source: doc/theses/jiada_liang_MMath/CFAenum.tex @ eaeba79

Last change on this file since eaeba79 was 0bda8d7, checked in by JiadaL <j82liang@…>, 5 weeks ago

Small updates

  • Property mode set to 100644
File size: 29.3 KB
Line 
1\chapter{\texorpdfstring{\CFA}{Cforall} Enumeration}
2
3\CFA extends C-Style enumeration by adding a number of new features that bring enumerations in line with other modern programming languages.
4Any enumeration extensions must be intuitive to C programmers in syntax and semantics.
5The following sections detail my new contributions to enumerations in \CFA.
6
7
8\section{Syntax}
9
10\CFA extends the C enumeration declaration \see{\VRef{s:CEnumeration}} by parameterizing with a type (like a generic type) and adding Plan-9 inheritance \see{\VRef{s:CFAInheritance}} using an @inline@ to another enumeration type.
11\begin{cfa}[identifierstyle=\linespread{0.9}\it]
12$\it enum$-specifier:
13        enum @(type-specifier$\(_{opt}\)$)@ identifier$\(_{opt}\)$ { cfa-enumerator-list }
14        enum @(type-specifier$\(_{opt}\)$)@ identifier$\(_{opt}\)$ { cfa-enumerator-list , }
15        enum @(type-specifier$\(_{opt}\)$)@ identifier
16cfa-enumerator-list:
17        cfa-enumerator
18        cfa-enumerator-list, cfa-enumerator
19cfa-enumerator:
20        enumeration-constant
21        @inline $\color{red}enum$-type-name@
22        enumeration-constant = constant-expression
23\end{cfa}
24
25
26\section{Operations}
27
28\CFA enumerations have access to the three enumerations properties \see{\VRef{s:Terminology}}: label, order (position), and value via three overloaded functions @label@, @posn@, and @value@ \see{\VRef{c:trait} for details}.
29\CFA auto-generates these functions for every \CFA enumeration.
30\begin{cfa}
31enum(int) E { A = 3 } e = A;
32sout | A | @label@( A ) | @posn@( A ) | @value@( A );
33sout | e | @label@( e ) | @posn@( e ) | @value@( e );
34A A 0 3
35A A 0 3
36\end{cfa}
37For output, the default is to print the label.
38An alternate way to get an enumerator's position is to cast it to @int@.
39\begin{cfa}
40sout | A | label( A ) | @(int)A@ | value( A );
41sout | A | label( A ) | @(int)A@ | value( A );
42A A @0@ 3
43A A @0@ 3
44\end{cfa}
45Finally, \CFA introduces an additional enumeration pseudo-function @countof@ (like @sizeof@, @typeof@) that returns the number of enumerators in an enumeration.
46\begin{cfa}
47enum(int) E { A, B, C, D } e;
48countof( E )// 4, type argument
49countof( e )// 4, variable argument
50\end{cfa}
51This built-in function replaces the C idiom for automatically computing the number of enumerators \see{\VRef{s:Usage}}.
52\begin{cfa}
53enum E { A, B, C, D, @N@ };  // N == 4
54\end{cfa}
55
56\section{Opaque Enumeration}
57\label{s:OpaqueEnum}
58
59When an enumeration type is empty. it is an \newterm{opaque} enumeration.
60\begin{cfa}
61enum@()@ Mode { O_RDONLY, O_WRONLY, O_CREAT, O_TRUNC, O_APPEND };
62\end{cfa}
63Here, the compiler chooses the internal representation, which is hidden, so the enumerators cannot be initialized.
64Compared to the C enum, opaque enums are more restrictive regarding typing and cannot be implicitly converted to integers.
65\begin{cfa}
66Mode mode = O_RDONLY;
67int www @=@ mode;                                               $\C{// disallowed}$
68\end{cfa}
69Opaque enumerations have only two attribute properties, @label@ and @posn@.
70\begin{cfa}
71char * s = label( O_TRUNC );                    $\C{// "O\_TRUNC"}$
72int open = posn( O_WRONLY );                    $\C{// 1}$
73s = label( mode );                                              $\C{// "O\_RDONLY"}$
74int open = posn( mode );                                $\C{// 0}$
75\end{cfa}
76Equality and relational operations are available.
77\begin{cfa}
78if ( mode @==@ O_CREAT ) ...
