source: doc/theses/jiada_liang_MMath/background.tex @ 3733643

Last change on this file since 3733643 was 29c8675, checked in by JiadaL <j82liang@…>, 6 weeks ago

update thesis

  • Property mode set to 100644
File size: 24.8 KB
Line 
1\chapter{Background}
2
3This chapter covers background material for C enumerations and \CFA features used in later discussions.
4
5
6\section{C}
7
8As mentioned in \VRef{s:Aliasing}, it is common for C programmers to believe there are three equivalent forms of named constants.
9\begin{clang}
10#define Mon 0
11static const int Mon = 0;
12enum { Mon };
13\end{clang}
14\begin{enumerate}[leftmargin=*]
15\item
16For @#define@, the programmer must explicitly manage the constant name and value.
17Furthermore, these C preprocessor macro names are outside the C type system and can unintentionally change semantics of a program.
18\item
19The same explicit management is true for the @const@ declaration, and the @const@ variable cannot appear in constant-expression locations, like @case@ labels, array dimensions,\footnote{
20C allows variable-length array declarations (VLA), so this case does work. Still, it fails in \CC, which does not support VLAs, unless it is \lstinline{g++}.} immediate oper\-ands of assembler instructions and occupies storage.
21\begin{clang}
22$\$$ nm test.o
230000000000000018 r Mon
24\end{clang}
25\item
26Only the @enum@ form is managed by the compiler, is part of the language type-system, works in all C constant-expression locations, and does not occupy storage.
27\end{enumerate}
28
29
30\subsection{C \texorpdfstring{\lstinline{const}}{const}}
31\label{s:Cconst}
32
33C can simulate the aliasing @const@ declarations \see{\VRef{s:Aliasing}}, with static and dynamic initialization.
34\begin{cquote}
35\begin{tabular}{@{}ll@{}}
36\multicolumn{1}{@{}c}{\textbf{static initialization}} &  \multicolumn{1}{c@{}}{\textbf{dynamic initialization}} \\
37\begin{clang}
38static const int one = 0 + 1;
39static const void * NIL = NULL;
40static const double PI = 3.14159;
41static const char Plus = '+';
42static const char * Fred = "Fred";
43static const int Mon = 0, Tue = Mon + 1, Wed = Tue + 1,
44        Thu = Wed + 1, Fri = Thu + 1, Sat = Fri + 1, Sun = Sat + 1;
45\end{clang}
46&
47\begin{clang}
48void foo() {
49        // auto scope only
50        const int r = random() % 100;
51        int va[r];
52}
53\end{clang}
54\end{tabular}
55\end{cquote}
56However, statically initialized identifiers cannot appear in constant-expression contexts, \eg @case@.
57Dynamically initialized identifiers may appear in initialization and array dimensions, which allows variable-sized arrays on the stack.
58Again, this form of aliasing is not an enumeration.
59
60
61\subsection{C Enumeration}
62\label{s:CEnumeration}
63
64The C enumeration has the following syntax~\cite[\S~6.7.2.2]{C11}.
65\begin{clang}[identifierstyle=\linespread{0.9}\it]
66$\it enum$-specifier:
67        enum identifier$\(_{opt}\)$ { enumerator-list }
68        enum identifier$\(_{opt}\)$ { enumerator-list , }
69        enum identifier
70enumerator-list:
71        enumerator
72        enumerator-list , enumerator
73enumerator:
74        enumeration-constant
75        enumeration-constant = constant-expression
76\end{clang}
77The terms \emph{enumeration} and \emph{enumerator} used in this work \see{\VRef{s:Terminology}} come from the grammar.
78The C enumeration semantics are discussed using examples.
79
80
81\subsubsection{Type Name}
82\label{s:TypeName}
83
84An \emph{unnamed} enumeration is used to provide aliasing \see{\VRef{s:Aliasing}} exactly like a @const@ declaration in other languages.
85However, it is restricted to integral values.
