| 1 | \chapter{Background}
|
|---|
| 2 |
|
|---|
| 3 | \vspace*{-8pt}
|
|---|
| 4 |
|
|---|
| 5 | \CFA is a backwards-compatible extension of the C programming language, therefore, it must support C-style enumerations.
|
|---|
| 6 | The following discussion covers C enumerations.
|
|---|
| 7 |
|
|---|
| 8 | As discussed in \VRef{s:Aliasing}, it is common for C programmers to ``believe'' there are three equivalent forms of named constants.
|
|---|
| 9 | \begin{clang}
|
|---|
| 10 | #define Mon 0
|
|---|
| 11 | static const int Mon = 0;
|
|---|
| 12 | enum { Mon };
|
|---|
| 13 | \end{clang}
|
|---|
| 14 | \begin{enumerate}[leftmargin=*]
|
|---|
| 15 | \item
|
|---|
| 16 | For @#define@, the programmer has to explicitly manage the constant name and value.
|
|---|
| 17 | Furthermore, these C preprocessor macro names are outside of the C type-system and can incorrectly change random text in a program.
|
|---|
| 18 | \item
|
|---|
| 19 | The same explicit management is true for the @const@ declaration, and the @const@ variable cannot appear in constant-expression locations, like @case@ labels, array dimensions,\footnote{
|
|---|
| 20 | C allows variable-length array-declarations (VLA), so this case does work, but it fails in \CC, which does not support VLAs, unless it is \lstinline{g++}.} immediate oper\-ands of assembler instructions, and occupy storage.
|
|---|
| 21 | \begin{clang}
|
|---|
| 22 | $\$$ nm test.o
|
|---|
| 23 | 0000000000000018 r Mon
|
|---|
| 24 | \end{clang}
|
|---|
| 25 | \item
|
|---|
| 26 | Only the @enum@ form is managed by the compiler, is part of the language type-system, works in all C constant-expression locations, and normally does not occupy storage.
|
|---|
| 27 | \end{enumerate}
|
|---|
| 28 |
|
|---|
| 29 |
|
|---|
| 30 | \section{C \lstinline{const}}
|
|---|
| 31 | \label{s:Cconst}
|
|---|
| 32 |
|
|---|
| 33 | C can simulate the aliasing @const@ declarations \see{\VRef{s:Aliasing}}, with static and dynamic initialization.
|
|---|
| 34 | \begin{cquote}
|
|---|
| 35 | \begin{tabular}{@{}l@{}l@{}}
|
|---|
| 36 | \multicolumn{1}{@{}c@{}}{\textbf{static initialization}} & \multicolumn{1}{c@{}}{\textbf{dynamic intialization}} \\
|
|---|
| 37 | \begin{clang}
|
|---|
| 38 | static const int one = 0 + 1;
|
|---|
| 39 | static const void * NIL = NULL;
|
|---|
| 40 | static const double PI = 3.14159;
|
|---|
| 41 | static const char Plus = '+';
|
|---|
| 42 | static const char * Fred = "Fred";
|
|---|
| 43 | static const int Mon = 0, Tue = Mon + 1, Wed = Tue + 1,
|
|---|
| 44 | Thu = Wed + 1, Fri = Thu + 1, Sat = Fri + 1, Sun = Sat + 1;
|
|---|
| 45 | \end{clang}
|
|---|
| 46 | &
|
|---|
| 47 | \begin{clang}
|
|---|
| 48 | void foo() {
|
|---|
| 49 | // auto scope only
|
|---|
| 50 | const int r = random() % 100;
|
|---|
| 51 | int va[r];
|
|---|
| 52 | }
|
|---|
| 53 |
|
|---|
| 54 |
|
|---|
| 55 | \end{clang}
|
|---|
| 56 | \end{tabular}
|
|---|
| 57 | \end{cquote}
|
|---|
| 58 | However, statically initialized identifiers can not appear in constant-expression contexts, \eg @case@.
|
|---|
| 59 | Dynamically initialized identifiers may appear in initialization and array dimensions in @g++@, which allows variable-sized arrays on the stack.
|
|---|
| 60 | Again, this form of aliasing is not an enumeration.
|
|---|
| 61 |
|
|---|
| 62 |
|
|---|
| 63 | \section{C Enumeration}
|
|---|
| 64 | \label{s:CEnumeration}
|
|---|
| 65 |
|
|---|
| 66 | The C enumeration has the following syntax~\cite[\S~6.7.2.2]{C11}.
|
|---|
| 67 | \begin{clang}[identifierstyle=\linespread{0.9}\it]
|
|---|
| 68 | $\it enum$-specifier:
|
|---|
| 69 | enum identifier$\(_{opt}\)$ { enumerator-list }
|
|---|
| 70 | enum identifier$\(_{opt}\)$ { enumerator-list , }
|
|---|
| 71 | enum identifier
|
|---|
| 72 | enumerator-list:
|
|---|
| 73 | enumerator
|
|---|
| 74 | enumerator-list , enumerator
|
|---|
| 75 | enumerator:
|
|---|
| 76 | enumeration-constant
|
|---|
| 77 | enumeration-constant = constant-expression
|
|---|
| 78 | \end{clang}
|
|---|
| 79 | The terms \emph{enumeration} and \emph{enumerator} used in this work \see{\VRef{s:Terminology}} come from the grammar.