79bool b = mode @<@ O_APPEND;
80\end{cfa}
81
82
83\section{Typed Enumeration}
84\label{s:EnumeratorTyping}
85
86When an enumeration type is specified, all enumerators have that type and can be initialized with constants of that type or compile-time convertible to that type.
87Figure~\ref{f:EumeratorTyping} shows a series of examples illustrating that all \CFA types can be used with an enumeration, and each type's values are used to set the enumerator constants.
88Note the use of the synonyms @Liz@ and @Beth@ in the last declaration.
89Because enumerators are constants, the enumeration type is implicitly @const@, so all the enumerator types in Figure~\ref{f:EumeratorTyping} are logically rewritten with @const@.
90
91\begin{figure}
92\begin{cfa}
93// integral
94        enum( @char@ ) Currency { Dollar = '$\textdollar$', Cent = '$\textcent$', Yen = '$\textyen$', Pound = '$\textsterling$', Euro = 'E' };
95        enum( @signed char@ ) srgb { Red = -1, Green = 0, Blue = 1 };
96        enum( @long long int@ ) BigNum { X = 123_456_789_012_345,  Y = 345_012_789_456_123 };
97// non-integral
98        enum( @double@ ) Math { PI_2 = 1.570796, PI = 3.141597, E = 2.718282 };
99        enum( @_Complex@ ) Plane { X = 1.5+3.4i, Y = 7+3i, Z = 0+0.5i };
100// pointer
101        enum( @char *@ ) Name { Fred = "FRED", Mary = "MARY", Jane = "JANE" };
102        int i, j, k;
103        enum( @int *@ ) ptr { I = &i,  J = &j,  K = &k };
104        enum( @int &@ ) ref { I = i,   J = j,   K = k };
105// tuple
106        enum( @[int, int]@ ) { T = [ 1, 2 ] }; $\C{// new \CFA type}$
107// function
108        void f() {...}   void g() {...}
109        enum( @void (*)()@ ) funs { F = f,  G = g };
110// aggregate
111        struct Person { char * name; int age, height; };
112        enum( @Person@ ) friends { @Liz@ = { "ELIZABETH", 22, 170 }, @Beth@ = Liz,
113                                                                        Jon = { "JONATHAN", 35, 190 } };
114\end{cfa}
115% synonym feature unimplemented
116\caption{Enumerator Typing}
117\label{f:EumeratorTyping}
118\end{figure}
119
120An advantage of the typed enumerations is eliminating the \emph{harmonizing} problem between an enumeration and companion data \see{\VRef{s:Usage}}:
121\begin{cfa}
122enum( char * ) integral_types {
123        chr = "char", schar = "signed char", uschar = "unsigned char",
124        sshort = "signed short int", ushort = "unsigned short int",
125        sint = "signed int", usint = "unsigned int",
126        ...
127};
128\end{cfa}
129Note that the enumeration type can be a structure (see @Person@ in Figure~\ref{f:EumeratorTyping}), so it is possible to have the equivalent of multiple arrays of companion data using an array of structures.
130
131While the enumeration type can be any C aggregate, the aggregate's \CFA constructors are \emph{not} used to evaluate an enumerator's value.
132\CFA enumeration constants are compile-time values (static);
133calling constructors happens at runtime (dynamic).
134
135
136\section{Implementation}
137
138\CFA-cc is a transpiler translating \CFA code into C, which is compiled by a C compiler.
139During transpiling, \CFA-cc breaks a \CFA enumeration definition into a definition of a C enumeration with the same name and auxiliary arrays: a label and value array for a typed enumeration.
140For example:
141\begin{cfa}
142enum( T ) E { E1 = t1, E2 = t2, E3 = t3 };
143\end{cfa}
144is compiled into:
145\begin{cfa}
146enum E { E1, E2, E3 };
147const char * E_labels[3] = { "E1", "E2", "E3" };
148const T E_values[3] = { t1, t2, t3 };
149\end{cfa}
150The generated C enumeration has enumerator values that match \CFA enumerator positions because of C's auto-initialization.
151A \CFA enumeration variable definition is the same in \CFA as C, \eg:
152\begin{cfa}
153enum E e = E1;
154e = E2;
155\end{cfa}
156so these expressions remain unchanged by \CFA-cc.
157Therefore, a \CFA enumeration variable has the same underlying representation as its generated C enumeration.
158This semantics implies a \CFA enumeration variable uses the same storage as a C enumeration variable, that @posn@ can use as its underlying representation, and the label and value arrays take little storage.