86\begin{clang}
87enum { Size = 20, Max = 10, MaxPlus10 = Max + 10, @Max10Plus1@, Fred = -7 };
88\end{clang}
89Here, the aliased constants are 20, 10, 20, 21, and -7.
90Direct initialization is achieved by a compile-time expression that generates a constant value.
91Indirect initialization (without an initializer, @Max10Plus1@) is called \newterm{auto-initialization}, where enumerators are assigned values from left to right, starting at zero or the next explicitly initialized constant, incrementing by @1@.
92Because multiple independent enumerators can be combined, enumerators with the same values can occur.
93The enumerators are @rvalues@, so the assignment is disallowed.
94Finally, enumerators are \newterm{unscoped}, \ie enumerators declared inside of an @enum@ are visible (projected) outside into the enclosing scope of the @enum@ type.
95This semantic is required for unnamed enumerations because there is no type name for scoped qualification.
96
97As noted, this aliasing declaration is not an enumeration, even though it is declared using an @enum@ in C.
98While the semantics is misleading, this enumeration form matches with aggregate types:
99\begin{cfa}
100typedef struct @/* unnamed */@  { ... } S;
101struct @/* unnamed */@  { ... } x, y, z;        $\C{// questionable}$
102struct S {
103        union @/* unnamed */@ {                                 $\C{// unscoped fields}$
104                int i;  double d ;  char ch;
105        };
106};
107\end{cfa}
108Hence, C programmers would expect this enumeration form to exist in harmony with the aggregate form.
109
110A \emph{named} enumeration is an enumeration:
111\begin{clang}
112enum @Week@ { Mon, Tue, Wed, Thu@ = 10@, Fri, Sat, Sun };
113\end{clang}
114and adopts the same semantics as direct and auto initialization.
115For example, @Mon@ to @Wed@ are implicitly assigned with constants @0@--@2@, @Thu@ is explicitly set to constant @10@, and @Fri@ to @Sun@ are implicitly assigned with constants @11@--@13@.
116As well, initialization may occur in any order.
117\begin{clang}
118enum Week {
119        Thu@ = 10@, Fri, Sat, Sun,
120        Mon@ = 0@, Tue, Wed@,@                  $\C{// terminating comma}$
121};
122\end{clang}
123Note the comma in the enumerator list can be a terminator or a separator, allowing the list to end with a dangling comma.\footnote{
124A terminating comma appears in other C syntax, \eg the initializer list.}
125This feature allows enumerator lines to be interchanged without moving a comma.
126Named enumerators are also unscoped.
127
128
129\subsubsection{Implementation}
130\label{s:CenumImplementation}
131
132Theoretically, a C enumeration \emph{variable} is an implementation-defined integral type large enough to hold all enumerator values.
133In practice, C defines @int@~\cite[\S~6.4.4.3]{C11} as the underlying type for enumeration variables, restricting initialization to integral constants, which have type @int@ (unless qualified with a size suffix).
134According to the C standard, type @int@ is defined as the following:
135\begin{quote}
136A ``plain'' @int@ object has the natural size suggested by the architecture of the execution environment (large enough to contain any value in the range @INT_MIN@ to @INT_MAX@ as defined in the header @<limits.h>@).~\cite[\S~6.2.5(5)]{C11}
137\end{quote}
138However, @int@ means 4 bytes on both 32/64-bit architectures, which does not seem like the ``natural'' size for a 64-bit architecture.
139% Whereas @long int@ means 4 bytes on a 32-bit and 8 bytes on 64-bit architectures, and @long long int@ means 8 bytes on both 32/64-bit architectures, where 64-bit operations are simulated on 32-bit architectures.
140\VRef[Figure]{f:gccEnumerationStorageSize} shows both @gcc@ and @clang@ partially ignore this specification and type the integral size of an enumerator based on its initialization.
141Hence, initialization in the range @INT_MIN@..@INT_MAX@ results in a 4-byte enumerator, and outside this range, the enumerator is 8 bytes.
