1 | \chapter{Background}
|
---|
2 |
|
---|
3 | \vspace*{-8pt}
|
---|
4 |
|
---|
5 | \CFA is a backwards-compatible extension of the C programming language, therefore, it must support C-style enumerations.
|
---|
6 | The following discussion covers C enumerations.
|
---|
7 |
|
---|
8 | As discussed in \VRef{s:Aliasing}, it is common for C programmers to ``believe'' there are three equivalent forms of named constants.
|
---|
9 | \begin{clang}
|
---|
10 | #define Mon 0
|
---|
11 | static const int Mon = 0;
|
---|
12 | enum { Mon };
|
---|
13 | \end{clang}
|
---|
14 | \begin{enumerate}[leftmargin=*]
|
---|
15 | \item
|
---|
16 | For @#define@, the programmer has to explicitly manage the constant name and value.
|
---|
17 | Furthermore, these C preprocessor macro names are outside of the C type-system and can incorrectly change random text in a program.
|
---|
18 | \item
|
---|
19 | The same explicit management is true for the @const@ declaration, and the @const@ variable cannot appear in constant-expression locations, like @case@ labels, array dimensions,\footnote{
|
---|
20 | C allows variable-length array-declarations (VLA), so this case does work, but it fails in \CC, which does not support VLAs, unless it is \lstinline{g++}.} immediate oper\-ands of assembler instructions, and occupy storage.
|
---|
21 | \begin{clang}
|
---|
22 | $\$$ nm test.o
|
---|
23 | 0000000000000018 r Mon
|
---|
24 | \end{clang}
|
---|
25 | \item
|
---|
26 | Only the @enum@ form is managed by the compiler, is part of the language type-system, works in all C constant-expression locations, and normally does not occupy storage.
|
---|
27 | \end{enumerate}
|
---|
28 |
|
---|
29 |
|
---|
30 | \section{C \lstinline{const}}
|
---|
31 | \label{s:Cconst}
|
---|
32 |
|
---|
33 | C can simulate the aliasing @const@ declarations \see{\VRef{s:Aliasing}}, with static and dynamic initialization.
|
---|
34 | \begin{cquote}
|
---|
35 | \begin{tabular}{@{}l@{}l@{}}
|
---|
36 | \multicolumn{1}{@{}c@{}}{\textbf{static initialization}} & \multicolumn{1}{c@{}}{\textbf{dynamic intialization}} \\
|
---|
37 | \begin{clang}
|
---|
38 | static const int one = 0 + 1;
|
---|
39 | static const void * NIL = NULL;
|
---|
40 | static const double PI = 3.14159;
|
---|
41 | static const char Plus = '+';
|
---|
42 | static const char * Fred = "Fred";
|
---|
43 | static const int Mon = 0, Tue = Mon + 1, Wed = Tue + 1,
|
---|
44 | Thu = Wed + 1, Fri = Thu + 1, Sat = Fri + 1, Sun = Sat + 1;
|
---|
45 | \end{clang}
|
---|
46 | &
|
---|
47 | \begin{clang}
|
---|
48 | void foo() {
|
---|
49 | // auto scope only
|
---|
50 | const int r = random() % 100;
|
---|
51 | int va[r];
|
---|
52 | }
|
---|
53 |
|
---|
54 |
|
---|
55 | \end{clang}
|
---|
56 | \end{tabular}
|
---|
57 | \end{cquote}
|
---|
58 | However, statically initialized identifiers can not appear in constant-expression contexts, \eg @case@.
|
---|
59 | Dynamically initialized identifiers may appear in initialization and array dimensions in @g++@, which allows variable-sized arrays on the stack.
|
---|
60 | Again, this form of aliasing is not an enumeration.
|
---|
61 |
|
---|
62 |
|
---|
63 | \section{C Enumeration}
|
---|
64 | \label{s:CEnumeration}
|
---|
65 |
|
---|
66 | The C enumeration has the following syntax~\cite[\S~6.7.2.2]{C11}.
|
---|
67 | \begin{clang}[identifierstyle=\linespread{0.9}\it]
|
---|
68 | $\it enum$-specifier:
|
---|
69 | enum identifier$\(_{opt}\)$ { enumerator-list }
|
---|
70 | enum identifier$\(_{opt}\)$ { enumerator-list , }
|
---|
71 | enum identifier
|
---|
72 | enumerator-list:
|
---|
73 | enumerator
|
---|
74 | enumerator-list , enumerator
|
---|
75 | enumerator:
|
---|
76 | enumeration-constant
|
---|
77 | enumeration-constant = constant-expression
|
---|
78 | \end{clang}
|
---|
79 | The terms \emph{enumeration} and \emph{enumerator} used in this work \see{\VRef{s:Terminology}} come from the grammar.