159It should be possible to eliminate the two arrays if unused, either by \CFA if local to a translation unit and unused, or by the linker if global but unreferenced.
160Also, the label and value arrays are declared @static@ and initialized with constants, so the arrays are allocated in the @.data@ section and initialized before program execution.
161Hence, there is no additional execution cost unless new enumeration features are used, and storage usage is minimal as the number of enumerations in a program is small as is the number of enumerators in an enumeration.
162
163Along with the enumeration definition, \CFA-cc generates definitions of the attribute functions, @posn@, @label@ and @value@, for each enumeration:
164\begin{cfa}
165inline int posn( E e ) { return (int) e; }
166inline const * label( E e ) { return E_labels[ (int) e ]; }
167inline const * E_value( E e ) { return E_values[ (int) e ]; }
168\end{cfa}
169where the function calls are normally inlined by the backend C compiler into a few instructions.
170These functions simplify the job of getting the enumerations types through the type system in the same way as normal functions and calls.
171Note, the cast to @int@ is actually an internal reinterpreted cast added before type resolution to stop further reduction on the expression by the type resolver \see{\VRef{s:ValueConversion}} and removed in code generation.
172Finally, to further mitigate \CFA enumeration costs, calls to @label@ and @value@ with an enumeration constant are unrolled into the appropriate constant expression, although this could be left to the backend C compiler.
173Hence, in space and time costs, \CFA enumerations follow the C philosophy of only paying for what is used, modulo some future work to convince the linker to remove un-accessed @label@ and @value@ arrays, possibly with @weak@ attributes.
174
175
176\section{Value Conversion}
177\label{s:ValueConversion}
178C has an implicit type conversion from an enumerator to its base type @int@.
179Correspondingly, \CFA has an implicit conversion from a typed enumerator to its base type, allowing typed enumeration to be seamlessly used as the value of its base type
180For example, using type @Currency@ in \VRef[Figure]{f:EumeratorTyping}:
181\begin{cfa}
182char currency = Dollar;         $\C{// implicit conversion to base type}$
183void foo( char );
184foo( Dollar );                          $\C{// implicit conversion to base type}$
185\end{cfa}
186The implicit conversion induces a \newterm{value cost}, which is a new category (8 tuple) in \CFA's conversion cost model \see{\VRef{s:ConversionCost}} to disambiguate function overloading over a \CFA enumeration and its base type.
187\begin{cfa}
188void baz( char ch );            $\C{// (1)}$
189void baz( Currency cu );        $\C{// (2)}$
190baz( Dollar );
191\end{cfa}
192While both @baz@ functions are applicable to the enumerator @Dollar@, @candidate (1)@ comes with a @value@ cost for the conversion to the enumeration's base type, while @candidate (2)@ has @zero@ cost.
193Hence, \CFA chooses the exact match.
194Value cost is defined to be a more significant factor than an @unsafe@ but less than the other conversion costs: @(unsafe,@ {\color{red}@value@}@, poly, safe, sign, vars, specialization,@ @reference)@.
195\begin{cfa}
196void bar( @int@ );
197Math x = PI;                            $\C{// (1)}$
198double x = 5.5;                         $\C{// (2)}$
199bar( x );                                       $\C{// costs (1, 0, 0, 0, 0, 0, 0, 0) or (0, 1, 0, 0, 0, 0, 0, 0)}$
200\end{cfa}
201Here, the candidate (1) has a @value@ conversion cost to convert to the base type, while the candidate (2) has an @unsafe@ conversion from @double@ to @int@,
202which is a more expensive conversion.
203Hence, @bar( x )@ resolves @x@ as type @Math@.
204
205% \begin{cfa}
206% forall(T | @CfaEnum(T)@) void bar(T);
207%
208% bar(a);                                       $\C{// (3), with cost (0, 0, 1, 0, 0, 0, 0, 0)}$
209% \end{cfa}
210% % @Value@ is designed to be less significant than @poly@ to allow function being generic over \CFA enumeration (see ~\ref{c:trait}).
211% Being generic over @CfaEnum@ traits (a pre-defined interface for \CFA enums) is a practice in \CFA to implement functions over \CFA enumerations, as will see in chapter~\ref{c:trait}.
212% @Value@ is a being a more significant cost than @poly@ implies if a overloaeded function defined for @CfaEnum@ (and other generic type), \CFA always try to resolve it as a @CfaEnum@, rather to insert a @value@ conversion.