142Note that @sizeof( typeof( IMin ) ) != sizeof( E )@, making the size of an enumerator different than its containing enumeration type, which seems inconsistent.
143
144\begin{figure}
145\begin{cfa}
146enum E { IMin = INT_MIN, IMax = INT_MAX,
147                         ILMin = LONG_MIN, ILMax = LONG_MAX,
148                         ILLMin = LLONG_MIN, ILLMax = LLONG_MAX };
149int main() {
150        printf( "%zd %zd\n%zd %zd\n%zd %d %d\n%zd %ld %ld\n%zd %ld %ld\n",
151                        sizeof(enum E), sizeof(typeof(IMin)),
152                        sizeof(int), sizeof(long int),
153                        sizeof(IMin), IMin, IMax,
154                        sizeof(ILMin), ILMin, ILMax,
155                        sizeof(ILLMin), ILLMin, ILLMax );
156}
1578 4
1584 8
1594 -2147483648 2147483647
1608 -9223372036854775808 9223372036854775807
1618 -9223372036854775808 9223372036854775807
162\end{cfa}
163\caption{\lstinline{gcc}/\lstinline{clang} Enumeration Storage Size}
164\label{f:gccEnumerationStorageSize}
165\end{figure}
166
167
168\subsubsection{Usage}
169\label{s:Usage}
170
171C proves an implicit \emph{bidirectional} conversion between an enumeration and its integral type and between different enumerations.
172\begin{clang}
173enum Week week = Mon;                           $\C{// week == 0}$
174week = Fri;                                                     $\C{// week == 11}$
175int i = Sun;                                            $\C{// implicit conversion to int, i == 13}$
176@week = 10000;@                                         $\C{// UNDEFINED! implicit conversion to Week}$
177
178enum Season { Spring, Summer, Fall, Winter };
179@week = Winter;@                                        $\C{// UNDEFINED! implicit conversion to Week}$
180\end{clang}
181While converting an enumerator to its underlying type is sound, the implicit conversion from the base or another enumeration type to an enumeration is a common source of error.
182
183Enumerators can appear in @switch@ and looping statements.
184\begin{cfa}
185enum Week { Mon, Tue, Wed, Thu, Fri, Sat, Sun };
186switch ( week ) {
187        case Mon ... Fri:                               $\C{// gcc case range}$
188                printf( "weekday\n" );
189        case Sat: case Sun:
190                printf( "weekend\n" );
191}
192for ( enum Week day = Mon; day <= Sun; day += 1 ) { $\C{// step of 1}$
193        printf( "day %d\n", day ); // 0-6
194}
195\end{cfa}
196For iterating using arithmetic to make sense, the enumerator values \emph{must} have a consecutive ordering with a fixed step between values.
197For example, a previous gap introduced by @Thu = 10@ results in iterating over the values 0--13, where values 3--9 are not @Week@ values.
198Note that the bidirectional conversion allows incrementing @day@: @day@ is converted to @int@, integer @1@ is added, and the result is converted back to @Week@ for the assignment to @day@.
199For safety, \CC does not support the bidirectional conversion, and hence, an unsafe cast is necessary to increment @day@: @day = (Week)(day + 1)@.
200
201There is a C idiom that computes the number of enumerators in an enumeration automatically.
202\begin{cfa}
203enum E { A, B, C, D, @N@ };  // N == 4
204for ( enum E e = A; e < @N@; e += 1 ) ...
205\end{cfa}
206Serendipitously, the auto-incrementing counts the number of enumerators and puts the total into the last enumerator @N@.
207This @N@ is often used as the dimension for an array associated with the enumeration.
208\begin{cfa}
209E array[@N@];
210for ( enum E e = A; e < N; e += 1 ) {
211        array[e] = e;
212}
213\end{cfa}
214However, for non-consecutive ordering and non-integral typed enumerations, \see{\VRef{f:EumeratorTyping}}, this idiom fails.
215
216This idiom is often used with another C idiom for matching companion information.