|
---|
80 | The C enumeration semantics are discussed using examples.
|
---|
81 |
|
---|
82 |
|
---|
83 | \subsection{Type Name}
|
---|
84 | \label{s:TypeName}
|
---|
85 |
|
---|
86 | An \emph{unnamed} enumeration is used to provide aliasing \see{\VRef{s:Aliasing}} exactly like a @const@ declaration in other languages.
|
---|
87 | However, it is restricted to integral values.
|
---|
88 | \begin{clang}
|
---|
89 | enum { Size = 20, Max = 10, MaxPlus10 = Max + 10, @Max10Plus1@, Fred = -7 };
|
---|
90 | \end{clang}
|
---|
91 | Here, the aliased constants are: 20, 10, 20, 21, and -7.
|
---|
92 | Direct initialization is by a compile-time expression generating a constant value.
|
---|
93 | Indirect initialization (without initialization, @Max10Plus1@) is \newterm{auto-initialized}: from left to right, starting at zero or the next explicitly initialized constant, incrementing by @1@.
|
---|
94 | Because multiple independent enumerators can be combined, enumerators with the same values can occur.
|
---|
95 | The enumerators are rvalues, so assignment is disallowed.
|
---|
96 | Finally, enumerators are \newterm{unscoped}, \ie enumerators declared inside of an @enum@ are visible (projected) into the enclosing scope of the @enum@ type.
|
---|
97 | For unnamed enumerations, this semantic is required because there is no type name for scoped qualification.
|
---|
98 |
|
---|
99 | As noted, this kind of aliasing declaration is not an enumeration, even though it is declared using an @enum@ in C.
|
---|
100 | While the semantics is misleading, this enumeration form matches with aggregate types:
|
---|
101 | \begin{cfa}
|
---|
102 | typedef struct @/* unnamed */@ { ... } S;
|
---|
103 | struct @/* unnamed */@ { ... } x, y, z; $\C{// questionable}$
|
---|
104 | struct S {
|
---|
105 | union @/* unnamed */@ { $\C{// unscoped fields}$
|
---|
106 | int i; double d ; char ch;
|
---|
107 | };
|
---|
108 | };
|
---|
109 | \end{cfa}
|
---|
110 | Hence, C programmers would expect this enumeration form to exist in harmony with the aggregate form.
|
---|
111 |
|
---|
112 | A \emph{named} enumeration is an enumeration:
|
---|
113 | \begin{clang}
|
---|
114 | enum @Week@ { Mon, Tue, Wed, Thu@ = 10@, Fri, Sat, Sun };
|
---|
115 | \end{clang}
|
---|
116 | and adopts the same semantics with respect to direct and auto intialization.
|
---|
117 | For example, @Mon@ to @Wed@ are implicitly assigned with constants @0@--@2@, @Thu@ is explicitly set to constant @10@, and @Fri@ to @Sun@ are implicitly assigned with constants @11@--@13@.
|
---|
118 | As well, initialization may occur in any order.
|
---|
119 | \begin{clang}
|
---|
120 | enum Week {
|
---|
121 | Thu@ = 10@, Fri, Sat, Sun,
|
---|
122 | Mon@ = 0@, Tue, Wed@,@ $\C{// terminating comma}$
|
---|
123 | };
|
---|
124 | \end{clang}
|
---|
125 | Note, the comma in the enumerator list can be a terminator or a separator, allowing the list to end with a dangling comma.\footnote{
|
---|
126 | A terminating comma appears in other C syntax, \eg the initializer list.}
|
---|
127 | This feature allow enumerator lines to be interchanged without moving a comma.
|
---|
128 | Named enumerators are also unscoped.
|
---|
129 |
|
---|
130 |
|
---|
131 | \subsection{Implementation}
|
---|
132 |
|
---|
133 | In theory, a C enumeration \emph{variable} is an implementation-defined integral type large enough to hold all enumerator values.
|
---|
134 | In practice, C uses @int@ as the underlying type for enumeration variables, because of the restriction to integral constants, which have type @int@ (unless qualified with a size suffix).