213
214
215\section{Initialization}
216\CFA extends C's auto-initialization scheme to \CFA enumeration. For an enumeration type with base type T, the initialization scheme is the following:
217\begin{enumerate}
218\item the first enumerator is initialized with @T@'s @zero_t@.
219\item Every other enumerator is initialized with its previous enumerator's value "+1", where "+1" is defined in terms of overloaded operator @?+?(T, one_t)@.
220\end{enumerate}
221
222\begin{cfa}
223struct S { int i; };
224S ?+?( S & s, one_t ) { return s.i++; }
225void ?{}( S & s, zero_t ) { s.i = 0; }
226enum(S) E { A, B, C, D };
227\end{cfa}
228
229The restriction on C's enumeration initializers being constant expression is relaxed on \CFA enumeration.
230Therefore, an enumerator initializer allows function calls like @?+?( S & s, one_t )@ and @?{}( S & s, zero_t )@.
231It is because the values of \CFA enumerators are not stored in the compiled enumeration body but in the @value@ array, which
232allows dynamic initialization.
233
234\section{Subset}
235
236An enumeration's type can be another enumeration.
237\begin{cfa}
238enum( char ) Letter { A = 'A', ..., Z = 'Z' };
239enum( @Letter@ ) Greek { Alph = @A@, Beta = @B@, Gamma = @G@, ..., Zeta = @Z@ }; // alphabet intersection
240\end{cfa}
241Enumeration @Greek@ may have more or less enumerators than @Letter@, but its enumerator values \emph{must} be from @Letter@.
242Therefore, the set of @Greek@ enumerator values in a subset of the @Letter@ enumerator values.
243@Letter@ is type compatible with enumeration @Letter@ because value conversions are inserted whenever @Letter@ is used in place of @Greek@.
244\begin{cfa}
245Letter l = A;                                           $\C{// allowed}$
246Greek g = Alph;                                         $\C{// allowed}$
247l = Alph;                                                       $\C{// allowed, conversion to base type}$
248g = A;                                                          $\C{// {\color{red}disallowed}}$
249void foo( Letter );
250foo( Beta );                                            $\C{// allowed, conversion to base type}$
251void bar( Greek );
252bar( A );                                                       $\C{// {\color{red}disallowed}}$
253\end{cfa}
254Hence, @Letter@ enumerators are not type-compatible with the @Greek@ enumeration, but the reverse is true.
255
256
257\section{Inheritance}
258\label{s:CFAInheritance}
259
260\CFA Plan-9 inheritance may be used with \CFA enumerations, where Plan-9 inheritance is containment inheritance with implicit un-scoping (like a nested unnamed @struct@/@union@ in C).
261Containment is nominative: an enumeration inherits all enumerators from another enumeration by declaring an @inline statement@ in its enumerator lists.
262\begin{cfa}
263enum( char * ) Names { /* $\see{\VRef[Figure]{f:EumeratorTyping}}$ */  };
264enum( char * ) Names2 { @inline Names@, Jack = "JACK", Jill = "JILL" };
265enum( char * ) Names3 { @inline Names2@, Sue = "SUE", Tom = "TOM" };
266\end{cfa}
267In the preceding example, @Names2@ is defined with five enumerators, three of which are from @Name@ through containment, and two are self-declared.
268@Names3@ inherits all five members from @Names2@ and declares two additional enumerators.
269Hence, enumeration inheritance forms a subset relationship.
270Specifically, the inheritance relationship for the example above is:
271\begin{cfa}
272Names $\(\subset\)$ Names2 $\(\subset\)$ Names3 $\C{// enum type of Names}$
273\end{cfa}
274
275Inheritance can be nested, and a \CFA enumeration can inline enumerators from more than one \CFA enumeration, forming a tree-like hierarchy.
276However, the uniqueness of the enumeration name applies to enumerators, including those from supertypes, meaning an enumeration cannot name an enumerator with the same label as its subtype's members or inherits
277from multiple enumeration that has overlapping enumerator labels. Consequently, a new type cannot inherit from an enumeration and its supertype or two enumerations with a
278common supertype (the diamond problem) since such would unavoidably introduce duplicate enumerator labels.
279
280The base type must be consistent between subtype and supertype.
281When an enumeration inherits enumerators from another enumeration, it copies the enumerators' @value@ and @label@, even if the @value@ is auto-initialized.