217For example, an enumeration may be linked with a companion array of printable strings.
218\begin{cfa}
219enum Integral_Type { chr, schar, uschar, sshort, ushort, sint, usint, ..., NO_OF_ITYPES };
220char * Integral_Name[@NO_OF_ITYPES@] = {
221        "char", "signed char", "unsigned char",
222        "signed short int", "unsigned short int",
223        "signed int", "unsigned int", ...
224};
225enum Integral_Type @integral_type@ = ...
226printf( "%s\n", Integral_Name[@integral_type@] ); // human readable type name
227\end{cfa}
228However, the companion idiom results in the \emph{harmonizing} problem because an update to the enumeration @Integral_Type@ often requires a corresponding update to the companion array \snake{Integral_Name}.
229The requirement to harmonize is, at best, indicated by a comment before the enumeration.
230This issue is exacerbated if enumeration and companion array are in different translation units.
231
232\bigskip
233While C provides a true enumeration, it is restricted, has unsafe semantics, and does not provide helpful/advanced enumeration features in other programming languages.
234
235
236\section{\texorpdfstring{\CFA}{Cforall}}
237
238\CFA in \emph{not} an object-oriented programming language, \ie functions cannot be nested in aggregate types, and hence, there is no \newterm{receiver} notation for calling functions, \eg @obj.method(...)@, where the first argument proceeds the call and becomes an implicit first (\lstinline[language=C++]{this}) parameter.
239The following sections provide short descriptions of \CFA features needed further in the thesis.
240Other \CFA features are presented in situ with short or no explanation because the feature is obvious to C programmers.
241
242
243\subsection{Overloading}
244
245Overloading allows programmers to use the most meaningful names without fear of name clashes within a program or from external sources like included files.
246\begin{quote}
247There are only two hard things in Computer Science: cache invalidation and naming things. --- Phil Karlton
248\end{quote}
249Experience from \CC and \CFA developers is that the type system implicitly and correctly disambiguates the majority of overloaded names, \ie it is rare to get an incorrect selection or ambiguity, even among hundreds of overloaded (variables and) functions.
250In many cases, a programmer has no idea there are name clashes, as they are silently resolved, simplifying the development process.
251Depending on the language, ambiguous cases are resolved using some form of qualification and/or casting.
252
253
254\subsection{Operator Overloading}
255
256Virtually all programming languages overload the arithmetic operators across the basic types using the number and type of parameters and returns.
257Like \CC, \CFA also allows these operators to be overloaded with user-defined types.
258The syntax for operator names uses the @'?'@ character to denote a parameter, \eg unary operators: @?++@, @++?@, binary operator @?+?@.
259\begin{cfa}
260struct S { int i, j };
261S @?+?@( S op1, S op2 ) { return (S){ op1.i + op2.i, op1.j + op2.j }; }
262S s1, s2;
263s1 = s1 @+@ s2;                 $\C[1.75in]{// infix call}$
264s1 = @?+?@( s1, s2 );   $\C{// direct call}\CRT$
265\end{cfa}
266The type system examines each call size and selects the best matching overloaded function based on the number and types of arguments.
267If there are mixed-mode operands, @2 + 3.5@, the type system, like in C/\CC, attempts (safe) conversions, converting the argument type(s) to the parameter type(s).
268
269
270\subsection{Function Overloading}
271
272Both \CFA and \CC allow function names to be overloaded as long as their prototypes differ in the number and type of parameters and returns.
273\begin{cfa}
274void f( void );                 $\C[1.75in]{// (1): no parameter}$
275void f( char );                 $\C{// (2): overloaded on the number and parameter type}$
276void f( int, int );             $\C{// (3): overloaded on the number and parameter type}$
277f( 'A' );                               $\C{// select (2)}\CRT$
278\end{cfa}
279In this case, the name @f@ is overloaded depending on the number and parameter types.
280The type system examines each call size and selects the best match based on the number and types of arguments.
281Here, the call @f( 'A' )@ is a perfect match for the number and parameter type of function (2).
