @B@ b -> print b
159      @C@ (S i d) -> do
160          print i
161          print d
162\end{haskell}
163&
164\begin{haskell}
165main = do
166    prtfoo foo
167    prtfoo bar
168    prtfoo baz
1693
1703.5
1717
1727.5
173\end{haskell}
174\end{tabular}
175\end{cquote}
176For safety, most languages require all assocaited types to be listed or a default case with no field accesses.
177
178A less frequent case is multiple constructors with the same type.
179\begin{haskell}
180data Bar = X Int | Y Int | Z Int;
181foo = X 3;
182bar = Y 3;
183baz = Z 5;
184\end{haskell}
185Here, the constructor name gives different meaning to the values in the common \lstinline[language=Haskell]{Int} type, \eg the value @3@ has different interpretations depending on the constructor name in the pattern matching.
186
187Note, the term \Newterm{variant} is often associated with ADTs.
188However, there are multiple languages with a @variant@ type that is not an ADT \see{Algol68~\cite{Algol68} or \CC \lstinline{variant}}.
189In these languages, the variant is often a union using RTTI tags, which cannot be used to simulate an enumeration.
190Hence, in this work the term variant is not a synonym for ADT.
191
192% https://downloads.haskell.org/ghc/latest/docs/libraries/base-4.19.1.0-179c/GHC-Enum.html
193% https://hackage.haskell.org/package/base-4.19.1.0/docs/GHC-Enum.html
194
195The association between ADT and enumeration occurs if all the constructors have a unit (empty) type, \eg @struct unit {}@.
196Note, the unit type is not the same as \lstinline{void}, \eg:
197\begin{cfa}
198void foo( void );
199struct unit {} u;  // empty type
200unit bar( unit );
201foo( foo() );        // void argument does not match with void parameter
202bar( bar( u ) );   // unit argument does match with unit parameter
203\end{cfa}
204
205For example, in the Haskell ADT:
206\begin{haskell}
207data Week = Mon | Tue | Wed | Thu | Fri | Sat | Sun deriving(Enum, Eq, Show)
208\end{haskell}
209the default type for each constructor is the unit type, and deriving from @Enum@ enforces no other type, @Eq@ allows equality comparison, and @Show@ is for printing.
210The nullary constructors for the unit types are numbered left-to-right from $0$ to @maxBound@$- 1$, and provides enumerating operations @succ@, @pred@, @enumFrom@ @enumFromTo@.
211\VRef[Figure]{f:HaskellEnumeration} shows enumeration comparison and iterating (enumerating).
212
213\begin{figure}
214\begin{cquote}
215\setlength{\tabcolsep}{15pt}
216\begin{tabular}{@{}ll@{}}
217\begin{haskell}
218day = Tue
219main = do
220    if day == Tue then
221        print day
222    else
223        putStr "not Tue"
224    print (enumFrom Mon)            -- week
225    print (enumFromTo Mon Fri)   -- weekday
226    print (enumFromTo Sat Sun)  -- weekend
227\end{haskell}
228&
229\begin{haskell}
230Tue
231[Mon,Tue,Wed,Thu,Fri,Sat,Sun]
232[Mon,Tue,Wed,Thu,Fri]
233[Sat,Sun]
234
235
236
237
238
239\end{haskell}
240\end{tabular}
241\end{cquote}
242\caption{Haskell Enumeration}
243\label{f:HaskellEnumeration}
244\end{figure}
245
246The key observation is the dichotomy between an ADT and enumeration: the ADT uses the associated type resulting in a union-like data structure, and the enumeration does not use the associated type, and hence, is not a union.
247While the enumeration is constructed using the ADT mechanism, it is so restricted it is not really an ADT.
248Furthermore, a general ADT cannot be an enumeration because the constructors generate different values making enumerating meaningless.
249While functional programming languages regularly repurpose the ADT type into an enumeration type, this process seems contrived and confusing.
250Hence, there is only a weak equivalence between an enumeration and ADT, justifying a separate enumeration type in a programming language.
251
252
253\section{Contributions}
254
255The goal of this work is to to extend the simple and unsafe enumeration type in the C programming-language into a complex and safe enumeration type in the \CFA programming-language, while maintaining backwards compatibility with C.
256On the surface, enumerations seem like a simple type.
257However, when extended with advanced features, enumerations become complex for both the type system and the runtime implementation.
258
259The contribution of this work are:
260\begin{enumerate}
261\item
262overloading
263\item
264scoping
265\item
266typing
267\item
268subseting
269\item
270inheritance
271\end{enumerate}
Note: See TracBrowser for help on using the repository browser.