282However, the underlying representation's position is the enumerator's order in the new enumeration.
283\begin{cfa}
284enum() E1 { B };                                                                        $\C{// B}$
285enum() E2 { C, D };                                             $\C{// C D}$
286enum() E3 { inline E1, inline E2, E };  $\C{// {\color{red}[\(_{E1}\)} B {\color{red}]} {\color{red}[\(_{E2}\)} C D {\color{red}]} E}$
287enum() E4 { A, inline E3, F};                   $\C{// A {\color{blue}[\(_{E3}\)} {\color{red}[\(_{E1}\)} B {\color{red}]} {\color{red}[\(_{E2}\)} C D {\color{red}]} E {\color{blue}]} F}$
288\end{cfa}
289In this example, @B@ is at position 0 in @E1@ and @E3@, but position 1 in @E4@ as @A@ takes position 0 in @E4@.
290@C@ is at position 0 in @E2@, 1 in @E3@, and 2 in @E4@.
291@D@ is at position 1 in @E2@, 2 in @E3@, and 3 in @E4@.
292
293A subtype enumeration can be casted, or implicitly converted into its supertype, with a @safe@ cost, called \newterm{enumeration conversion}.
294\begin{cfa}
295enum E2 e2 = C;
296posn( e2 );                     $\C[1.75in]{// 0}$
297enum E3 e3 = e2;        $\C{// Assignment with enumeration conversion E2 to E3}$
298posn( e2 );                     $\C{// 1 cost}$
299void foo( E3 e );
300foo( e2 );                      $\C{// Type compatible with enumeration conversion E2 to E3}$
301posn( (E3)e2 );         $\C{// Explicit cast with enumeration conversion E2 to E3}$
302E3 e31 = B;                     $\C{// No conversion: E3.B}$
303posn( e31 );            $\C{// 0 cost}\CRT$
304\end{cfa}
305The last expression is unambiguous.
306While both @E2.B@ and @E3.B@ are valid candidates, @E2.B@ has an associated safe cost and @E3.B@ needs no conversion (@zero@ cost).
307\CFA selects the lowest cost candidate @E3.B@.
308
309For the given function prototypes, the following calls are valid.
310\begin{cquote}
311\begin{tabular}{ll}
312\begin{cfa}
313void f( Names );
314void g( Names2 );
315void h( Names3 );
316void j( const char * );
317\end{cfa}
318&
319\begin{cfa}
320f( Fred );
321g( Fred );   g( Jill );
322h( Fred );   h( Jill );   h( Sue );
323j( Fred );    j( Jill );    j( Sue );    j( "WILL" );
324\end{cfa}
325\end{tabular}
326\end{cquote}
327Note, the validity of calls is the same for call-by-reference as for call-by-value, and @const@ restrictions are the same as for other types.
328
329
330\subsection{Offset Calculation}
331
332As discussed in \VRef{s:OpaqueEnum}, \CFA chooses position as a representation of a \CFA enumeration variable.
333When a cast or implicit conversion moves an enumeration from subtype to supertype, the position can be unchanged or increased.
334\CFA determines the position offset with an \newterm{offset calculation} function.
335
336\begin{figure}
337\begin{cfa}
338struct Enumerator;
339struct CFAEnum { vector<variant<CFAEnum, Enumerator>> members; string name; };
340inline static bool operator==(CFAEnum& lhs, CFAEnum& rhs) { return lhs.name == rhs.name; }
341pair<bool, int> calculateEnumOffset(CFAEnum src, CFAEnum dst) {
342        int offset = 0;
343        if ( src == dst ) return make_pair(true, 0);
344        for ( auto v : dst.members ) {
345                if ( holds_alternative<Enumerator>(v) ) {
346                        offset++;
347                } else {
348                        auto m = get<CFAEnum>(v);
349                        if ( m == src ) @return@ make_pair( true, offset );
350                        auto dist = calculateEnumOffset( src, m );
351                        if ( dist.first ) {
352                                @return@ make_pair( true, offset + dist.second );
353                        } else {
354                                offset += dist.second;
355                        }
356                }
357        }
358        @return@ make_pair( false, offset );
359}
360\end{cfa}
361\caption{Compute Offset from Subtype Enumeration to a Supertype}
362\label{s:OffsetSubtypeSuperType}
363\end{figure}
364
365Figure~\ref{s:OffsetSubtypeSuperType} shows an outline of the offset calculation in \CC.