|
---|
135 |
|
---|
136 |
|
---|
137 | \subsection{Usage}
|
---|
138 | \label{s:Usage}
|
---|
139 |
|
---|
140 | C proves an implicit \emph{bidirectional} conversion between an enumeration and its integral type.
|
---|
141 | \begin{clang}
|
---|
142 | enum Week week = Mon; $\C{// week == 0}$
|
---|
143 | week = Fri; $\C{// week == 11}$
|
---|
144 | int i = Sun; $\C{// implicit conversion to int, i == 13}$
|
---|
145 | @week = 10000;@ $\C{// UNDEFINED! implicit conversion to Week}$
|
---|
146 | \end{clang}
|
---|
147 | While converting an enumerator to its underlying type is useful, the implicit conversion from the base type to an enumeration type is a common source of error.
|
---|
148 |
|
---|
149 | Enumerators can appear in @switch@ and looping statements.
|
---|
150 | \begin{cfa}
|
---|
151 | enum Week { Mon, Tue, Wed, Thu, Fri, Sat, Sun };
|
---|
152 | switch ( week ) {
|
---|
153 | case Mon: case Tue: case Wed: case Thu: case Fri:
|
---|
154 | printf( "weekday\n" );
|
---|
155 | case Sat: case Sun:
|
---|
156 | printf( "weekend\n" );
|
---|
157 | }
|
---|
158 | for ( enum Week day = Mon; day <= Sun; day += 1 ) { // step of 1
|
---|
159 | printf( "day %d\n", day ); // 0-6
|
---|
160 | }
|
---|
161 | \end{cfa}
|
---|
162 | For iterating to make sense, the enumerator values \emph{must} have a consecutive ordering with a fixed step between values.
|
---|
163 | For example, a gap introduced by @Thu = 10@, results in iterating over the values 0--13, where values 3--9 are not @Week@ values.
|
---|
164 | Note, it is the bidirectional conversion that allows incrementing @day@: @day@ is converted to @int@, integer @1@ is added, and the result is converted back to @Week@ for the assignment to @day@.
|
---|
165 | For safety, \CC does not support the bidirectional conversion, and hence, an unsafe cast is necessary to increment @day@: @day = (Week)(day + 1)@.
|
---|
166 |
|
---|
167 | There is a C idiom to automatically compute the number of enumerators in an enumeration.
|
---|
168 | \begin{cfa}
|
---|
169 | enum E { A, B, C, D, @N@ }; // N == 4
|
---|
170 | for ( enum E e = A; e < @N@; e += 1 ) ...
|
---|
171 | \end{cfa}
|
---|
172 | Here, the auto-incrementing counts the number of enumerators and puts the total into the last enumerator @N@.
|
---|
173 | @N@ is often used as the dimension for an array assocated with the enumeration.
|
---|
174 | \begin{cfa}
|
---|
175 | E array[@N@];
|
---|
176 | for ( enum E e = A; e < N; e += 1 ) {
|
---|
177 | array[e] = e;
|
---|
178 | }
|
---|
179 | \end{cfa}
|
---|
180 | However, for typed enumerations, \see{\VRef{f:EumeratorTyping}}, this idiom fails.
|
---|
181 |
|
---|
182 | This idiom leads to another C idiom using an enumeration with matching companion information.
|
---|
183 | For example, an enumeration is linked with a companion array of printable strings.
|
---|
184 | \begin{cfa}
|
---|
185 | enum Integral_Type { chr, schar, uschar, sshort, ushort, sint, usint, ..., NO_OF_ITYPES };
|
---|
186 | char * Integral_Name[@NO_OF_ITYPES@] = {
|
---|
187 | "char", "signed char", "unsigned char",
|
---|
188 | "signed short int", "unsigned short int",
|
---|
189 | "signed int", "unsigned int", ...
|
---|
190 | };
|
---|
191 | enum Integral_Type integral_type = ...
|
---|
192 | printf( "%s\n", Integral_Name[@integral_type@] ); // human readable type name
|
---|
193 | \end{cfa}
|
---|
194 | However, the companion idiom results in the \emph{harmonizing} problem because an update to the enumeration @Integral_Type@ often requires a corresponding update to the companion array \snake{Integral_Name}.
|
---|
195 | The need to harmonize is at best indicated by a comment before the enumeration.
|
---|
196 | This issue is exacerbated if enumeration and companion array are in different translation units.
|
---|
197 |
|
---|
198 | \bigskip
|
---|
199 | While C provides a true enumeration, it is restricted, has unsafe semantics, and does provide useful enumeration features in other programming languages.
|
---|