282
283Ada, Scala, and \CFA type-systems also use the return type to pinpoint the best-overloaded name in resolving a call.
284\begin{cfa}
285int f( void );                  $\C[1.75in]{// (4); overloaded on return type}$
286double f( void );               $\C{// (5); overloaded on return type}$
287int i = f();                    $\C{// select (4)}$
288double d = f();                 $\C{// select (5)}\CRT$
289\end{cfa}
290
291
292\subsection{Variable Overloading}
293Unlike almost all programming languages, \CFA has variable overloading within a scope, along with shadow overloading in nested scopes.
294\begin{cfa}
295void foo( double d );
296int v;                              $\C[1.75in]{// (1)}$
297double v;                               $\C{// (2) variable overloading}$
298foo( v );                               $\C{// select (2)}$
299{
300        int v;                          $\C{// (3) shadow overloading}$
301        double v;                       $\C{// (4) and variable overloading}$
302        foo( v );                       $\C{// select (4)}\CRT$
303}
304\end{cfa}
305The \CFA type system treats overloaded variables as an overloaded function returning a value with no parameters.
306Hence, no significant effort is required to support this feature.
307
308
309\subsection{Constructor and Destructor}
310
311While \CFA is not object-oriented, it adopts many language features commonly used in object-oriented languages;
312these features are independent of object-oriented programming.
313
314All objects in \CFA are initialized by @constructors@ \emph{after} allocation and de-initialized \emph{before} deallocation.
315\CC cannot have constructors for basic types because they have no aggregate type \lstinline[language=C++]{struct/class} in which to insert a constructor definition.
316Like \CC, \CFA has multiple auto-generated constructors for every type.
317
318The prototype for the constructor/destructor are @void ?{}( T &, ... )@ and @void ^?{}( T &, ... )@, respectively.
319The first parameter is logically the \lstinline[language=C++]{this} or \lstinline[language=Python]{self} in other object-oriented languages and implicitly passed.
320\VRef[Figure]{f:CFAConstructorDestructor} shows an example of creating and using a constructor and destructor.
321Both constructor and destructor can be explicitly called to reuse a variable.
322
323\begin{figure}
324\begin{cfa}
325struct Employee {
326        char * name;
327        double salary;
328};
329void @?{}@( Employee & emp, char * nname, double nsalary ) with( emp ) { // auto qualification
330        name = aalloc( sizeof(nname) );
331        strcpy( name, nname );
332        salary = nsalary;
333}
334void @^?{}@( Employee & emp ) {
335        free( emp.name );
336}
337{
338        Employee emp = { "Sara Schmidt", 20.5 }; $\C{// initialize with implicit constructor call}$
339        ... // use emp
340        ^?{}( emp ); $\C{// explicit de-initialize}$
341        ?{}( emp, "Jack Smith", 10.5 ); $\C{// explicit re-initialize}$
342        ... // use emp
343} $\C{// de-initialize with implicit destructor call}$
344\end{cfa}
345\caption{\CFA Constructor and Destructor}
346\label{f:CFAConstructorDestructor}
347\end{figure}
348
349
350\subsection{Special Literals}
351
352The C constants @0@ and @1@ have special meaning.
353@0@ is the null pointer and is used in conditional expressions, where @if ( p )@ is rewritten @if ( p != 0 )@;
354@1@ is an additive identity in unary operators @++@ and @--@.
355Aware of their significance, \CFA provides a special type @zero_t@ and @one_t@ for custom types.
356\begin{cfa}
357struct S { int i, j; };
358void ?{}( S & this, @zero_t@ ) { this.i = 0; this.j = 0; } // zero_t, no parameter name allowed
359int ?@!=@?( S this, @zero_t@ ) { return this.i != 0 && this.j != 0; }
360S s = @0@;
361if ( s @!= 0@ ) ...
362\end{cfa}
363Similarity, for @one_t@.