366Structure @CFAEnum@ represents the \CFA enumeration with a vector of variants of @CFAEnum@ or @Enumerator@.
367The algorithm takes two @CFAEnums@ parameters, @src@ and @dst@, with @src@ being the type of expression the conversion applies to, and @dst@ being the type the expression is cast to.
368The algorithm iterates over the members in @dst@ to find @src@.
369If a member is an enumerator of @dst@, the positions of all subsequent members are incremented by one.
370If the current member is @dst@, the function returns true, indicating \emph{found} and the accumulated offset.
371Otherwise, the algorithm recurses into the current @CFAEnum@ @m@ to check if its @src@ is convertible to @m@.
372If @src@ is convertible to the current member @m@, this means @src@ is a subtype-of-subtype of @dst@.
373The offset between @src@ and @dst@ is the sum of the offset of @m@ in @dst@ and the offset of @src@ in @m@.
374If @src@ is not a subtype of @m@, the loop continues but with the offset shifted by the size of @m@.
375If the loop ends, than @src@ is not convertible to @dst@, and false is returned.
376
377
378\section{Control Structures}
379
380Enumerators are used in various contexts.
381In most programming languages, an enumerator is implicitly converted to its value (like a typed macro substitution).
382However, in some contexts, enumerator synonyms and typed enumerations make this implicit conversion to value incorrect.
383A programmer's intuition assumes an implicit conversion to position in these contexts.
384
385For example, an intuitive use of enumerations is with the \CFA @switch@/@choose@ statement, where @choose@ performs an implicit @break@ rather than a fall-through at the end of a @case@ clause.
386(For this discussion, ignore the fact that @case@ requires a compile-time constant.)
387\begin{cfa}[belowskip=0pt]
388enum Count { First, Second, Third, Fourth };
389Count e;
390\end{cfa}
391\begin{cquote}
392\setlength{\tabcolsep}{15pt}
393\noindent
394\begin{tabular}{@{}ll@{}}
395\begin{cfa}[aboveskip=0pt]
396
397choose( e ) {
398        case @First@: ...;
399        case @Second@: ...;
400        case @Third@: ...;
401        case @Fourth@: ...;
402}
403\end{cfa}
404&
405\begin{cfa}[aboveskip=0pt]
406// rewrite
407choose( @value@( e ) ) {
408        case @value@( First ): ...;
409        case @value@( Second ): ...;
410        case @value@( Third ): ...;
411        case @value@( Fourth ): ...;
412}
413\end{cfa}
414\end{tabular}
415\end{cquote}
416Here, the intuitive code on the left is implicitly transformed into the standard implementation on the right, using the value of the enumeration variable and enumerators.
417However, this implementation is fragile, \eg if the enumeration is changed to:
418\begin{cfa}
419enum Count { First, Second, Third @= First@, Fourth };
420\end{cfa}
421making @Third == First@ and @Fourth == Second@, causing a compilation error because of duplicate @case@ clauses.
422To better match with programmer intuition, \CFA toggles between value and position semantics depending on the language context.
423For conditional clauses and switch statements, \CFA uses the robust position implementation.
424\begin{cfa}
425if ( @posn@( e ) < posn( Third ) ) ...
426choose( @posn@( e ) ) {
427        case @posn@( First ): ...;
428        case @posn@( Second ): ...;
429        case @posn@( Third ): ...;
430        case @posn@( Fourth ): ...;
431}
432\end{cfa}
433
434\CFA provides a special form of for-control for enumerating through an enumeration, where the range is a type.
435\begin{cfa}
436for ( cx; @Count@ ) { sout | cx | nonl; } sout | nl;
437for ( cx; ~= Count ) { sout | cx | nonl; } sout | nl;
438for ( cx; -~= Count ) { sout | cx | nonl; } sout | nl;
439First Second Third Fourth
440First Second Third Fourth
441Fourth Third Second First
442\end{cfa}
443The enumeration type is syntax sugar for looping over all enumerators and assigning each enumerator to the loop index, whose type is inferred from the range type.
444The prefix @+~=@ or @-~=@ iterate forward or backward through the inclusive enumeration range, where no prefix defaults to @+~=@.
445
446C has an idiom for @if@ and loop predicates of comparing the predicate result ``not equal to 0''.
447\begin{cfa}
448if ( x + y /* != 0 */  ) ...
449while ( p /* != 0 */  ) ...