|
|---|
| 80 | The C enumeration semantics are discussed using examples.
|
|---|
| 81 |
|
|---|
| 82 |
|
|---|
| 83 | \subsection{Type Name}
|
|---|
| 84 | \label{s:TypeName}
|
|---|
| 85 |
|
|---|
| 86 | An \emph{unnamed} enumeration is used to provide aliasing \see{\VRef{s:Aliasing}} exactly like a @const@ declaration in other languages.
|
|---|
| 87 | However, it is restricted to integral values.
|
|---|
| 88 | \begin{clang}
|
|---|
| 89 | enum { Size = 20, Max = 10, MaxPlus10 = Max + 10, @Max10Plus1@, Fred = -7 };
|
|---|
| 90 | \end{clang}
|
|---|
| 91 | Here, the aliased constants are: 20, 10, 20, 21, and -7.
|
|---|
| 92 | Direct initialization is by a compile-time expression generating a constant value.
|
|---|
| 93 | Indirect initialization (without initialization, @Max10Plus1@) is \newterm{auto-initialized}: from left to right, starting at zero or the next explicitly initialized constant, incrementing by @1@.
|
|---|
| 94 | Because multiple independent enumerators can be combined, enumerators with the same values can occur.
|
|---|
| 95 | The enumerators are rvalues, so assignment is disallowed.
|
|---|
| 96 | Finally, enumerators are \newterm{unscoped}, \ie enumerators declared inside of an @enum@ are visible (projected) into the enclosing scope of the @enum@ type.
|
|---|
| 97 | For unnamed enumerations, this semantic is required because there is no type name for scoped qualification.
|
|---|
| 98 |
|
|---|
| 99 | As noted, this kind of aliasing declaration is not an enumeration, even though it is declared using an @enum@ in C.
|
|---|
| 100 | While the semantics is misleading, this enumeration form matches with aggregate types:
|
|---|
| 101 | \begin{cfa}
|
|---|
| 102 | typedef struct @/* unnamed */@ { ... } S;
|
|---|
| 103 | struct @/* unnamed */@ { ... } x, y, z; $\C{// questionable}$
|
|---|
| 104 | struct S {
|
|---|
| 105 | union @/* unnamed */@ { $\C{// unscoped fields}$
|
|---|
| 106 | int i; double d ; char ch;
|
|---|
| 107 | };
|
|---|
| 108 | };
|
|---|
| 109 | \end{cfa}
|
|---|
| 110 | Hence, C programmers would expect this enumeration form to exist in harmony with the aggregate form.
|
|---|
| 111 |
|
|---|
| 112 | A \emph{named} enumeration is an enumeration:
|
|---|
| 113 | \begin{clang}
|
|---|
| 114 | enum @Week@ { Mon, Tue, Wed, Thu@ = 10@, Fri, Sat, Sun };
|
|---|
| 115 | \end{clang}
|
|---|
| 116 | and adopts the same semantics with respect to direct and auto intialization.
|
|---|
| 117 | For example, @Mon@ to @Wed@ are implicitly assigned with constants @0@--@2@, @Thu@ is explicitly set to constant @10@, and @Fri@ to @Sun@ are implicitly assigned with constants @11@--@13@.
|
|---|
| 118 | As well, initialization may occur in any order.
|
|---|
| 119 | \begin{clang}
|
|---|
| 120 | enum Week {
|
|---|
| 121 | Thu@ = 10@, Fri, Sat, Sun,
|
|---|
| 122 | Mon@ = 0@, Tue, Wed@,@ $\C{// terminating comma}$
|
|---|
| 123 | };
|
|---|
| 124 | \end{clang}
|
|---|
| 125 | Note, the comma in the enumerator list can be a terminator or a separator, allowing the list to end with a dangling comma.\footnote{
|
|---|
| 126 | A terminating comma appears in other C syntax, \eg the initializer list.}
|
|---|
| 127 | This feature allow enumerator lines to be interchanged without moving a comma.
|
|---|
| 128 | Named enumerators are also unscoped.
|
|---|
| 129 |
|
|---|
| 130 |
|
|---|
| 131 | \subsection{Implementation}
|
|---|
| 132 |
|
|---|
| 133 | In theory, a C enumeration \emph{variable} is an implementation-defined integral type large enough to hold all enumerator values.
|
|---|
| 134 | In practice, C uses @int@ as the underlying type for enumeration variables, because of the restriction to integral constants, which have type @int@ (unless qualified with a size suffix).