364\begin{cfa}
365void ?{}( S & this, @one_t@ ) { this.i = 1; this.j = 1; } // one_t, no parameter name allowed
366S & ?++( S & this, @one_t@ ) { return (S){ this.i++, this.j++ }; }
367\end{cfa}
368
369
370\subsection{Polymorphic Functions}
371
372Polymorphic functions are the functions that apply to all types.
373\CFA provides \newterm{parametric polymorphism} written with the @forall@ clause.
374\begin{cfa}
375@forall( T )@ T identity( T v ) { return v; }
376identity( 42 );
377\end{cfa}
378The @identity@ function accepts a value from any type as an argument and returns that value.
379At the call size, the type parameter @T@ is bounded to @int@ from the argument @42@.
380
381For polymorphic functions to be useful, the @forall@ clause needs \newterm{type assertion}s that restrict the polymorphic types it accepts.
382\begin{cfa}
383forall( T @| { void foo( T ); }@ ) void bar( T t ) { @foo( t );@ }
384struct S { ... } s;
385void foo( struct S );
386bar( s );
387\end{cfa}
388The assertion on @T@ restricts the range of types that can be manipulated by @bar@ to only those that implement @foo@ with the matching signature, allowing @bar@'s call to @foo@ in its body.
389Unlike templates in \CC, which are macro expansions at the call site, \CFA polymorphic functions are compiled, passing the call-site assertion functions as hidden parameters.
390
391
392\subsection{Trait}
393
394A @forall@ clause can assert many restrictions on multiple types.
395A common practice is refactoring the assertions into a named \newterm{trait}, similar to other languages like Go and Rust.
396\begin{cfa}
397forall(T) trait @Bird@ {
398        int days_can_fly( T );
399        void fly( T );
400};
401forall( B | @Bird@( B ) )
402void bird_fly( int days_since_born, B bird ) {
403        if ( days_since_born > days_can_fly( bird )) fly( bird );
404}
405struct Robin {} robin;
406int days_can_fly( Robin robin ) { return 23; }
407void fly( Robin robin ) {}
408bird_fly( 23, robin );
409\end{cfa}
410Grouping type assertions into a named trait effectively creates a reusable interface for parametric polymorphic types.
411
412
413\section{Expression Resolution}
414
415Overloading poses a challenge for all expression-resolution systems.
416Multiple overloaded names give multiple candidates at a call site, and a resolver must pick a \emph{best} match, where ``best'' is defined by a series of heuristics based on safety and programmer intuition/expectation.
417When multiple best matches exist, the resolution is ambiguous.
418
419The \CFA resolver attempts to identify the best candidate based on: first, the number of parameters and types, and second, when no exact match exists, the fewest implicit conversions and polymorphic variables.
420Finding an exact match is not discussed here, because the mechanism is fairly straightforward, even when the search space is ample;
421only finding a non-exact match is discussed in detail.
422
423
424\subsection{Conversion Cost}
425\label{s:ConversionCost}
426
427Most programming languages perform some implicit conversions among basic types to facilitate mixed-mode arithmetic;
428otherwise, the program becomes littered with many explicit casts which do not match the programmer's expectations.
429C is an aggressive language, providing conversions among almost all basic types, even when the conversion is potentially unsafe or not meaningful, \ie @float@ to @bool@.
430C defines the resolution pattern as ``usual arithmetic conversion''~\cite[\S~6.3.1.8]{C11}, in which C looks for a \newterm{common type} between operands, and converts one or both operands to the common type.
431A common type is the smallest type in terms of the size of representation that both operands can be converted into without losing their precision, called a \newterm{widening} or \newterm{safe conversion}.
432
433\CFA generalizes ``usual arithmetic conversion'' to \newterm{conversion cost}.
434In the first design by Bilson~\cite{Bilson03}, conversion cost is a 3-tuple, @(unsafe, poly, safe)@ applied between each argument/parameter type, where:
435\begin{enumerate}
436\item
437@unsafe@ is the number of precision losing (\newterm{narrowing} conversions),
438\item
439@poly@ is the number of polymorphic function parameters, and
440\item
441@safe@ is the sum of the degree of safe (widening) conversions.