450\end{cfa}
451This idiom extends to enumerations because there is a boolean conversion regarding the enumeration value if and only if such a conversion is available.
452For example, such a conversion exists for all numerical types (integral and floating-point).
453It is possible to explicitly extend this idiom to any typed enumeration by overloading the @!=@ operator.
454\begin{cfa}
455bool ?!=?( Name n, zero_t ) { return n != Fred; }
456Name n = Mary;
457if ( n ) ... // result is true
458\end{cfa}
459Specialize meanings are also possible.
460\begin{cfa}
461enum(int) ErrorCode { Normal = 0, Slow = 1, Overheat = 1000, OutOfResource = 1001 };
462bool ?!=?( ErrorCode ec, zero_t ) { return ec >= Overheat; }
463ErrorCode code = ...;
464if ( code ) { problem(); }
465\end{cfa}
466
467
468\section{Dimension}
469
470\VRef{s:EnumeratorTyping} introduces the harmonizing problem between an enumeration and secondary information.
471When possible, using a typed enumeration for the secondary information is the best approach.
472However, there are times when combining these two types is not possible.
473For example, the secondary information might precede the enumeration and/or its type is needed directly to declare parameters of functions.
474In these cases, having secondary arrays of the enumeration size are necessary.
475
476To support some level of harmonizing in these cases, an array dimension can be defined using an enumerator type, and the enumerators used as subscripts.
477\begin{cfa}
478enum E1 { A, B, C, N }; // possibly predefined
479enum(int) E2 { A, B, C };
480float H1[N] = { [A] :$\footnotemark$ 3.4, [B] : 7.1, [C] : 0.01 }; // C
481float H2[@E2@] = { [A] : 3.4, [B] : 7.1, [C] : 0.01 }; // CFA
482\end{cfa}
483\footnotetext{C uses symbol \lstinline{'='} for designator initialization, but \CFA changes it to \lstinline{':'} because of problems with tuple syntax.}
484This approach is also necessary for a predefined typed enumeration (unchangeable) when additional secondary information needs to be added.
485The array subscript operator, namely @?[?]@, is overloaded so that when a \CFA enumerator is used as an array index, it implicitly converts to its position over value to sustain data harmonization.
486This behaviour can be reverted by explicit overloading:
487\begin{cfa}
488float ?[?]( float * arr, E2 index ) { return arr[ value( index ) ]; }
489\end{cfa}
490While enumerator labels @A@, @B@ and @C@ are being defined twice in different enumerations, they are unambiguous within the context.
491Designators in @H1@ are unambiguous becasue @E2@ has a @value@ cost to @int@, which is more expensive than @safe@ cost from C-Enum @E1@ to @int@.
492Designators in @H2@ are resolved as @E2@ because when a \CFA enumeration type is being used as an array dimension, \CFA adds the enumeration type to the initializer's resolution context.
493
494
495\section{I/O}
496
497As seen in multiple examples, \CFA enumerations can be printed and the default property printed is the enumerator's label, which is similar in other programming languages.
498However, very few programming languages provide a mechanism to read in enumerator values.
499Even the @boolean@ type in many languages does not have a mechanism for input using the enumerators @true@ or @false@.
500\VRef[Figure]{f:EnumerationI/O} show \CFA enumeration input based on the enumerator labels.
501When the enumerator labels are packed together in the input stream, the input algorithm scans for the longest matching string.
502For basic types in \CFA, the rule is that the same constants used to initialize a variable in a program are available to initialize a variable using input, where string constants can be quoted or unquoted.
503
504\begin{figure}
505\begin{cquote}
506\setlength{\tabcolsep}{15pt}
507\begin{tabular}{@{}ll@{}}
508\begin{cfa}
509int main() {
510        enum(int ) E { BBB = 3, AAA, AA, AB, B };
511        E e;
512
513        try {
514                for () {
515                        try {
516                                @sin | e@;
517                        } catch( missing_data * ) {
518                                sout | "missing data";
519                                continue; // try again
520                        }
521                        sout | e | "= " | value( e );
522                }
523        } catch( end_of_file ) {}
524}
525\end{cfa}
526&
527\begin{cfa}
528$\rm input$
529BBBABAAAAB
530BBB AAA AA AB B
531
532$\rm output$
533BBB = 3
534AB = 6
535AAA = 4
536AB = 6
537BBB = 3
538AAA = 4
539AA = 5
540AB = 6
541B = 7
542
543\end{cfa}
544\end{tabular}
545\end{cquote}
546\caption{Enumeration I/O}
547\label{f:EnumerationI/O}
548\end{figure}
549
550
551\section{Planet Example}
552
553\VRef[Figure]{f:PlanetExample} shows an archetypal enumeration example illustrating most of the \CFA enumeration features.