|
|---|
| 135 |
|
|---|
| 136 |
|
|---|
| 137 | \subsection{Usage}
|
|---|
| 138 | \label{s:Usage}
|
|---|
| 139 |
|
|---|
| 140 | C proves an implicit \emph{bidirectional} conversion between an enumeration and its integral type.
|
|---|
| 141 | \begin{clang}
|
|---|
| 142 | enum Week week = Mon; $\C{// week == 0}$
|
|---|
| 143 | week = Fri; $\C{// week == 11}$
|
|---|
| 144 | int i = Sun; $\C{// implicit conversion to int, i == 13}$
|
|---|
| 145 | @week = 10000;@ $\C{// UNDEFINED! implicit conversion to Week}$
|
|---|
| 146 | \end{clang}
|
|---|
| 147 | While converting an enumerator to its underlying type is useful, the implicit conversion from the base type to an enumeration type is a common source of error.
|
|---|
| 148 |
|
|---|
| 149 | Enumerators can appear in @switch@ and looping statements.
|
|---|
| 150 | \begin{cfa}
|
|---|
| 151 | enum Week { Mon, Tue, Wed, Thu, Fri, Sat, Sun };
|
|---|
| 152 | switch ( week ) {
|
|---|
| 153 | case Mon: case Tue: case Wed: case Thu: case Fri:
|
|---|
| 154 | printf( "weekday\n" );
|
|---|
| 155 | case Sat: case Sun:
|
|---|
| 156 | printf( "weekend\n" );
|
|---|
| 157 | }
|
|---|
| 158 | for ( enum Week day = Mon; day <= Sun; day += 1 ) { // step of 1
|
|---|
| 159 | printf( "day %d\n", day ); // 0-6
|
|---|
| 160 | }
|
|---|
| 161 | \end{cfa}
|
|---|
| 162 | For iterating to make sense, the enumerator values \emph{must} have a consecutive ordering with a fixed step between values.
|
|---|
| 163 | For example, a gap introduced by @Thu = 10@, results in iterating over the values 0--13, where values 3--9 are not @Week@ values.
|
|---|
| 164 | Note, it is the bidirectional conversion that allows incrementing @day@: @day@ is converted to @int@, integer @1@ is added, and the result is converted back to @Week@ for the assignment to @day@.
|
|---|
| 165 | For safety, \CC does not support the bidirectional conversion, and hence, an unsafe cast is necessary to increment @day@: @day = (Week)(day + 1)@.
|
|---|
| 166 |
|
|---|
| 167 | There is a C idiom to automatically compute the number of enumerators in an enumeration.
|
|---|
| 168 | \begin{cfa}
|
|---|
| 169 | enum E { A, B, C, D, @N@ }; // N == 4
|
|---|
| 170 | for ( enum E e = A; e < @N@; e += 1 ) ...
|
|---|
| 171 | \end{cfa}
|
|---|
| 172 | Here, the auto-incrementing counts the number of enumerators and puts the total into the last enumerator @N@.
|
|---|
| 173 | @N@ is often used as the dimension for an array assocated with the enumeration.
|
|---|
| 174 | \begin{cfa}
|
|---|
| 175 | E array[@N@];
|
|---|
| 176 | for ( enum E e = A; e < N; e += 1 ) {
|
|---|
| 177 | array[e] = e;
|
|---|
| 178 | }
|
|---|
| 179 | \end{cfa}
|
|---|
| 180 | However, for typed enumerations, \see{\VRef{f:EumeratorTyping}}, this idiom fails.
|
|---|
| 181 |
|
|---|
| 182 | This idiom leads to another C idiom using an enumeration with matching companion information.
|
|---|
| 183 | For example, an enumeration is linked with a companion array of printable strings.
|
|---|
| 184 | \begin{cfa}
|
|---|
| 185 | enum Integral_Type { chr, schar, uschar, sshort, ushort, sint, usint, ..., NO_OF_ITYPES };
|
|---|
| 186 | char * Integral_Name[@NO_OF_ITYPES@] = {
|
|---|
| 187 | "char", "signed char", "unsigned char",
|
|---|
| 188 | "signed short int", "unsigned short int",
|
|---|
| 189 | "signed int", "unsigned int", ...
|
|---|
| 190 | };
|
|---|
| 191 | enum Integral_Type integral_type = ...
|
|---|
| 192 | printf( "%s\n", Integral_Name[@integral_type@] ); // human readable type name
|
|---|
| 193 | \end{cfa}
|
|---|
| 194 | However, the companion idiom results in the \emph{harmonizing} problem because an update to the enumeration @Integral_Type@ often requires a corresponding update to the companion array \snake{Integral_Name}.
|
|---|
| 195 | The need to harmonize is at best indicated by a comment before the enumeration.
|
|---|
| 196 | This issue is exacerbated if enumeration and companion array are in different translation units.
|
|---|
| 197 |
|
|---|
| 198 | \bigskip
|
|---|
| 199 | While C provides a true enumeration, it is restricted, has unsafe semantics, and does provide useful enumeration features in other programming languages.
|
|---|