442\end{enumerate}
443Sum of degree is a method to quantify C's integer and floating-point rank.
444Every pair of widening conversion types is assigned a \newterm{distance}, and the distance between the two same types is 0.
445For example, the distance from @char@ to @int@ is 2, from @int@ to @long@ is 1, and from @int@ to @long long int@ is 2.
446This distance does not mirror C's rank system.
447For example, the @char@ and @signed char@ ranks are the same in C, but the distance from @char@ to @signed char@ is assigned 1.
448@safe@ cost is summing all pairs of arguments to parameter safe conversion distances.
449Among the three costs in Bilson's model, @unsafe@ is the most significant cost, and @safe@ is the least significant, implying that \CFA always chooses a candidate with the lowest @unsafe@, if possible.
450
451For example, assume the overloaded function @foo@ is called with two @int@ parameters.
452The cost for every overloaded @foo@ has been listed along with the following:
453\begin{cfa}
454void foo( char, char );                         $\C[2.5in]{// (1) (2, 0, 0)}$
455void foo( char, int );                          $\C{// (2) (1, 0, 0)}$
456forall( T, V ) void foo( T, V );        $\C{// (3) (0, 2, 0)}$
457forall( T ) void foo( T, T );           $\C{// (4) (0, 2, 0)}$
458forall( T ) void foo( T, int );         $\C{// (5) (0, 1, 0)}$
459void foo( long long, long );            $\C{// (6) (0, 0, 3)}$
460void foo( long, long );                         $\C{// (7) (0, 0, 2)}$
461void foo( int, long );                          $\C{// (8) (0, 0, 1)}$
462int i, j;
463foo( i, j );                                            $\C{// convert j to long and call (8)}\CRT$
464\end{cfa}
465The overloaded instances are ordered from the highest to the lowest cost, and \CFA selects the last candidate (8).
466
467In the next iteration of \CFA, Schluntz and Aaron~\cite{Moss18} expanded conversion cost to a 7-tuple with 4 additional categories, @(unsafe, poly, safe, sign, vars, specialization, reference)@, with the following interpretations:
468\begin{itemize}
469\item \textit{Unsafe}
470\item \textit{Poly}
471\item \textit{Safe}
472\item \textit{Sign} is the number of sign/unsign variable conversions.
473\item \textit{Vars} is the number of polymorphic type variables.
474\item \textit{Specialization} is the negative value of the number of type assertions.
475\item \textit{Reference} is number of reference-to-rvalue conversion.
476\end{itemize}
477The extended conversion-cost model looks for candidates that are more specific and less generic.
478@vars@ disambiguates @forall( T, V ) foo( T, V )@ and @forall( T ) void foo( T, T )@, where the extra type parameter @V@ makes is more generic.
479A more generic type means fewer constraints on its parameter types.
480\CFA favours candidates with more restrictions on polymorphism, so @forall( T ) void foo( T, T )@ has lower cost.
481@specialization@ is an arbitrary count-down value starting at zero.
482For every type assertion in the @forall@ clause (no assertions in the above example), \CFA subtracts one from @specialization@.
483More type assertions mean more constraints on argument types, making the function less generic.
484
485\CFA defines two special cost values: @zero@ and @infinite@.
486A conversion cost is @zero@ when the argument and parameter have an exact match, and a conversion cost is @infinite@ when there is no defined conversion between the two types.
487For example, the conversion cost from @int@ to a @struct S@ is @infinite@.
488
489In \CFA, the meaning of a C-style cast is determined by its @Cast Cost@.
490For most cast-expression resolutions, a cast cost equals a conversion cost.
491Cast cost exists as an independent matrix for conversion that cannot happen implicitly while being possible with an explicit cast.
492These conversions are often defined as having an infinite conversion cost and a non-infinite cast cost.
Note: See TracBrowser for help on using the repository browser.