554@Planet@ is an enumeration of type @MR@.
555Each planet enumerator is initialized to a specific mass/radius, @MR@, value.
556The unnamed enumeration provides the gravitational-constant enumerator @G@.
557Function @surfaceGravity@ uses the @with@ clause to remove @p@ qualification from fields @mass@ and @radius@.
558The program main uses the pseudo function @countof@ to obtain the number of enumerators in @Planet@, and safely converts the random value into a @Planet@ enumerator using @fromInt@.
559The resulting random orbital-body is used in a @choose@ statement.
560The enumerators in the @case@ clause use the enumerator position for testing.
561The prints use @label@ to print an enumerator's name.
562Finally, a loop enumerates through the planets computing the weight on each planet for a given Earth mass.
563The print statement does an equality comparison with an enumeration variable and enumerator (@p == MOON@).
564
565\begin{figure}
566\small
567\begin{cfa}
568struct MR { double mass, radius; };                     $\C[3.5in]{// planet definition}$
569enum( @MR@ ) Planet {                                           $\C{// typed enumeration}$
570        //                      mass (kg)   radius (km)
571        MERCURY = { 0.330_E24, 2.4397_E6 },
572        VENUS      = { 4.869_E24, 6.0518_E6 },
573        EARTH       = { 5.976_E24, 6.3781_E6 },
574        MOON        = { 7.346_E22, 1.7380_E6 }, $\C{// not a planet}$
575        MARS         = { 0.642_E24, 3.3972_E6 },
576        JUPITER    = { 1898._E24, 71.492_E6 },
577        SATURN     = { 568.8_E24, 60.268_E6 },
578        URANUS    = { 86.86_E24, 25.559_E6 },
579        NEPTUNE  = { 102.4_E24, 24.746_E6 },
580        PLUTO       = { 1.303_E22, 1.1880_E6 }, $\C{// not a planet}$
581};
582enum( double ) { G = 6.6743_E-11 };                     $\C{// universal gravitational constant (m3 kg-1 s-2)}$
583static double surfaceGravity( Planet p ) @with( p )@ {
584        return G * mass / ( radius @\@ 2 );             $\C{// no qualification, exponentiation}$
585}
586static double surfaceWeight( Planet p, double otherMass ) {
587        return otherMass * surfaceGravity( p );
588}
589int main( int argc, char * argv[] ) {
590        if ( argc != 2 ) @exit@ | "Usage: " | argv[0] | "earth-weight";  // terminate program
591        double earthWeight = convert( argv[1] );
592        double earthMass = earthWeight / surfaceGravity( EARTH );
593        Planet rp = @fromInt@( prng( @countof@( Planet ) ) ); $\C{// select random orbiting body}$
594        @choose( rp )@ {                                                $\C{// implicit breaks}$
595          case MERCURY, VENUS, EARTH, MARS:
596                sout | @rp@ | "is a rocky planet";
597          case JUPITER, SATURN, URANUS, NEPTUNE:
598                sout | rp | "is a gas-giant planet";
599          default:
600                sout | rp | "is not a planet";
601        }
602        for ( @p; Planet@ ) {                                   $\C{// enumerate}\CRT$
603                sout | "Your weight on" | ( @p == MOON@ ? "the" : " " ) | p
604                           | "is" | wd( 1,1,  surfaceWeight( p, earthMass ) ) | "kg";
605        }
606}
607$\$$ planet 100
608JUPITER is a gas-giant planet
609Your weight on MERCURY is 37.7 kg
610Your weight on VENUS is 90.5 kg
611Your weight on EARTH is 100.0 kg
612Your weight on the MOON is 16.6 kg
613Your weight on MARS is 37.9 kg
614Your weight on JUPITER is 252.8 kg
615Your weight on SATURN is 106.6 kg
616Your weight on URANUS is 90.5 kg
617Your weight on NEPTUNE is 113.8 kg
618Your weight on PLUTO is 6.3 kg
619\end{cfa}
620\caption{Planet Example}
621\label{f:PlanetExample}
622\end{figure}
Note: See TracBrowser for help on using the repository browser.